The Future of the Implantable Defibrillator

  • Mark W. Kroll
  • Charles D. Swerdlow

As successful as the implantable cardioverter-defibrillator (ICD) has been, the therapy is far from perfect. The device implantations are nontrivial and implant testing still has some morbidity and a relatively rare mortality associated with it. Partly due to the high effectiveness of ICDs, the largest morbidity associated with this therapy is psychiatric due to the pain of shocks especially — but not exclusively — due to inappropriate shocks. In spite of the dramatic positive impact on sudden death, patients with ICDs can still die from sudden death because of high defibrillation threshold fibrillation or nonshockable rhythms such as pulseless electrical activity. This chapter will discuss possibilities for addressing these therapy limitations.


Right Ventricular Heart Rhythm Shock Strength Pulseless Electrical Activity Inappropriate Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swerdlow C, Gillberg J, Olson W. Sensing and detection. In: Ellenbogen K, Kay G, Lau C, Willkoff B, eds. Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy. Philadelphia: Saunders; 2007:75–160Google Scholar
  2. 2.
    Gunderson B, Patel A, Bounds C. Automatic identification of implantable cardioverter-defibrillator lead problems using intracardiac electrograms. Comput Cardiol2002;29:121–124Google Scholar
  3. 3.
    Swerdlow C, Shivkumar K. Implantable cardioverter defibrillators: clinical aspects. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders; 2004:980–993Google Scholar
  4. 4.
    Poole J, Johnson G, Callans D, Raitt M, Yee R, Reddy R, Wilber D, Guarnieri T, Talajic M, Marchlinski F, Lee K, Bardy G, SCD-HeFT Investigators. Analysis of implantable defibrillator shock electrograms in the Sudden Cardiac Death-Heart Failure Trial. Heart Rhythm2004;1:S178 (abstract)Google Scholar
  5. 5.
    Theres H, Sun W, Combs W, Panken E, Mead H, Baumann G, Stangl K. P wave and far-field R wave detection in pacemaker patient atrial electrograms. Pacing Clin Electrophysiol2000;23:434–440PubMedCrossRefGoogle Scholar
  6. 6.
    Gunderson BD, Gillberg JM, Wood MA, Vijayaraman P, Shepard RK, Ellenbogen KA. Development and testing of an algorithm to detect implantable cardioverter-defibrillator lead failure. Heart Rhythm2006;3:155–162PubMedCrossRefGoogle Scholar
  7. 7.
    Gunderson BD, Patel AS, Bounds CA, Ellenbogen KA. Automatic identification of clinical lead dysfunctions. Pacing Clin Electrophysiol2005;28(Suppl 1):S63–S67Google Scholar
  8. 8.
    Gunderson BD, Patel AS, Bounds CA, Shepard RK, Wood MA, Ellenbogen KA. An algorithm to predict implantable cardioverter-defibrillator lead failure. J Am Coll Cardiol2004;44:1898–1902PubMedCrossRefGoogle Scholar
  9. 9.
    Wathen MS, Volosin KJ, Sweeney MO, Khalighi K, Canby RC, Machado C, Adkisson WO, Rubenstein DS, Otterness MF, Stark AJ, Gillberg JM, DeGroot PJ. Ven tricular antitachycardia pacing by implantable cardioverter defibrillators reduces shocks for inappropriately detected supraventricular tachycardia. Heart Rhythm2004;1 (abstract)Google Scholar
  10. 10.
    Ridley DP, Gula LJ, Krahn AD, Skanes AC, Yee R, Brown ML, Olson WH, Gillberg JM, Klein GJ. Atrial response to ventricular antitachycardia pacing discriminates mechanism of 1:1 atrioventricular tachycardia. J Cardiovasc Electrophysiol2005;16:601–605PubMedCrossRefGoogle Scholar
  11. 11.
    Saba S, Baker L, Ganz L, Barrington W, Jain S, Ngwu O, Christensen J, Brown M. Simultaneous atrial and ventricular anti-tachycardia pacing as a novel method of rhythm discrimination. J Cardiovasc Electrophysiol2006;17:695–701PubMedCrossRefGoogle Scholar
  12. 12.
    Bordachar P, Garrigue S, Reuter S, Hocini M, Kobeissi A, Gaggini G, Jais P, Haissa guerre M, Clementy J. Hemodynamic assessment of right, left, and biventricular pacing by peak endocardial acceleration and echocardiography in patients with end-stage heart failure. Pacing Clin Electrophysiol2000;23:1726–1730PubMedGoogle Scholar
  13. 13.
    Hegbom F, Hoff PI, Oie B, Folling M, Zeijlemaker V, Lindemans F, Ohm OJ. RV function in stable and unstable VT: is there a need for hemodynamic monitoring in future defibrillators? Pacing Clin Electrophysiol2001;24:172–182PubMedCrossRefGoogle Scholar
  14. 14.
    Kaye G, Astridge P, Perrins J. Tachycardia recognition and diagnosis from changes in right atrial pressure waveform — a feasibility study. Pacing Clin Electrophysiol1991;14:1384–1392PubMedCrossRefGoogle Scholar
  15. 15.
    Khoury D, McAlister H, Wilkoff B, Simmons T, Rudy Y, McCowan R, Morant V, Castle L, Maloney J. Continuous right ventricular volume assessment by catheter mea surement of impedance for antitachycardia system control. Pacing Clin Electrophysiol1989;12:1918–1926PubMedCrossRefGoogle Scholar
  16. 16.
    Sharma AD, Bennett TD, Erickson M, Klein GJ, Yee R, Guiraudon G. Right ven tricular pressure during ventricular arrhythmias in humans: potential implications for implantable antitachycardia devices. J Am Coll Cardiol1990;15:648–655PubMedCrossRefGoogle Scholar
  17. 17.
    Wood M, Ellenbogen KA, Lu B, Valenta H. A prospective study of right ventric ular pulse pressure and dP/dtto discriminant-induced ventricular tachycardia from supraventricular and sinus tachycardia in man. Pacing Clin Electrophysiol1990;13: 1148–1157PubMedCrossRefGoogle Scholar
  18. 18.
    Ellenbogen KA, Lu B, Kapadia K, Wood M, Valenta H. Usefulness of right ventricular pulse pressure as a potential sensor for hemodynamically unstable ventricular tachycar dia. Am J Cardiol1990;65:1105–1111PubMedCrossRefGoogle Scholar
  19. 19.
    Ellenbogen KA, Wood MA, Kapadia K, Lu B, Valenta H. Short-term reproducibility over time of right ventricular pulse pressure as a potential hemodynamic sensor for ventricular tachyarrhythmias. Pacing Clin Electrophysiol1992;15:971–974PubMedCrossRefGoogle Scholar
  20. 20.
    Plicchi G, Marcelli E, Marini S. An endocardial acceleration sensor for sustained ventricular tachycardia detection. Europace Suppl2002;3:96 (abstract)Google Scholar
  21. 21.
    Whitman T, Sheldon T, McFadden S. Endocardial acceleration measurements in tachycardia induced heart failure in canines. Pacing Clin Electrophysiol2002;24:569 (abstract)Google Scholar
  22. 22.
    Nabutovsky Y, Bjorling A, Ghaffari-Farazi T, Noren K, Bornzin G. A novel algo rithm for VF detection from subcutaneously implanted leads. Heart Rhythm. 2005 (abstract);2:S124–S125Google Scholar
  23. 23.
    Turcott R, Pavek T. Detection of hemodynamically unstable arrhythmias using subcu taneous photoplethysmography. Heart Rhythm2005;2:S83 (abstract)Google Scholar
  24. 24.
    Bennett T, Kjellstrom B, Taepke R, Ryden L. Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients. Pacing Clin Electrophysiol2005;28:573–584PubMedCrossRefGoogle Scholar
  25. 25.
    Cleland JG, Coletta AP, Freemantle N, Velavan P, Tin L, Clark AL. Clinical trials update from the American College of Cardiology meeting: CARE-HF and the Remission of Heart Failure, Women's Health Study, TNT, COMPASS-HF, VERITAS, CANPAP, PEECH and PREMIER. Eur J Heart Fail2005;7:931–936PubMedCrossRefGoogle Scholar
  26. 26.
    Strickberger SA, Klein GJ. Is defibrillation testing required for defibrillator implanta tion? J Am Coll Cardiol2004;44:88–91PubMedCrossRefGoogle Scholar
  27. 27.
    Neuzner J. Is DFT testing still mandatory? Herz2005;30:601PubMedCrossRefGoogle Scholar
  28. 28.
    Ellenbogen KA, Wood MA, Stambler BS, Welch WJ, Damiano RJ. Measurement of ventricular electrogram amplitude during intraoperative induction of ventricular tachyarrhythmias. Am J Cardiol1992;70:1017–1022PubMedCrossRefGoogle Scholar
  29. 29.
    Glikson M, Luria D, Friedman PA, Trusty JM, Benderly M, Hammill SC, Stanton MS. Are routine arrhythmia inductions necessary in patients with pectoral implantable cardioverter defibrillators? J Cardiovasc Electrophysiol2000;11:127–135PubMedCrossRefGoogle Scholar
  30. 30.
    Panotopoulos P, Krum D, Axtell K, Dhala A, Sra J, Akhtar M, Deshpande S. Ventricular fibrillation sensing and detection by implantable defibrillators: is one better than the others? A prospective, comparative study. J Cardiovasc Electrophysiol2001;12: 445–452Google Scholar
  31. 31.
    Swerdlow CD. Implantation of cardioverter defibrillators without induction of ventric ular fibrillation. Circulation2001;103:2159–2164PubMedGoogle Scholar
  32. 32.
    Day JD, Doshi RN, Belott P, Birgersdotter-Green U, Behboodikhah M, Ott P, Glat ter KA, Tobias S, Frumin H, Lee BK, Merillat J, Wiener I, Wang S, Grogin H, Chun S, Patrawalla R, Crandall B, Osborn JS, Weiss JP, Lappe DL, Neuman S. Inductionless or limited shock testing is possible in most patients with implantable cardioverter-defibrillators/cardiac resynchronization therapy defibrillators: results of the multicenter ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations). Circulation2007;115:2382–2389Google Scholar
  33. 33.
    Swerdlow CD, Russo AM, Degroot PJ. The dilemma of ICD implant testing. Pacing Clin Electrophysiol2007;30:675–700PubMedCrossRefGoogle Scholar
  34. 34.
    Chen P-S, Shibata N, Dixon E, Martin R, Ideker R. Comparison of the defibrilla tion threshold and the upper limit of ventricular vulnerability. Circulation1986;73: 1022–1028PubMedGoogle Scholar
  35. 35.
    Chen P-S, Shibata N, Dixon EG, Wolf PD, Danleley ND, Sweeney MB, Smith WM, Ideker RE. Activation during ventricular defibrillation in open-chest dogs. J Clin Invest1986;77:810–823PubMedCrossRefGoogle Scholar
  36. 36.
    Chen P-S, Shibata N, Wolf P, Dixon EG, Danieley ND, Sweeney MB, Smith WM, Ideker RE. Epicardial activation during successful and unsuccessful ventricular defibrillation in open chest dogs. Cardiovasc Rev Rep1986;7:625–648Google Scholar
  37. 37.
    Chen P-S, Wolf PD, Ideker RE. The mechanism of cardiac defibrillation: a different point of view. Circulation1991;84:913–919PubMedGoogle Scholar
  38. 38.
    Chen P-S, Wolf PD, Melnick SD, Danieley ND, Smith WM, Ideker RE. Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open chest dogs. Circ Res1990;66:1544–1560PubMedGoogle Scholar
  39. 39.
    Fabritz CL, Kirchhof PF, Behrens S, Zabel M, Franz MR. Myocardial vulnerability to T wave shocks: relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization. J Cardiovasc Electrophysiol1996;7:231–242PubMedCrossRefGoogle Scholar
  40. 40.
    Malkin R, Idriss S, Walker R, Ideker R. Effect of rapid pacing and T-wave scanning on the relation between the defibrillation and upper-limit-of-vulnerability dose-response curves. Circulation1995;92:1291–1299PubMedGoogle Scholar
  41. 41.
    Bessho R, Tanaka S. Measurement of the upper limit of vulnerability during defibrillator implantation can substitute defibrillation threshold measurement. Int J Artif Organs1998;21:151–160PubMedGoogle Scholar
  42. 42.
    Birgersdotter-Green U, Undesser K, Fujimura O, Feld GK, Kass RM, Mandel WJ, Peter CT, Chen PS. Correlation of acute and chronic defibrillation threshold with upper limit of vulnerability determined in normal sinus rhythm. J Interv Card Electrophysiol1999;3:155–161PubMedCrossRefGoogle Scholar
  43. 43.
    Chen PS, Feld GK, Kriett JM, Mower MM, Tarazi RY, Fleck RP, Swerdlow CD, Gang ES, Kass RM. Relation between upper limit of vulnerability and defibrillation threshold in humans. Circulation1993;88:186–192Google Scholar
  44. 44.
    Hui RC, Rosenthal L, Ramza B, Nsah E, Lawrence J, Tomaselli G, Berger R, Calkins H. Relationship between the upper limit of vulnerability determined in normal sinus rhythm and the defibrillation threshold in patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol1998;21:687–693PubMedCrossRefGoogle Scholar
  45. 45.
    Hwang C, Swerdlow CD, Kass RM, Gang ES, Mandel WJ, Peter CT, Chen PS. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans.Circulation1994;90:2308–2314PubMedGoogle Scholar
  46. 46.
    Kirilmaz A, Dokumaci B, Uzun M, Kilicaslan F, Dinckal MH, Yucel O, Karaca M. Detection of the defibrillation threshold using the upper limit of vulnerability following defibrillator implantation.Pacing Clin Electrophysiol2005;28:498–505PubMedCrossRefGoogle Scholar
  47. 47.
    Swerdlow C, Shehata M, Chen P. Using the upper limit of vulnerability to assess defibrillation efficacy at implantation of ICDs.Pacing Clin Electrophysiol2007;30:258– 270PubMedCrossRefGoogle Scholar
  48. 48.
    Day J, Doshi R, Belott P, Birgersdotter-Green U, Behboodikhah M, Ott P, Glatter K, Lee B, Frumin H, Crandall B, Osborn J, Weiss J, Lappe J, Valderrabano M, Urratio C, McGuire M, Hahn S. Most patients may safely undergo inductionless or limited shock testing at ICD implantation.Heart Rhythm2005;2:S232 (abstract)CrossRefGoogle Scholar
  49. 49.
    Swerdlow C, Shivkumar K, Zhang J. Determination of the upper limit of vulnerability using implantable cardioverter-defibrillator electrograms.Circulation2003;107:3028– 3033PubMedCrossRefGoogle Scholar
  50. 50.
    Swerdlow C, Martin D, Kass R, Davie S, Mandel W, Gang E, Chen P. The zone of vulnerability to T-wave shocks in humans.J Cardiovasc Electrophysiol1997;8:145– 154PubMedCrossRefGoogle Scholar
  51. 51.
    Swerdlow C, Ahern T, Kass R, Davie S, Mandel W, Chen P-S. Upper limit of vulnera bility is a good estimator of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter defibrillators.J Am Coll Cardiol1996;27:1112–1117PubMedCrossRefGoogle Scholar
  52. 52.
    Swerdlow C, Ahern T, Chen P-S. Comparative reproducibility of defibrillation threshold and upper limit of vulnerability.Pacing Clin Electrophysiol1996;19:2103–2111PubMedCrossRefGoogle Scholar
  53. 53.
    Swerdlow CD, Kass RM, O'Connor ME, Chen PS. Effect of shock waveform on rela tionship between upper limit of vulnerability and defibrillation threshold.J Cardiovasc Electrophysiol1998;9:339–349PubMedCrossRefGoogle Scholar
  54. 54.
    Singer I, Edmonds H Jr. Changes in cerebral perfusion during third-generation implantable cardioverter defibrillator testing.Am Heart J1994;127:1052–1057PubMedCrossRefGoogle Scholar
  55. 55.
    Singer I, Lang D. Defibrillation threshold: clinical utility and therapeutic implications.Pacing Clin Electrophysiol1992;15:932–949PubMedCrossRefGoogle Scholar
  56. 56.
    de Vries JW, Bakker PF, Visser GH, Diephuis JC, van Huffelen AC. Changes in cerebral oxygen uptake and cerebral electrical activity during defibrillation threshold testing.Anesth Analg1998;87:16–20PubMedCrossRefGoogle Scholar
  57. 57.
    Vriens EM, Bakker PF, Vries JW, Wieneke GH, Van Huffelen AC. The impact of repeated short episodes of circulatory arrest on cerebral function. Reassuring electroen cephalographic (EEG) findings during defibrillation threshold testing at defibrillator implantation.Electroencephalogr Clin Neurophysiol1996;98:236–242PubMedCrossRefGoogle Scholar
  58. 58.
    Day JD, Doshi RN, Belott P, Birgersdotter-Green U, Behboodikhah M, Ott P, Glatter KA, Tobias S, Frumin H, Lee BK, Merillat J, Wiener I, Wang S, Grogin H, Chun S, Patrawalla R, Crandall B, Osborn JS, Weiss JP, Lappe DL, Neuman S. Inductionless or limited shock testing is possible in most patients with implantable cardioverter-defibrillators/cardiac resynchronization therapy defibrillators: results of the multi center ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations).Circulation. 2007;115(18):2382–2389.PubMedCrossRefGoogle Scholar
  59. 59.
    Swerdlow CD, Shehata M, Chen PS. Using the upper limit of vulnerability to assess defibrillation efficacy at implantation of ICDs.Pacing Clin Electrophysiol2007;30:258– 270PubMedCrossRefGoogle Scholar
  60. 60.
    Ellenbogen KA, Wood MA, Shepard RK, Clemo HF, Vaughn T, Holloman K, Dow M, Leffler J, Abeyratne A, Verness D. Detection and management of an implantable cardioverter defibrillator lead failure: incidence and clinical implications.J Am Coll Cardiol2003;41:73–80PubMedCrossRefGoogle Scholar
  61. 61.
    Curtis AB, Ellenbogen KA, Hammill SC, Hayes DL, Reynolds DW, Wilber DJ, Cain ME. Clinical competency statement: training pathways for implantation of car dioverter defibrillators and cardiac resynchronization devices.Heart Rhythm2004;1: 371–375PubMedCrossRefGoogle Scholar
  62. 62.
    Swerdlow CD. Reappraisal of implant testing of implantable cardioverter defibrillators.J Am Coll Cardiol2004;44:92–94PubMedCrossRefGoogle Scholar
  63. 63.
    Shorofsky SR, Rashba E, Havel W, Belk P, Degroot P, Swerdlow C, Gold MR. Improved defibrillation efficacy with an ascending ramp waveform in humans.Heart Rhythm2005;2:388–394PubMedCrossRefGoogle Scholar
  64. 64.
    Seidl K, Denman R, Moulder J, Mouchawar G, Stoeppler C, Becker T, Weise U, Anskey J, Burnett H, Kroll W. Stepped defibrillation waveform is substantially more efficient than the 50/50% tilt biphasic.Heart Rhythm2006;3:1406–1411PubMedCrossRefGoogle Scholar
  65. 65.
    Kenknight BH, Walker RG, Ideker RE. Marked reduction of ventricular defibrillation threshold by application of an auxiliary shock to a catheter electrode in the left posterior coronary vein of dogs.J Cardiovasc Electrophysiol2000;11:900–906PubMedCrossRefGoogle Scholar
  66. 66.
    Walker RG, Kenknight BH, Ideker RE. Critically timed auxiliary shock to weak field area lowers defibrillation threshold.J Cardiovasc Electrophysiol2001;12:556–562PubMedCrossRefGoogle Scholar
  67. 67.
    Boriani G, Biffi M, Silvestri P, Martignani C, Valzania C, Diemberger I, Moulder C, Mouchawar G, Kroll M, Branzi A. Mechanisms of pain associated with internal defibrillation shocks: results of a randomized study of shock waveform.Heart Rhythm2005;2:708–713PubMedCrossRefGoogle Scholar
  68. 68.
    Boriani G, Kroll M, Biffi M, Silvestri P, Martignani C, Valzania C, Diemberger I, Moulder C, Mouchawar G, Branzi A. Plateau waveform shape allows a higher patient shock energy tolerance.Heart Rhythm2006;3:S13CrossRefGoogle Scholar
  69. 69.
    Niebauer MJ, Chung MK, Brewer JE, Tchou PJ. Reduced cardioversion thresholds for atrial fibrillation and flutter using the rectilinear biphasic waveform.J Interv Card Electrophysiol2005;13:145–150PubMedCrossRefGoogle Scholar
  70. 70.
    Niebauer MJ, Brewer JE, Chung MK, Tchou PJ. Comparison of the rectilinear biphasic waveform with the monophasic damped sine waveform for external cardioversion of atrial fibrillation and flutter.Am J Cardiol2004;93:1495–1499PubMedCrossRefGoogle Scholar
  71. 71.
    Mittal S, Ayati S, Stein KM, Schwartzman D, Cavlovich D, Tchou PJ, Markowitz SM, Slotwiner DJ, Scheiner MA, Lerman BB. Transthoracic cardioversion of atrial fibrillation: comparison of rectilinear biphasic versus damped sine wave monophasic shocks.Circulation2000;101:1282–1287PubMedGoogle Scholar
  72. 72.
    Manoharan G, Evans N, Allen D, Anderson J, Adgey J. Comparing the efficacy and safety of a novel monophasic waveform delivered by the passive implantable atrial defibrillator with biphasic waveforms in cardioversion of atrial fibrillation.Circulation2004;109:1686–1692PubMedCrossRefGoogle Scholar
  73. 73.
    Manoharan G, Evans N, Kidwai B, Allen D, Anderson J, Adgey J. Novel passive implantable atrial defibrillator using transcutaneous radiofrequency energy transmission successfully cardioverts atrial fibrillation.Circulation2003;108:1382–1388PubMedCrossRefGoogle Scholar
  74. 74.
    Walsh SJ, Manoharan G, Escalona OJ, Santos J, Evans N, Anderson JM, Stevenson M, Allen JD, Adgey AA. Novel rectangular biphasic and monophasic waveforms delivered by a radiofrequency-powered defibrillator compared with conventional capacitor-based waveforms in transvenous cardioversion of atrial fibrillation.Europace2006;8:873– 880PubMedCrossRefGoogle Scholar
  75. 75.
    Swerdlow NR, Stephany NL, Talledo J, Light G, Braff DL, Baeyens D, Auerbach PP. Prepulse inhibition of perceived stimulus intensity: paradigm assessment. Biol Psychol 2005;69:133–147PubMedCrossRefGoogle Scholar
  76. 76.
    Swerdlow NR, Blumenthal TD, Sutherland AN, Weber E, Talledo JA. Effects of prepulse intensity, duration, and bandwidth on perceived intensity of startling acoustic stimuli. Biol Psychol 2007;74:389–395PubMedCrossRefGoogle Scholar
  77. 77.
    Gilman B, Kroll M. Electrically induced chest constrictions during ventricular fibrilla tion produce blood flow. J Am Coll Cardiol 2007;49(9), Supp 1:230AGoogle Scholar
  78. 78.
    Gilman B, Kroll M, Wang P, Kroll K. Electrically induced chest constrictions during ventricular fibrillation produce blood flow via thoracic-only pump mechanism. Heart Rhythm 2007;4(5) Supp;S134Google Scholar
  79. 79.
    Rosborough JP, Deno DC. Electrical therapy for post defibrillatory pulseless electrical activity. Resuscitation 2004;63:65–72PubMedCrossRefGoogle Scholar
  80. 80.
    Berul CI, Triedman JK, Forbess J, Bevilacqua LM, Alexander ME, Dahlby D, Gilkerson JO, Walsh EP. Minimally invasive cardioverter defibrillator implantation for children: an animal model and pediatric case report. Pacing Clin Electrophysiol 2001;24:1789–1794PubMedCrossRefGoogle Scholar
  81. 81.
    Luedemann M, Hund K, Stertmann W, Michel-Behnke I, Gonzales M, Akintuerk H, Schranz D. Implantable cardioverter defibrillator in a child using a single subcutaneous array lead and an abdominal active can. Pacing Clin Electrophysiol 2004;27:117–119PubMedCrossRefGoogle Scholar
  82. 82.
    Madan N, Gaynor JW, Tanel R, Cohen M, Nicholson S, Vetter V, Rhodes L. Single finger subcutaneous defibrillation lead and “active can”: a novel minimally invasive defibrillation configuration for implantable cardioverter-defibrillator implantation in a young child. J Thorac Cardiovasc Surg 2003;126:1657–1659PubMedCrossRefGoogle Scholar
  83. 83.
    Snyder CS, Lucas V, Young T, Darling R, Dalal G, Davis JE. Minimally invasive implantation of a cardioverter-defibrillator in a small patient. J Thorac Cardiovasc Surg 2007;133:1375–1376PubMedCrossRefGoogle Scholar
  84. 84.
    Andrew AG, Warren MS, Margaret AH, Derek TC, Francis DM, Ian GC, Iain CM, David JW, Riccardo C, Gust HB. A prospective, randomized comparison in humans of defibrillation efficacy of a standard transvenous ICD system with a totally subcutaneous ICD system (The S-ICD® system). Heart Rhythm 2005;2:1036Google Scholar
  85. 85.
    Burke MC, Coman JA, Cates AW, Lindstrom CC, Sandler DA, Kim SS, Knight BP. Defibrillation energy requirements using a left anterior chest cutaneous to subcutaneous shocking vector: implications for a total subcutaneous implantable defibrillator. Heart Rhythm 2005;2:1332–1338PubMedCrossRefGoogle Scholar
  86. 86.
    Bardy G. Subcutaneous implantable defibrillator. In: Malik M, ed. Dynamic Electrocar-diography. 2004 Blackwell-FuturaGoogle Scholar
  87. 87.
    Krahn AD, Klein GJ, Yee R, Norris C. Maturation of the sensed electrogram amplitude over time in a new subcutaneous implantable loop recorder. Pacing Clin Electrophysiol 1997;20:1686–1690PubMedCrossRefGoogle Scholar
  88. 88.
    Chrysostomakis SI, Klapsinos NC, Simantirakis EN, Marketou ME, Kambouraki DC, Vardas PE. Sensing issues related to the clinical use of implantable loop recorders. Europace 2003;5:143–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Mark W. Kroll
    • Charles D. Swerdlow
      • 1
    1. 1.Division of Cardiology, Department of MedicineCedars-Sinai Medical CenterLos AngelesUSA

    Personalised recommendations