The Role of Electroporation

  • Vladimir P. Nikolski
  • Igor R. Efimov

A therapeutical application of electrical current to cardiac tissue for reviving the normal function (defibrillation, pacing) or for ablating pathological conduction pathways inevitably has to take into account the phenomenon of electroporation, the electric field— induced rupture of sarcolemma that is usually evidenced by a drastic unselective increase in cell membrane permeability to small ions and large molecules. This chapter describes some aspects of this phenomenon in relation to cardiac therapy and research. Particularly, it provides evidences that (1) electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field and (2) electroporation can affect the outcome of defibrillation therapy, being both pro- and antiarrhythmic.


Propidium Iodide Alternate Current Physiol Heart Circ Action Potential Amplitude Irreversible Electroporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prevost JL, Battelli F. Sur quel ques effets des dechanges electriques sur le coer mammifres. C R Seances Acad Sci 1899;129:1267Google Scholar
  2. 2.
    Vulpian A. Note sur les effets de la faradisation directe des ventricules du coeur le chien. Arch de Physiol 1874;i:975Google Scholar
  3. 3.
    Hoffa M, Ludwig C. Einige neue Versuche uber Herzbewegung. Zeitschrift Rationelle Medizin 1850;9:107–144Google Scholar
  4. 4.
    Hooker DR, Kouwenhoven WB, Langworthy OR. The effects of alternating electrical current on the heart. Am J Physiol 1933;103:444–454Google Scholar
  5. 5.
    Beck CS, Pritchard WH, Feil HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA 1947;135:985–986Google Scholar
  6. 6.
    Kodama I, Shibata N, Sakuma I, Mitsui K, Iida M, Suzuki R, Fukui Y, Hosoda S, Toyama J. Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am J Physiol 1994;267:H248–H258PubMedGoogle Scholar
  7. 7.
    Krauthamer V, Jones JL. Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sci 1997;60:1977–1985PubMedCrossRefGoogle Scholar
  8. 8.
    Fast VG, Cheek ER. Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures. Circ Res 2002;90:664–670PubMedCrossRefGoogle Scholar
  9. 9.
    Gurvich NL. The Main Principles of Cardiac Defibrillation. Moscow: Medicine; 1975Google Scholar
  10. 10.
    Osswald S, Trouton TG, O’Nunain SS, Holden HB, Ruskin JN, Garan H. Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation 1994;90:2501–2509PubMedGoogle Scholar
  11. 11.
    Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Byull Eksper Biol Med 1939;8:55–58Google Scholar
  12. 12.
    Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Am Rev Soviet Med 1946;3:236–239Google Scholar
  13. 13.
    Gurvich NL, Tabak VY, Bogushevich MS, Vanin IV, Makarychev VA. Defibrillation of the heart with a diphasic impulse in experiment and in the clinic. J Cardiol 1971;10:104–107Google Scholar
  14. 14.
    Negovsky VA, Gurvich NL, Tabak VY, Bogushevich MS. The nature of electric defib-rillation of the heart. Resuscitation 1973;2:255–259PubMedCrossRefGoogle Scholar
  15. 15.
    Fabiato A, Coumel P, Gourgon R, Saumont R. The threshold of synchronous response of the myocardial fibers. Application to the experimental comparison of the efficacy of different forms of electroshock defibrillation. Arch Mal Coeur Vaiss 1967;60:527–544PubMedGoogle Scholar
  16. 16.
    Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73:1022–1028PubMedGoogle Scholar
  17. 17.
    Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 1998;9:529–552PubMedCrossRefGoogle Scholar
  18. 18.
    Efimov IR, Gray RA, Roth BJ. Virtual electrodes and re-excitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 2000;11:339–353PubMedCrossRefGoogle Scholar
  19. 19.
    Chen PS, Swerdlow CD, Hwang C, Karagueuzian HS. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol 1998;9:553–562PubMedCrossRefGoogle Scholar
  20. 20.
    Zipes DP, Fischer J, King RM, Nicoll A deB, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 1975;36:37–44PubMedCrossRefGoogle Scholar
  21. 21.
    Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest 1989;83:1039–1052PubMedCrossRefGoogle Scholar
  22. 22.
    Dillon SM. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart. Circulation 1992;85:1865–1878PubMedGoogle Scholar
  23. 23.
    Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of failure to defibrillate. Circ Res 1998;82:918–925PubMedGoogle Scholar
  24. 24.
    Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode induced re-excitation: a basic mechanism of defibrillation. Circ Res 1999;85:1056–1066PubMedGoogle Scholar
  25. 25.
    Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng 1995;42:1174–1184PubMedCrossRefGoogle Scholar
  26. 26.
    Ferris LP, King BG, Spence PW, Williams HB. Effect of electric shock on the heart. Electrical Eng 1936;55:498–515Google Scholar
  27. 27.
    Wiggers CJ, Wegria R. Ventricular fibrillation due to single localized induction in condenser shock supplied during the vulnerable phase of ventricular systole. Am J Physiol 1939;128:500Google Scholar
  28. 28.
    Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res 1999;85:742–752PubMedGoogle Scholar
  29. 29.
    Donoso E, Cohn LJFCK. Ventricular arrhythmias after precordial electric shock. Am Heart J 1967;73:595–601PubMedCrossRefGoogle Scholar
  30. 30.
    Waldecker B, Brugada P, Zehender M, Stevenson W, Welens HJ. Ventricular arrhythmias after precordial electric shock. Am J Cardiol 1986;57:120–123PubMedCrossRefGoogle Scholar
  31. 31.
    Tovar O, Tung L. Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol 1991;14(Pt 2):1887–1892PubMedCrossRefGoogle Scholar
  32. 32.
    Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Physiol1997;273:H2817–H2825PubMedGoogle Scholar
  33. 33.
    Al-Khadra AS, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res 2000;87:797–804PubMedGoogle Scholar
  34. 34.
    Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE. Conduction disturbances caused by high current density electric fields. Circ Res 1990;66:1190–1203PubMedGoogle Scholar
  35. 35.
    Eysmann SB, Marchlinski FE, Buxton AE, Josephson ME. Electrocardiographic changes after cardioversion of ventricular arrhythmias. Circulation 1986;73:73–81PubMedGoogle Scholar
  36. 36.
    Stickney RE, Doherty A, Kudenchuk PJ, Morud SA, Walker C, Chapman FW, Cummins RO. Survival and postshock ECG rhythms for out-of-hospital defibrillation. PAC E 1999;22(4-II):740Google Scholar
  37. 37.
    Sparks PB, Kulkarni R, Vohra JK, Mond HG, Jayaprakash S, Yapanis AG, Grigg LE, Kalman JM. Effect of direct current shocks on left atrial mechanical function in patients with structural heart disease. J Am Coll Cardiol 1998;31:1395–1399PubMedCrossRefGoogle Scholar
  38. 38.
    Sparks PB, Jayaprakash S, Mond HG, Vohra JK, Grigg LE, Kalman JM. Left atrial mechanical function after brief duration atrial fibrillation. J Am Coll Cardiol 1999;33:342–349PubMedCrossRefGoogle Scholar
  39. 39.
    Grimm RA, Stewart WJ, Arheart K, Thomas JD, Klein AL. Left atrial appendage “stunning” after electrical cardioversion of atrial flutter: an attenuated response compared with atrial fibrillation as the mechanism for lower susceptibility to thromboem-bolic events. J Am Coll Cardiol. 1997;29:582–589PubMedCrossRefGoogle Scholar
  40. 40.
    Kam RM, Garan H, McGovern BA, Ruskin JN, Harthorne JW. Transient right bundle branch block causing R wave attenuation postdefibrillation. Pacing Clin Electrophysiol 1997;20:130–131PubMedCrossRefGoogle Scholar
  41. 41.
    Hasdemir C, Shah N, Rao AP, Acosta H, Matsudaira K, Neas BR, Reynolds DW, Po S, Lazzara R, Beckman KJ. Analysis of troponin I levels after spontaneous implantable cardioverter defibrillator shocks. J Cardiovasc Electrophysiol 2002;13:144–150PubMedCrossRefGoogle Scholar
  42. 42.
    Ambler JJ, Deakin CD. A randomized controlled trial of efficacy and ST change following use of the Welch-Allyn MRL PIC biphasic waveform versus damped sine monophasic waveform for external DC cardioversion. Resuscitation 2006;71:146–151PubMedCrossRefGoogle Scholar
  43. 43.
    Ohuchi K, Fukui Y, Sakuma I, Shibata N, Honjo H, Kodama I. A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Trans Biomed Eng 2002;49:18–30PubMedCrossRefGoogle Scholar
  44. 44.
    Lund M, French JK, Johnson RN, Williams BF, White HD. Serum troponins T and I after elective cardioversion. Eur Heart J 2000;21:245–253PubMedCrossRefGoogle Scholar
  45. 45.
    Ricard P, Levy S, Boccara G, Lakhal E, Bardy G. External cardioversion of atrial fibrillation: comparison of biphasic vs monophasic waveform shocks. Europace 2001;3:96–99PubMedCrossRefGoogle Scholar
  46. 46.
    Niemann JT, Walker RG, Rosborough JP. Intracardiac voltage gradients during transthoracic defibrillation: implications for postshock myocardial injury. Acad Emerg Med 2005;12:99–105PubMedCrossRefGoogle Scholar
  47. 47.
    Fedorov VV, Kostecki G, Hemphill M, Efimov IR. Atria are more susceptible to elec-troporation than ventricles: Implications for atrial stunning, shock-induced arrhythmia and defibrillation failure. Circ Res 2008;5(4):593–604Google Scholar
  48. 48.
    Walcott GP, Killingsworth CR, Ideker RE. Do clinically relevant transthoracic defibril-lation energies cause myocardial damage and dysfunction? Resuscitation 2003;59:59–70PubMedCrossRefGoogle Scholar
  49. 49.
    Al-Khadra AS, Cheng Y, Tchou PJ, Efimov IR. Electroporation in defibrillation: difference in susceptibility between endocardium and epicardium. PACE 1999;22(4-II):834Google Scholar
  50. 50.
    Al-Khadra AS, Nikolski V, Efimov IR. Electroporation and conduction failure in endo-cardial bundles in response to defibrillation shocks. PACE 2000;23(4-II):706Google Scholar
  51. 51.
    Tabereaux PB, Walcott GP, Rogers JM, Kim J, Dosdall DJ, Robertson PG, Killingsworth CR, Smith WM, Ideker RE. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation 2007;116:1113–1119PubMedCrossRefGoogle Scholar
  52. 52.
    Jones JL, Jones RE, Balasky G. Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am J Physiol 1987;253:H480–H486PubMedGoogle Scholar
  53. 53.
    Peleska B. [Problems of defibrillation and stimulation of the myocardium]. Zentralbl Chir 1965;90:1174–1188PubMedGoogle Scholar
  54. 54.
    Tung L, Tovar O, Neunlist M, Jain SK, O’Neill RJ. Effects of strong electrical shock on cardiac muscle tissue. Ann N Y Acad Sci 1994;720:160–175PubMedCrossRefGoogle Scholar
  55. 55.
    Cheng Y, Tchou PJ, Efimov IR. Spatio-temporal characterization of electroporation during defibrillation. Biophysical J 1999;76(1):A85Google Scholar
  56. 56.
    Nikolski VP, Sambelashvili AT, Krinsky VI, Efimov IR. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am J Physiol Heart Circ Physiol 2004;286:H412–H418PubMedCrossRefGoogle Scholar
  57. 57.
    Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol Heart Circ Physiol 2000;278:H688–H697PubMedGoogle Scholar
  58. 58.
    Cheng DK, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 1999;277:H351–H362PubMedGoogle Scholar
  59. 59.
    Shirakashi R, Kostner CM, Muller KJ, Kurschner M, Zimmermann U, Sukhorukov VL. Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 2002;189:45–54PubMedCrossRefGoogle Scholar
  60. 60.
    DeBruin KA, Krassowska W. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann Biomed Eng 1998;26:584–596PubMedCrossRefGoogle Scholar
  61. 61.
    Aguel F, DeBruin KA, Krassowska W, Trayanova NA. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophysiol 1999;10:701–714PubMedCrossRefGoogle Scholar
  62. 62.
    Koning G, Veefkind AH, Schneider H. Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart. Am Heart J 1980;100:473–482PubMedCrossRefGoogle Scholar
  63. 63.
    Sambelashvili AT, Nikolski VP, Efimov IR. Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am J Physiol Heart Circ Physiol 2004;286:H2183–H2194PubMedCrossRefGoogle Scholar
  64. 64.
    Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat 2007;6:255–260PubMedGoogle Scholar
  65. 65.
    Lavee J, Onik G, Mikus P, Rubinsky B. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg Forum 2007;10:E162–E167PubMedCrossRefGoogle Scholar
  66. 66.
    Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat 2007;6:313–320PubMedGoogle Scholar
  67. 67.
    Thomas SP, Guy DJ, Boyd AC, Eipper VE, Ross DL, Chard RB. Comparison of epicardial and endocardial linear ablation using handheld probes. Ann Thorac Surg 2003;75:543–548PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Vladimir P. Nikolski
    • 1
  • Igor R. Efimov
    1. 1.CRDM Research, Medtronic, Inc.MinneapolisUSA

    Personalised recommendations