Pacing Control of Local Cardiac Dynamics

  • Robert F. GilmourJr
  • David J. Christini
  • Alain Karma

One approach to preventing or suppressing cardiac fibrillation is to control local cardiac electrical dynamics using externally applied electrical stimuli. This approach is predicated on the expectation that appropriate control of local dynamics will affect global dynamics and thereby prevent the initiation of reentrant excitation or terminate existing reentry. Initial efforts in this area were directed toward suppression of spatiotemporal chaos, with the objective of suppressing existing fibrillation. More recently, attempts have been made to control less complex dynamics, such as electrical alternans, with the objective of preventing fibrillation. The following sections will briefly review the strategies used to control cardiac chaos and lower dimensional dynamical behavior and discuss some potential future directions for these approaches.


Action Potential Duration Period Doubling Bifurcation Electrical Alternans Pace Cycle Length Pace Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chialvo DR, Michaels DC, Jalife J. Supernormal excitability as mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ Res 1990;66:525–545PubMedGoogle Scholar
  2. 2.
    Chialvo DR, Gilmour RF Jr, Jalife J. Low dimensional chaos in cardiac tissue. Nature 1990;343:653–657PubMedCrossRefGoogle Scholar
  3. 3.
    Chialvo DR, Jalife J. Nonlinear dynamics of rate-dependent activation in models of single cardiac cells. Nature 1987;330:749–752PubMedCrossRefGoogle Scholar
  4. 4.
    Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE. Stimulus-induced critical point. A mechanism for electrical initiation of re-entry in normal canine myocardium. J Clin Invest 1989;83:1039–1052PubMedCrossRefGoogle Scholar
  5. 5.
    Garfinkel A, Spano ML, Ditto WL, Weiss JN. Controlling cardiac chaos. Science 1992;257:5074CrossRefGoogle Scholar
  6. 6.
    Garfinkel A, Chen P-S, Walter DO, Karagueuzian HS, Kogan B, Evans SJ, Karpoukhin M, Hwang C, Uchida T, Gotoh M, Nwasokwa O, Sager P, Weiss JN. Quasiperiodicity and chaos in ventricular fibrillation. J Clin Invest 1997;99:305–314PubMedCrossRefGoogle Scholar
  7. 7.
    Gilmour RF Jr, Watanabe M, Chialvo DR. Low dimensional dynamics in cardiac tissues. Experiments and theory. SPIE Proc 1993;2036:2–9CrossRefGoogle Scholar
  8. 8.
    Gilmour RF Jr, Otani NF, Watanabe M. Memory and complex dynamics in canine cardiac Purkinje fibers. Am J Physiol 1997;272:H1826–H1832PubMedGoogle Scholar
  9. 9.
    Glass L, Guevara MR, Shrier A. Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica D 1983;17D:89–101CrossRefGoogle Scholar
  10. 10.
    Guevara MR, Glass L, Shrier, A. Phase locking, period doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 1981;214:1350– 1353PubMedCrossRefGoogle Scholar
  11. 11.
    Guevara MR, Ward G, Shrier A, Glass L. Electrical alternans and period doubling bifurcations. IEEE Comput Cardiol 1984;167–170Google Scholar
  12. 12.
    Lewis TJ, Guevara, MR. Chaotic dynamics in an ionic model of the propagated cardiac action potential. J Theor Biol 1990;146:407–432PubMedCrossRefGoogle Scholar
  13. 13.
    Otani NF, Gilmour RF Jr. A memory model for the electrical properties of local cardiac systems. J Theor Biol 1997;187:409–436PubMedCrossRefGoogle Scholar
  14. 14.
    Savino GV, Romanelli L, Gonzalez DL, Piro O, Valentinuzzi ME. Evidence for chaotic behavior in driven ventricles. Biophys J 1989;56:273–280PubMedCrossRefGoogle Scholar
  15. 15.
    Sun J, Amellal F, Glass L, Billette, J. Alternans and period doubling bifurcations in atrioventricular nodal conduction. J Theor Biol 1995;173:79–91PubMedCrossRefGoogle Scholar
  16. 16.
    Vinet A, Chialvo DR, Michaels DC, Jalife J. Nonlinear dynamics of rate-dependent activation in models of single cardiac cells. Circ Res 1990;67:1510–1524PubMedGoogle Scholar
  17. 17.
    Watanabe M, Otani NF, Gilmour RF Jr. Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. Circ Res 1995;76:915–921PubMedGoogle Scholar
  18. 18.
    Devaney RL. An Introduction to Chaotic Dynamical Systems , 2nd edn. Redwood City, CA: Addison-Wesley; 1989Google Scholar
  19. 19.
    Feigenbaum MJ. Qualitative universality for a class of nonlinear transformations. J Stat Phys 1978;19:25–52CrossRefGoogle Scholar
  20. 20.
    Glass L, Mackey M. From Clocks to Chaos. The Rhythms of Life . Princeton, NJ: Princeton University Press; 1988Google Scholar
  21. 21.
    May RM. Simple mathematical models with very complicated dynamics. Nature 1976;261:459–467PubMedCrossRefGoogle Scholar
  22. 22.
    Stone L. Period-doubling reversals and chaos in simple ecological models. Nature 1993;365:617–620CrossRefGoogle Scholar
  23. 23.
    Strogatz S. Nonlinear Dynamics and Chaos . Reading, PA: Addison-Wesley; 1994Google Scholar
  24. 24.
    Braiman Y, Goldhirsch I. Taming chaotic dynamics with weak periodic perturbations. Phys Rev Lett 1991;66:2545–2548PubMedCrossRefGoogle Scholar
  25. 25.
    Hunt ER. Stabilizing high-period orbits in a chaotic system: the diode resonator. Phys Rev Lett 1991;67:1953–1955PubMedCrossRefGoogle Scholar
  26. 26.
    Singer J, Wang Y-Z, Haim HB. Controlling a chaotic system. Phys Rev Lett 1991;66:1123–1125PubMedCrossRefGoogle Scholar
  27. 27.
    Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett 1990;64:1196–1199PubMedCrossRefGoogle Scholar
  28. 28.
    Christini DJ, Collins JJ. Control of chaos in excitable physiological systems: a geometric analysis. Chaos 1997;7:544–549PubMedCrossRefGoogle Scholar
  29. 29.
    Christini DJ, Kaplan DT. Adaptive estimation and control method for unstable periodic dynamics in spike trains. Phys Rev E 2000;61:5149–5153CrossRefGoogle Scholar
  30. 30.
    Watanabe M, Gilmour RF Jr. Strategy for control of complex low dimensional dynamics in cardiac tissue. J Math Biol 1996;35:73–87PubMedCrossRefGoogle Scholar
  31. 31.
    Kaplan DT, Goldberger AL. Chaos in cardiology. J Cardiovasc Electrophysiol 1991;2:342–354CrossRefGoogle Scholar
  32. 32.
    Witkowski FX, Kavanagh KM, Penkoske PA, Plonsey R, Spano ML, Ditto WL, Kaplan DT. Evidence for determinism in ventricular fibrillation. Phys Rev Lett 1995;75:1230– 1233PubMedCrossRefGoogle Scholar
  33. 33.
    Pastore JM, Rosenbaum DS. Role of structural barriers in the mechanism of alternans-induced reentry. Circ Res 2000;87:1157–1163PubMedGoogle Scholar
  34. 34.
    Qu Z, Garfinkel A, Chen P-S, Weiss JN. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 2000;102:1664–1670PubMedGoogle Scholar
  35. 35.
    Hall K, Christini DJ, Tremblay M, Collins JC, Glass L, Billette J. Dynamic control of cardiac alternans. Phys Rev Lett 1997;78:4518–4521CrossRefGoogle Scholar
  36. 36.
    Watanabe MA, Fenton FH, Evans SJ, Hastings HM, Karma A. Mechanisms for discordant alternans. J Cardiovasc Electrophysiol 2001;12:196–206PubMedCrossRefGoogle Scholar
  37. 37.
    Fox JJ, Riccio ML, Hua F, Bodenschatz E, Gilmour RF Jr. Spatiotemporal transition to conduction block in canine ventricle. Circ Res 2002;90:289–296PubMedCrossRefGoogle Scholar
  38. 38.
    Hall GM, Gauthier DJ. Experimental control of cardiac muscle alternans. Phys Rev Lett 2002;88:198102PubMedCrossRefGoogle Scholar
  39. 39.
    Gauthier DJ, Bahar S, Hall GM. Controlling the dynamics of cardiac muscle using small electrical stimuli. In: Moss F, Gielen S, eds. Handbook of Biological Physics: Neuro-Informatics, Neural Modeling , vol. 4. New York: Elsevier; 2001:229–256Google Scholar
  40. 40.
    Nolasco JB, Dahlen RW. A graphic method for the study of alternation in the cardiac action potentials. J Appl Physiol 1968;25:191–196PubMedCrossRefGoogle Scholar
  41. 41.
    Hall K, Christini DJ. Restricted feedback control of one-dimensional maps. Phys Rev E 2001;63:046204CrossRefGoogle Scholar
  42. 42.
    Christini DJ, Karma A, Riccio ML, Culianu CA, Fox JJ, Gilmour RF Jr. Control of electrical alternans in canine cardiac Purkinje fibers. Phys Rev Lett 2006;96:104101– 104104PubMedCrossRefGoogle Scholar
  43. 43.
    Rappel W-J, Fenton FH, Karma A. Spatiotemporal control of wave instabilities in cardiac tissue. Phys Rev Lett 1999;83:456–459CrossRefGoogle Scholar
  44. 44.
    Echebarria B, Karma A. Spatiotemporal control of cardiac alternans. Chaos 2002;12:923–930PubMedCrossRefGoogle Scholar
  45. 45.
    Christini DJ, Collins JJ. Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. Phys Rev E 1996;53:R49–R52CrossRefGoogle Scholar
  46. 46.
    Hall K, Christini DJ, Tremblay M, Collins JJ, Glass L, Billette J. Dynamic control of cardiac alternans. Phys Rev Lett 1997;78:4518–4521CrossRefGoogle Scholar
  47. 47.
    Christini DJ, Stein KM, Markowitz SM, Mittal S, Slotwiner DJ, Scheiner MA, Iwai S, Lerman BB. Nonlinear-dynamical arrhythmia control in humans. Proc Nat Acad Sci USA 2001;98:5827–5832PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Robert F. GilmourJr
    • 1
  • David J. Christini
    • 1
    • 2
  • Alain Karma
    • 3
  1. 1.Department of Biomedical SciencesCollege of Veterinary Medicine, Cornell UniversityIthacaUSA
  2. 2.Division of CardiologyWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Department of Physics and Center for Interdisciplinary Research on Complex SystemsNortheastern UniversityBostonUSA

Personalised recommendations