Skip to main content

The Role of Electroporation

  • Chapter
Cardiac Bioelectric Therapy

A therapeutical application of electrical current to cardiac tissue for reviving the normal function (defibrillation, pacing) or for ablating pathological conduction pathways inevitably has to take into account the phenomenon of electroporation, the electric field— induced rupture of sarcolemma that is usually evidenced by a drastic unselective increase in cell membrane permeability to small ions and large molecules. This chapter describes some aspects of this phenomenon in relation to cardiac therapy and research. Particularly, it provides evidences that (1) electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field and (2) electroporation can affect the outcome of defibrillation therapy, being both pro- and antiarrhythmic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prevost JL, Battelli F. Sur quel ques effets des dechanges electriques sur le coer mammifres. C R Seances Acad Sci 1899;129:1267

    Google Scholar 

  2. Vulpian A. Note sur les effets de la faradisation directe des ventricules du coeur le chien. Arch de Physiol 1874;i:975

    Google Scholar 

  3. Hoffa M, Ludwig C. Einige neue Versuche uber Herzbewegung. Zeitschrift Rationelle Medizin 1850;9:107–144

    Google Scholar 

  4. Hooker DR, Kouwenhoven WB, Langworthy OR. The effects of alternating electrical current on the heart. Am J Physiol 1933;103:444–454

    Google Scholar 

  5. Beck CS, Pritchard WH, Feil HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA 1947;135:985–986

    Google Scholar 

  6. Kodama I, Shibata N, Sakuma I, Mitsui K, Iida M, Suzuki R, Fukui Y, Hosoda S, Toyama J. Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am J Physiol 1994;267:H248–H258

    PubMed  CAS  Google Scholar 

  7. Krauthamer V, Jones JL. Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sci 1997;60:1977–1985

    Article  PubMed  CAS  Google Scholar 

  8. Fast VG, Cheek ER. Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures. Circ Res 2002;90:664–670

    Article  PubMed  CAS  Google Scholar 

  9. Gurvich NL. The Main Principles of Cardiac Defibrillation. Moscow: Medicine; 1975

    Google Scholar 

  10. Osswald S, Trouton TG, O’Nunain SS, Holden HB, Ruskin JN, Garan H. Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation 1994;90:2501–2509

    PubMed  CAS  Google Scholar 

  11. Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Byull Eksper Biol Med 1939;8:55–58

    Google Scholar 

  12. Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Am Rev Soviet Med 1946;3:236–239

    Google Scholar 

  13. Gurvich NL, Tabak VY, Bogushevich MS, Vanin IV, Makarychev VA. Defibrillation of the heart with a diphasic impulse in experiment and in the clinic. J Cardiol 1971;10:104–107

    Google Scholar 

  14. Negovsky VA, Gurvich NL, Tabak VY, Bogushevich MS. The nature of electric defib-rillation of the heart. Resuscitation 1973;2:255–259

    Article  PubMed  CAS  Google Scholar 

  15. Fabiato A, Coumel P, Gourgon R, Saumont R. The threshold of synchronous response of the myocardial fibers. Application to the experimental comparison of the efficacy of different forms of electroshock defibrillation. Arch Mal Coeur Vaiss 1967;60:527–544

    PubMed  CAS  Google Scholar 

  16. Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73:1022–1028

    PubMed  CAS  Google Scholar 

  17. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 1998;9:529–552

    Article  PubMed  CAS  Google Scholar 

  18. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and re-excitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 2000;11:339–353

    Article  PubMed  CAS  Google Scholar 

  19. Chen PS, Swerdlow CD, Hwang C, Karagueuzian HS. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol 1998;9:553–562

    Article  PubMed  CAS  Google Scholar 

  20. Zipes DP, Fischer J, King RM, Nicoll A deB, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 1975;36:37–44

    Article  PubMed  CAS  Google Scholar 

  21. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest 1989;83:1039–1052

    Article  PubMed  CAS  Google Scholar 

  22. Dillon SM. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart. Circulation 1992;85:1865–1878

    PubMed  CAS  Google Scholar 

  23. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of failure to defibrillate. Circ Res 1998;82:918–925

    PubMed  CAS  Google Scholar 

  24. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode induced re-excitation: a basic mechanism of defibrillation. Circ Res 1999;85:1056–1066

    PubMed  CAS  Google Scholar 

  25. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng 1995;42:1174–1184

    Article  PubMed  CAS  Google Scholar 

  26. Ferris LP, King BG, Spence PW, Williams HB. Effect of electric shock on the heart. Electrical Eng 1936;55:498–515

    Google Scholar 

  27. Wiggers CJ, Wegria R. Ventricular fibrillation due to single localized induction in condenser shock supplied during the vulnerable phase of ventricular systole. Am J Physiol 1939;128:500

    Google Scholar 

  28. Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res 1999;85:742–752

    PubMed  CAS  Google Scholar 

  29. Donoso E, Cohn LJFCK. Ventricular arrhythmias after precordial electric shock. Am Heart J 1967;73:595–601

    Article  PubMed  CAS  Google Scholar 

  30. Waldecker B, Brugada P, Zehender M, Stevenson W, Welens HJ. Ventricular arrhythmias after precordial electric shock. Am J Cardiol 1986;57:120–123

    Article  PubMed  CAS  Google Scholar 

  31. Tovar O, Tung L. Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol 1991;14(Pt 2):1887–1892

    Article  PubMed  CAS  Google Scholar 

  32. Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Physiol1997;273:H2817–H2825

    PubMed  CAS  Google Scholar 

  33. Al-Khadra AS, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res 2000;87:797–804

    PubMed  CAS  Google Scholar 

  34. Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE. Conduction disturbances caused by high current density electric fields. Circ Res 1990;66:1190–1203

    PubMed  CAS  Google Scholar 

  35. Eysmann SB, Marchlinski FE, Buxton AE, Josephson ME. Electrocardiographic changes after cardioversion of ventricular arrhythmias. Circulation 1986;73:73–81

    PubMed  CAS  Google Scholar 

  36. Stickney RE, Doherty A, Kudenchuk PJ, Morud SA, Walker C, Chapman FW, Cummins RO. Survival and postshock ECG rhythms for out-of-hospital defibrillation. PAC E 1999;22(4-II):740

    Google Scholar 

  37. Sparks PB, Kulkarni R, Vohra JK, Mond HG, Jayaprakash S, Yapanis AG, Grigg LE, Kalman JM. Effect of direct current shocks on left atrial mechanical function in patients with structural heart disease. J Am Coll Cardiol 1998;31:1395–1399

    Article  PubMed  CAS  Google Scholar 

  38. Sparks PB, Jayaprakash S, Mond HG, Vohra JK, Grigg LE, Kalman JM. Left atrial mechanical function after brief duration atrial fibrillation. J Am Coll Cardiol 1999;33:342–349

    Article  PubMed  CAS  Google Scholar 

  39. Grimm RA, Stewart WJ, Arheart K, Thomas JD, Klein AL. Left atrial appendage “stunning” after electrical cardioversion of atrial flutter: an attenuated response compared with atrial fibrillation as the mechanism for lower susceptibility to thromboem-bolic events. J Am Coll Cardiol. 1997;29:582–589

    Article  PubMed  CAS  Google Scholar 

  40. Kam RM, Garan H, McGovern BA, Ruskin JN, Harthorne JW. Transient right bundle branch block causing R wave attenuation postdefibrillation. Pacing Clin Electrophysiol 1997;20:130–131

    Article  PubMed  CAS  Google Scholar 

  41. Hasdemir C, Shah N, Rao AP, Acosta H, Matsudaira K, Neas BR, Reynolds DW, Po S, Lazzara R, Beckman KJ. Analysis of troponin I levels after spontaneous implantable cardioverter defibrillator shocks. J Cardiovasc Electrophysiol 2002;13:144–150

    Article  PubMed  Google Scholar 

  42. Ambler JJ, Deakin CD. A randomized controlled trial of efficacy and ST change following use of the Welch-Allyn MRL PIC biphasic waveform versus damped sine monophasic waveform for external DC cardioversion. Resuscitation 2006;71:146–151

    Article  PubMed  Google Scholar 

  43. Ohuchi K, Fukui Y, Sakuma I, Shibata N, Honjo H, Kodama I. A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Trans Biomed Eng 2002;49:18–30

    Article  PubMed  Google Scholar 

  44. Lund M, French JK, Johnson RN, Williams BF, White HD. Serum troponins T and I after elective cardioversion. Eur Heart J 2000;21:245–253

    Article  PubMed  CAS  Google Scholar 

  45. Ricard P, Levy S, Boccara G, Lakhal E, Bardy G. External cardioversion of atrial fibrillation: comparison of biphasic vs monophasic waveform shocks. Europace 2001;3:96–99

    Article  PubMed  CAS  Google Scholar 

  46. Niemann JT, Walker RG, Rosborough JP. Intracardiac voltage gradients during transthoracic defibrillation: implications for postshock myocardial injury. Acad Emerg Med 2005;12:99–105

    Article  PubMed  Google Scholar 

  47. Fedorov VV, Kostecki G, Hemphill M, Efimov IR. Atria are more susceptible to elec-troporation than ventricles: Implications for atrial stunning, shock-induced arrhythmia and defibrillation failure. Circ Res 2008;5(4):593–604

    Google Scholar 

  48. Walcott GP, Killingsworth CR, Ideker RE. Do clinically relevant transthoracic defibril-lation energies cause myocardial damage and dysfunction? Resuscitation 2003;59:59–70

    Article  PubMed  Google Scholar 

  49. Al-Khadra AS, Cheng Y, Tchou PJ, Efimov IR. Electroporation in defibrillation: difference in susceptibility between endocardium and epicardium. PACE 1999;22(4-II):834

    Google Scholar 

  50. Al-Khadra AS, Nikolski V, Efimov IR. Electroporation and conduction failure in endo-cardial bundles in response to defibrillation shocks. PACE 2000;23(4-II):706

    Google Scholar 

  51. Tabereaux PB, Walcott GP, Rogers JM, Kim J, Dosdall DJ, Robertson PG, Killingsworth CR, Smith WM, Ideker RE. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation 2007;116:1113–1119

    Article  PubMed  Google Scholar 

  52. Jones JL, Jones RE, Balasky G. Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am J Physiol 1987;253:H480–H486

    PubMed  CAS  Google Scholar 

  53. Peleska B. [Problems of defibrillation and stimulation of the myocardium]. Zentralbl Chir 1965;90:1174–1188

    PubMed  CAS  Google Scholar 

  54. Tung L, Tovar O, Neunlist M, Jain SK, O’Neill RJ. Effects of strong electrical shock on cardiac muscle tissue. Ann N Y Acad Sci 1994;720:160–175

    Article  PubMed  CAS  Google Scholar 

  55. Cheng Y, Tchou PJ, Efimov IR. Spatio-temporal characterization of electroporation during defibrillation. Biophysical J 1999;76(1):A85

    Google Scholar 

  56. Nikolski VP, Sambelashvili AT, Krinsky VI, Efimov IR. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am J Physiol Heart Circ Physiol 2004;286:H412–H418

    Article  PubMed  CAS  Google Scholar 

  57. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol Heart Circ Physiol 2000;278:H688–H697

    PubMed  CAS  Google Scholar 

  58. Cheng DK, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 1999;277:H351–H362

    PubMed  CAS  Google Scholar 

  59. Shirakashi R, Kostner CM, Muller KJ, Kurschner M, Zimmermann U, Sukhorukov VL. Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 2002;189:45–54

    Article  PubMed  CAS  Google Scholar 

  60. DeBruin KA, Krassowska W. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann Biomed Eng 1998;26:584–596

    Article  PubMed  CAS  Google Scholar 

  61. Aguel F, DeBruin KA, Krassowska W, Trayanova NA. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophysiol 1999;10:701–714

    Article  PubMed  CAS  Google Scholar 

  62. Koning G, Veefkind AH, Schneider H. Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart. Am Heart J 1980;100:473–482

    Article  PubMed  CAS  Google Scholar 

  63. Sambelashvili AT, Nikolski VP, Efimov IR. Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am J Physiol Heart Circ Physiol 2004;286:H2183–H2194

    Article  PubMed  CAS  Google Scholar 

  64. Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat 2007;6:255–260

    PubMed  Google Scholar 

  65. Lavee J, Onik G, Mikus P, Rubinsky B. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg Forum 2007;10:E162–E167

    Article  PubMed  Google Scholar 

  66. Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat 2007;6:313–320

    PubMed  Google Scholar 

  67. Thomas SP, Guy DJ, Boyd AC, Eipper VE, Ross DL, Chard RB. Comparison of epicardial and endocardial linear ablation using handheld probes. Ann Thorac Surg 2003;75:543–548

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Nikolski, V.P., Efimov, I.R. (2009). The Role of Electroporation. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics