Optical Mapping of Multisite Ventricular Fibrillation Synchronization

  • Liang Tang
  • Shien-Fong Lin

Defibrillation with strong shocks of several hundred volts is still the most effective way to terminate life-threatening cardiac rhythm abnormalities such as ventricular fibrillation (VF). The standing puzzle that has lasted for several decades is why defibrillate with such a high voltage when the activation threshold of cardiac myocytes is much less than 100 mV. Such a conceptual conflict has prompted many theoretical and experimental studies to understand the action of strong shocks.1–7

An important goal in defibrillation study is to reduce the shock energy requirement. Because the quality of life in patients carrying implantable cardioverter-defibrillators (ICDs) is significantly affected by the occurrence of shocks, efforts have been made to decrease the shock energy for less pain and battery drain.8–10 Major progress came in the 1980s when it was realized that biphasic shocks were far superior to monophasic shocks for defibrillation.11,12 Since then, empirical studies of defibrillation waveforms have identified only marginal improvements, suggesting that empirical variation of defibrillation waveform is unlikely to result in conceptual breakthroughs or significant improvements in defibrillation efficacy.


Reference Site Optical Mapping Biventricular Pace Optical Recording Pace Site 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhou X, Knisley SB, Smith WM, Rollins D, Pollard AE, Ideker RE. Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ Res 1998;83(10):1003–1014Google Scholar
  2. 2.
    Sharma V, Tung L. Theoretical and experimental study of sawtooth effect in isolated cardiac cell-pairs. J Cardiovasc Electrophysiol 2001;12(10):1164–1173PubMedCrossRefGoogle Scholar
  3. 3.
    Newton JC, Knisley SB, Zhou X, Pollard AE, Ideker RE. Review of mechanisms by which electrical stimulation alters the transmembrane potential. J Cardiovasc Electro physiol 1999;10(2):234–243CrossRefGoogle Scholar
  4. 4.
    Pumir A, Krinsky VI. Two biophysical mechanisms of defibrillation of cardiac tissue. J Theor Biol 1997;185(2):189–199PubMedCrossRefGoogle Scholar
  5. 5.
    Swerdlow CD, Fan W, Brewer JE. Charge-burping theory correctly predicts opti mal ratios of phase duration for biphasic defibrillation waveforms. Circulation 1996;94(9):2278–2284PubMedGoogle Scholar
  6. 6.
    Fishler MG. Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks. J Cardiovasc Electrophysiol 1998;9(4): 384–394PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson C, Trayanova NA. Success and failure of biphasic shocks: results of bidomain simulations. Math Biosci 2001;174(2):91–109PubMedCrossRefGoogle Scholar
  8. 8.
    Wathen MS, Sweeney MO, DeGroot PJ, Stark AJ, Koehler JL, Chisner MB, Machado C, Adkisson WO. Shock reduction using antitachycardia pacing for spontaneous rapid ventricular tachycardia in patients with coronary artery disease. Circulation 2001;104(7):796–801CrossRefGoogle Scholar
  9. 9.
    Israel CW, Hugl B, Unterberg C, Lawo T, Kennis I, Hettrick D, Hohnloser SH. Pace termination and pacing for prevention of atrial tachyarrhythmias: results from a multi center study with an implantable device for atrial therapy. J Cardiovasc Electrophysiol 2001;12(10):1121–1128PubMedCrossRefGoogle Scholar
  10. 10.
    Huang J, Rogers JM, Killingsworth CR, Walcott GP, KenKnight BH, Smith WM, Ideker RE. Improvement of defibrillation efficacy and quantification of activation patterns during ventricular fibrillation in a canine heart failure model. Circulation 2001;103(10):1473–1478PubMedGoogle Scholar
  11. 11.
    Jones JL, Jones RE. Improved defibrillator waveform safety factor with biphasic wave forms. Am J Physiol 1983;245(1):H60–H65PubMedGoogle Scholar
  12. 12.
    Dixon EG, Tang AS, Wolf PD, Meador JT, Fine MJ, Calfee RV, Ideker RE. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic wave¬forms. Circulation 1987;76(5):1176–1184PubMedGoogle Scholar
  13. 13.
    Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res 1995;77:1229–1239PubMedGoogle Scholar
  14. 14.
    Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng 1995;42(12):1174–1184PubMedCrossRefGoogle Scholar
  15. 15.
    Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195–2210PubMedCrossRefGoogle Scholar
  16. 16.
    Efimov IR, Cheng YN, Biermann M, Van Wagoner D, Mazgalev TN, Tchou PJ. Trans membrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol 1997;8:1031–1045PubMedCrossRefGoogle Scholar
  17. 17.
    Kim YH, Garfinkel A, Ikeda T, Wu TJ, Athill CA, Weiss JN, Karagueuzian HS, Chen PS. Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle. Further evidence for the quasiperiodic route to chaos hypothesis. J Clin Invest 1997;100(10):2486–2500PubMedCrossRefGoogle Scholar
  18. 18.
    Walcott GP, Knisley SB, Zhou X, Newton JC, Ideker RE. On the mechanism of ventricular defibrillation. Pacing Clin Electrophysiol 1997;20(2 Pt 2):422–431PubMedCrossRefGoogle Scholar
  19. 19.
    Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 1998;82(8):918–925PubMedGoogle Scholar
  20. 20.
    Garfinkel A, Spano ML, Ditto WL, Weiss JN. Controlling cardiac chaos. Science 1992;257(5074):1230–1235PubMedCrossRefGoogle Scholar
  21. 21.
    Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Garfinkel A. Ventricular fibrillation: how do we stop the waves from breaking? Circ Res 2000;87(12):1103–1107PubMedGoogle Scholar
  22. 22.
    Jalife J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 2000;62:25–50PubMedCrossRefGoogle Scholar
  23. 23.
    KenKnight BH, Bayly PV, Gerstle RJ, Rollins DL, Wolf PD, Smith WM, Ideker RE. Regional capture of fibrillating ventricular myocardium: evidence of an excitable gap. Circ Res 1995;77:849–855PubMedGoogle Scholar
  24. 24.
    Taneja T, Horvath G, Racker DK, Goldberger J, Kadish A. Excitable gap in canine fibrillating ventricular myocardium: effect of subacute and chronic myocardial infarction. J Cardiovasc Electrophysiol 2001;12(6):708–715PubMedCrossRefGoogle Scholar
  25. 25.
    Kamjoo K, Uchida T, Ikeda T, Fishbein MC, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS. Importance of location and timing of electrical stimuli in terminating sustained functional reentry in isolated swine ventricular tissues: evidence in support of a small reentrant circuit. Circulation 1997;96(6):2048–2060PubMedGoogle Scholar
  26. 26.
    Gu Y, Patwardhan A. Multiple spatially distributed stimulators and timing pro grams for entrainment of activation during ventricular fibrillation. Biomed Sci Instrum 2002;38:295–299PubMedGoogle Scholar
  27. 27.
    Allessie M, Kirchhof C, Scheffer GJ, Chorro F, Brugada J. Regional control of atrial fibrillation by rapid pacing in conscious dogs. Circulation 1991;84(4):1689–1697PubMedGoogle Scholar
  28. 28.
    Province R, Qian Y-W, Lin S-F, Sung RJ. Effects of pulse train amplitude and waveform on ability to entrain fibrillating rabbit ventricle with epicardial pacing. PAC E 1999;22:A66Google Scholar
  29. 29.
    Newton JC, Huang J, Rogers JM, Rollins DL, Walcott GP, Smith WS, Ideker RE. Pacing during ventricular fibrillation: factors influencing the ability to capture. J Cardiovasc Electrophysiol 2001;12(1):76–84PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe M, Gilmour RF, Jr. Strategy for control of complex low-dimensional dynamics in cardiac tissue. J Math Biol 1996;35(1):73–87PubMedCrossRefGoogle Scholar
  31. 31.
    Christini DJ, Stein KM, Markowitz SM, Mittal S, Slotwiner DJ, Lerman BB. The role of nonlinear dynamics in cardiac arrhythmia control. Heart Dis 1999;1(4): 190–200PubMedGoogle Scholar
  32. 32.
    Christini DJ, Stein KM, Markowitz SM, Mittal S, Slotwiner DJ, Scheiner MA, Iwai S, Lerman BB. Nonlinear-dynamical arrhythmia control in humans. Proc Natl Acad Sci USA 2001;98(10):5827–5832PubMedCrossRefGoogle Scholar
  33. 33.
    Berenfeld O, Pertsov AM, Jalife J. What is the organization of waves in ventricular fibrillation? Circ Res 2001;89(3):E22PubMedGoogle Scholar
  34. 34.
    Walcott GP, Kay GN, Plumb VJ, Smith WM, Rogers JM, Epstein AE, Ideker RE. Endocardial wave front organization during ventricular fibrillation in humans. J Am Coll Cardiol 2002;39(1):109–115PubMedCrossRefGoogle Scholar
  35. 35.
    Damle RS, Kanaan NM, Robinson NS, Ge YZ, Goldberger JJ, Kadish AH. Spatial and temporal linking of epicardial activation directions during ventricular fibrillation in dogs. Evidence for underlying organization. Circulation 1992;86(5):1547–1558PubMedGoogle Scholar
  36. 36.
    Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res 2000;86(4):408–417PubMedGoogle Scholar
  37. 37.
    Hsia PW, Fendelander L, Harrington G, Damiano RJ. Defibrillation success is associated with myocardial organization. Spatial coherence as a new method of quantifying the electrical organization of the heart. J Electrocardiol 1996;29(Suppl):189–197PubMedCrossRefGoogle Scholar
  38. 38.
    Patwardhan A, Moghe S, Wang K, Wright H, Leonelli F. Correlation between defibril lation shock outcome and coherence in electrocardiograms. Pacing Clin Electrophysiol 2001;24(9 Pt 1):1354–1362PubMedCrossRefGoogle Scholar
  39. 39.
    Butter C, Meisel E, Tebbenjohanns J, Engelmann L, Fleck E, Schubert B, Hahn S, Pfeiffer D. Transvenous biventricular defibrillation halves energy requirements in patients. Circulation 2001;104(21):2533–2538PubMedCrossRefGoogle Scholar
  40. 40.
    Walker RG, Kenknight BH, Ideker RE. Critically timed auxiliary shock to weak field area lowers defibrillation threshold. J Cardiovasc Electrophysiol 2001;12(5):556–562PubMedCrossRefGoogle Scholar
  41. 41.
    Pak HN, Liu YB, Hayashi H, Okuyama Y, Chen PS, Lin SF. Synchronization of ventric ular fibrillation with real-time feedback pacing: implication to low-energy defibrillation. Am J Physiol Heart Circ Physiol 2003;285(6):H2704–H2711PubMedGoogle Scholar
  42. 42.
    Wu R, Patwardhan A. Restitution of action potential duration during sequential changes in diastolic intervals shows multimodal behavior. Circ Res 2004;94(5):634–641PubMedCrossRefGoogle Scholar
  43. 43.
    Jordan PN, Christini DJ. Adaptive diastolic interval control of cardiac action potential duration alternans. J Cardiovasc Electrophysiol 2004;15(10):1177–1185PubMedCrossRefGoogle Scholar
  44. 44.
    Keane D. New catheter ablation techniques for the treatment of cardiac arrhythmias. Card Electrophysiol Rev 2002;6(4):341–348PubMedCrossRefGoogle Scholar
  45. 45.
    Pak HN, Oh YS, Liu YB, Wu TJ, Karagueuzian HS, Lin SF, Chen PS. Catheter ablation of ventricular fibrillation in rabbit ventricles treated with beta-blockers. Circulation 2003;108(25):3149–3156PubMedCrossRefGoogle Scholar
  46. 46.
    Pak H-N, Okuyama Y, Oh Y-S, Hayashi H, Liu Y-B, Chen P-S, Lin S-F. Improvement of defibrillation efficacy with preshock synchronized pacing. J Cardiovasc Electrophysiol 2004;15(5):581–587PubMedGoogle Scholar
  47. 47.
    Byrd IA, Rogers JM, Smith WM, Pollard AE. Comparison of conventional and biven tricular antitachycardia pacing in a geometrically realistic model of the rabbit ventricle. J Cardiovasc Electrophysiol 2004;15(9):1066–1077PubMedCrossRefGoogle Scholar
  48. 48.
    Wang NC, Lee MH, Ohara T, Okuyama Y, Fishbein GA, Lin SF, Karagueuzian HS, Chen PS. Optical mapping of ventricular defibrillation in isolated swine right ventricles: demonstration of a postshock isoelectric window after near-threshold defibrillation shocks. Circulation 2001;104(2):227–233PubMedCrossRefGoogle Scholar
  49. 49.
    Chen PS, Shibata N, Dixon EG, Wolf PD, Danieley ND, Sweeney MB, Smith WM, Ideker RE. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest 1986;77(3):810–823PubMedCrossRefGoogle Scholar
  50. 50.
    Chen P-S, Wolf PD, Ideker RE. Mechanism of cardiac defibrillation: a different point of view. Circulation 1991;84:913–919PubMedGoogle Scholar
  51. 51.
    Chen PS, Wolf PD, Claydon FJ, Dixon EG, Vidaillet HJ Jr, Danieley ND, Pilkington TC, Ideker RE. The potential gradient field created by epicardial defibrillation electrodes in dogs. Circulation 1986;74(3):626–636PubMedGoogle Scholar
  52. 52.
    Chen PS, Swerdlow CD, Hwang C, Karagueuzian HS. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol 1998;9(5):553–562PubMedCrossRefGoogle Scholar
  53. 53.
    Kwaku KF, Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. Circ Res 1996;79(5):957–973PubMedGoogle Scholar
  54. 54.
    Tamargo J, Moe B, Moe GK. Interaction of sequential stimuli applied during the relative refractory period in relation to determination of fibrillation threshold in the canine ventricle. Circ Res 1975;37(5):534–541PubMedGoogle Scholar
  55. 55.
    Euler DE, Moore EN. Continuous fractionated electrical activity after stimulation of the ventricles during the vulnerable period: evidence for local reentry. Am J Cardiol 1980;46(5):783–791PubMedCrossRefGoogle Scholar
  56. 56.
    Hwang C, Fan W, Chen PS. Recurrent appearance of protective zones after an unsuc cessful defibrillation shock. Am J Physiol 1996;271(4 Pt 2):H1491–H1497PubMedGoogle Scholar
  57. 57.
    Wiggers CJ. The mechanism and nature of ventricular defibrillation. Am Heart J 1940;20:399–412CrossRefGoogle Scholar
  58. 58.
    Verrier RL, Brooks WW, Lown B. Protective zone and the determination of vulnerability to ventricular fibrillation. Am J Physiol 1978;234:H592–H596PubMedGoogle Scholar
  59. 59.
    Bonometti C, Hwang C, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, Chen PS. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res 1995;77(2):407–416PubMedGoogle Scholar
  60. 60.
    Kirchhof PF, Larissa Fabritz C, Franz MR. Phase angle convergence of multiple monophasic action potential recordings precedes spontaneous termination of ventricular fibrillation. Basic Res Cardiol 1998;93(5):412–421PubMedCrossRefGoogle Scholar
  61. 61.
    Dillon SM. Synchronized repolarization after defibrillation shocks. a possible compo nent of the defibrillation process demonstrated by optical recordings in rabbit heart. Circulation 1992;85(5):1865–1878PubMedGoogle Scholar
  62. 62.
    Tang L, Hwang GS, Song J, Chen PS, Lin SF. Post-shock synchronized pacing in isolated rabbit left ventricle: evaluation of a novel defibrillation strategy. J Cardiovasc Electrophysiol 2007;18:740–749PubMedCrossRefGoogle Scholar
  63. 63.
    Nanthakumar K, Johnson PL, Huang J, Killingsworth CR, Rollins DL, McElderry HT, Smith WM, Ideker RE. Regional variation in capture of fibrillating swine left ventricle during electrical stimulation. J Cardiovasc Electrophysiol 2005;16(4):425–432PubMedGoogle Scholar
  64. 64.
    Ravi K, Nihei M, Willmer A, Hayashi H, Lin S-F. Optical recording-guided pacing to cre ate functional line of block during ventricular fibrillation. J Biomed Opt 2006;11:021013 1–8 (PMID 16674188)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Liang Tang
    • 1
  • Shien-Fong Lin
    • 1
  1. 1.Krannert Institute of CardiologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations