Virtual Electrode Theory of Pacing

  • John P. Wikswo
  • Bradley J. Roth

One of the most important contributions of biomedical engineering to medicine is the devel¬opment of pacemakers, external defibrillators, and implantable cardioverters/defibrillators.1 Engineers have been quite successful in designing these devices empirically, without a funda¬mental understanding of the underlying biophysical mechanisms. Over the past 15 years, two areas of research — optical mapping of electrical activity in the heart2 and mathematical modeling of the heart using the bidomain model3 — have provided insight into the basic mechanisms by which cardiac electric fields are produced and how externally applied electric fields interact with cardiac tissue. The goal of this chapter is to describe this research and to summarize what has been learned from it. We survey the contributions of many researchers, but the emphasis is on our own work, which, of course, we know best. We focus on basic mechanisms; clinical applications are better described by other authors.4 The fundamental knowledge gained from basic research in cardiac shock response is enabling the development of detailed mathematical models5,6 that can guide the further optimization of implantable cardiac stimulators.

The electrical properties of the heart have been reviewed elsewhere. In 1993 Henriquez3 summarized the bidomain model in a seminal paper that serves as an excellent foundation for the discussions in our chapter. Neu and Krassowska7 examined the limitations of the bidomain as a continuum model. Roth8 described mechanisms of electrical stimulation of excitable tissue, including cardiac tissue. In the past 10 years much work has been published in this field, particularly on comparing numerical simulations to experimental data. The agreement between theory and experiment is an important topic9 and is the focus of this review.


Cardiac Tissue Transmembrane Potential Spiral Wave Optical Mapping Virtual Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeffrey K.Machines in Our Hearts: The Cardiac Pacemaker, the Implantable Defibrillator, and American Health Care. Baltimore, MD: Johns Hopkins University Press; 2001Google Scholar
  2. 2.
    Rosenbaum DS, Jalife J. Optical Mapping of Cardiac Excitation and Arrhythmias. Armonk, NY: Futura; 2001Google Scholar
  3. 3.
    Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng1993;21:1–77PubMedGoogle Scholar
  4. 4.
    Zipes DP, Jalife J. Cardiac Electrophysiology: From Cell to Bedside, Ed. 4. Philadelphia, PA: Saunders; 2004Google Scholar
  5. 5.
    Burton RAB, Plank G, Schneider JE, Grau V, Ahammer H, Keeling SL, Lee J, Smith NP, Gavaghan D, Trayanova N, Kohl P. Three-dimensional models of individual cardiac histoanatomy: tools and challenges. Ann N Y Acad Sci2006;1080:301–319PubMedCrossRefGoogle Scholar
  6. 6.
    Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova N. Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart2000;279:H1055–H1070Google Scholar
  7. 7.
    Neu JC, Krassowska W. Homogenization of syncytial tissues. Crit Rev Biomed Eng1993;21:137–199PubMedGoogle Scholar
  8. 8.
    Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng1994;22:253–305PubMedGoogle Scholar
  9. 9.
    Roth BJ. Artifacts, assumptions, and ambiguity: pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation. Chaos2002;12:973–981PubMedCrossRefGoogle Scholar
  10. 10.
    Schmitt OH. Biological information processing using the concept of interpenetrating domains. In: Leibovic KN, ed. Information Processing in the Nervous System. New York: Springer; 1969:325–331Google Scholar
  11. 11.
    Muler AL, Markin VS. Electrical properties of anisotropic nerve-muscle syncytia — I. Distribution of the electrotonic potential. Biofizika1977;22:307–312PubMedGoogle Scholar
  12. 12.
    Miller WT III, Geselowitz DB. Simulation studies of the electrocardiogram I. The normal heart. Circ Res1978;43:301–315PubMedGoogle Scholar
  13. 13.
    Tung L. A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. dissertation, Cambridge, MA: MIT; 1978Google Scholar
  14. 14.
    Geselowitz DB, Miller WT III. A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng1983;11:191–206PubMedCrossRefGoogle Scholar
  15. 15.
    Plonsey R, Barr RC. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophys J1984;45:557–571PubMedGoogle Scholar
  16. 16.
    Barr RC, Plonsey R. Propagation of excitation in idealized anisotropic two-dimensional tissue. Biophys J1984;45:1191–1202PubMedGoogle Scholar
  17. 17.
    Roth BJ, Wikswo JP Jr. A bidomain model for the extracellular potential and magnetic field of cardiac tissue. IEEE Trans Biomed Eng1986;33:467–469PubMedCrossRefGoogle Scholar
  18. 18.
    Plonsey R, Barr RC. Interstitial potentials and their change with depth into cardiac tissue. Biophys J1987;51:547–555PubMedGoogle Scholar
  19. 19.
    Sepulveda NG, Wikswo JP Jr. Electric and magnetic fields from two-dimensional anisotropic bisyncytia. Biophys J1987;51:557–568PubMedGoogle Scholar
  20. 20.
    Henriquez CS, Trayanova NA, Plonsey R. Potential and current distributions in a cylindrical bundle of cardiac tissue. Biophys J1988;53:907–918PubMedGoogle Scholar
  21. 21.
    Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J1989;55:987–999PubMedGoogle Scholar
  22. 22.
    Dillon SM. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res1991;69:842–856PubMedGoogle Scholar
  23. 23.
    Knisley SB, Hill BC. Optical recordings of the effect of electrical stimulation on action potential repolarization and the induction of reentry in two-dimensional perfused rabbit epicardium. Circulation1993;88(Pt I):2402–2414Google Scholar
  24. 24.
    Sepulveda NG, Wikswo JP Jr. Electrical behavior of a cardiac bisyncytium during current injection. Bull APS1987;32:2131Google Scholar
  25. 25.
    Sepulveda NG, Roth BJ, Wikswo JP Jr. Finite element bidomain calculations. In: Harris GF, Walker C, eds. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE; 1988:950– 951CrossRefGoogle Scholar
  26. 26.
    Wikswo JP Jr, Roth BJ, Sepulveda NG. Current distributions in bisyncytial tissue. Phys Med Biol1988;33(Suppl 1):165CrossRefGoogle Scholar
  27. 27.
    Wikswo JP Jr, Kopelman HA, Roden DM. Cardiac excitability and space constants measured in vivo using the virtual cathode effect. Circulation1985;72:III-3Google Scholar
  28. 28.
    Kopelman HA, Bajaj AK, Wikswo JP Jr, Hondeghem LM, Woosley RL, Roden DM. Frequency-and direction-dependent effects of single and combinations of antiarrhyth-mic drugs on conduction velocity in vivo. J Am Coll Cardiol1986;7:82aCrossRefGoogle Scholar
  29. 29.
    Bajaj AK, Kopelman HA, Wikswo JP Jr, Cassidy F, Woosley RL, Roden DM. Frequency-and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart. Circulation1987;75:1065–1073PubMedGoogle Scholar
  30. 30.
    Altemeier WA, Turgeon J, Wisialowski TA, Wikswo JP Jr, Roden DM. Contrasting effects of class I and class III antiarrhythmics on virtual cathode dimension. Circulation1988;78(Suppl II): II–414Google Scholar
  31. 31.
    Wikswo JP Jr, Barach JP, Altemeier WA, Roden DM. Measurement and modeling of virtual cathode effects in cardiac muscle. Phys Med Biol1988;33(Suppl 1):232CrossRefGoogle Scholar
  32. 32.
    Wisialowski TA, Wikswo JP Jr, Roden DM. Lidocaine (LID) contracts the virtual cathode in a frequency-dependent fashion. Circulation1990;82:SIII–99Google Scholar
  33. 33.
    Wikswo JP Jr, Wisialowski TA, Altemeier WA, Balser JR, Kopelman HA, Roden DM. Virtual cathode effects during stimulation of cardiac muscle: two-dimensional in vivo measurements. Circ Res1991;68:513–530PubMedGoogle Scholar
  34. 34.
    Wiederholt WC. Threshold and conduction velocity in isolated mixed mammalian nerves. Neurology1970;20:347–352PubMedGoogle Scholar
  35. 35.
    Cummins KL, Dorfman LJ, Perkel DH. Nerve-fiber conduction-velocity distributions. 2. Estimation based on 2 compound action potentials. Electroencephalogr Clin Neuro-physiol1979;46:647–658CrossRefGoogle Scholar
  36. 36.
    Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng1986;33:974–977PubMedCrossRefGoogle Scholar
  37. 37.
    Rattay F. Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng1989;36:676–682PubMedCrossRefGoogle Scholar
  38. 38.
    Rattay F. Modeling the excitation of fibers under surface electrodes. IEEE Trans Biomed Eng1988;35:199–202PubMedCrossRefGoogle Scholar
  39. 39.
    Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J1997;73:1410–1423PubMedGoogle Scholar
  40. 40.
    Terman FE, Helliwell RA, Pettit JM, Watkins DA, Rambo WR. Electronic and Radio Engineering, 4th edn. New York: McGraw Hill; 1955Google Scholar
  41. 41.
    Furman S, Hurzeler P, Parker B. Clinical thresholds of endocardial cardiac stimulation: a long-term study. J Surg Res1975;19:149–155PubMedCrossRefGoogle Scholar
  42. 42.
    Goto M, Brooks CM. Membrane excitability of the frog ventricle examined by long pulses. Am J Physiol1969;217:1236–1245PubMedGoogle Scholar
  43. 43.
    Hoshi T, Matsuda K. Excitability cycle of cardiac muscle examined by intracellular stimulation. Jpn J Physiol1962;12:433–446PubMedGoogle Scholar
  44. 44.
    Hoffman BF, Cranefield PF. Excitability. Electrophysiology of the Heart. New York: McGraw-Hill; 1960:211–256Google Scholar
  45. 45.
    Roth BJ. How the anisotropy of intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol1992;30:633–646PubMedCrossRefGoogle Scholar
  46. 46.
    Roth BJ. Approximate analytical solutions to the bidomain equations with unequal anisotropy ratios. Phys Rev E1997;55:1819–1826CrossRefGoogle Scholar
  47. 47.
    Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res1995;77:1229–1239PubMedGoogle Scholar
  48. 48.
    Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J1995;68:2310– 2322PubMedGoogle Scholar
  49. 49.
    Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J1995;69:2195–2210PubMedGoogle Scholar
  50. 50.
    Dekker E. Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res1970;27:811–823PubMedGoogle Scholar
  51. 51.
    Lindemans FW, Heetharr RM, Denier Van der Gon JJ, Zimmerman ANE. Site of initial excitation and current threshold as a function of electrode radius in heart muscle. Cardiovasc Res1975;9:95–104PubMedCrossRefGoogle Scholar
  52. 52.
    Ehara T. Rectifier properties of canine papillary muscle. Jpn J Physiol.1971;21:49–69PubMedGoogle Scholar
  53. 53.
    Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng1995;42:1174–1184PubMedCrossRefGoogle Scholar
  54. 54.
    Roth BJ. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J Cardiovasc Electrophysiol1997;8:768–778PubMedCrossRefGoogle Scholar
  55. 55.
    Sidorov VY, Woods MC, Wikswo JP. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue. Biophys J.2003;84:3470–3479PubMedGoogle Scholar
  56. 56.
    Sidorov VY, Woods MC, Baudenbacher P, Baudenbacher F. Examination of stimulation mechanism and strength–interval curve in cardiac tissue. Am J Physiol Heart2005;289:H2602–H2615CrossRefGoogle Scholar
  57. 57.
    Sidorov VY, Woods MC, Wikswo JP Jr. Elevated potassium concentration converts excitation mechanism from make to break. In: EMBS-BMES 2002, Proceedings of the Second Joint EMBS-BMES Conference, Oct. 23–26, Houston, TX. Piscataway, NJ: IEEE, 2002:1377–1378Google Scholar
  58. 58.
    Roth BJ, Patel SG. Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J Cardiovasc Electrophysiol2003;14:1351–1355PubMedCrossRefGoogle Scholar
  59. 59.
    Nikolski VP, Sambelashvili AT, Efimov IR. Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation. Am J Physiol Heart2002;282:H565–H575Google Scholar
  60. 60.
    Nikolski V, Sambelashvili A, Efimov IR. Anode-break excitation during end-diastolic stimulation is explained by half-cell double layer discharge. IEEE Trans Biomed Eng2002;49:1217–1220PubMedCrossRefGoogle Scholar
  61. 61.
    Ranjan R, Chiamvimonvat N, Thakor NV, Tomaselli GF, Marban E. Mechanism of anode break stimulation in the heart. Biophys J1998;74:1850–1863PubMedGoogle Scholar
  62. 62.
    Ranjan R, Tomaselli GF, Marban E. A novel mechanism of anode-break stimulation predicted by bidomain modeling. Circ Res1999;84:153–156PubMedGoogle Scholar
  63. 63.
    Roth BJ, Chen J. Mechanism of anode break excitation in the heart: the relative influence of membrane and electrotonic factors. J Biol Syst1999;7:541–552CrossRefGoogle Scholar
  64. 64.
    van Dam RTh, Durrer D, Strackee J, van der Twell LH. The excitability cycle of the dog's left ventricle determined by anodal, cathodal and bipolar stimulation. Circ Res1956;4:196–204Google Scholar
  65. 65.
    Cranefield PF, Hoffman BF, Siebens AA. Anodal excitation of cardiac muscle. Am J Physiol1957;190:383–390PubMedGoogle Scholar
  66. 66.
    Roth BJ. Strength—interval curves for cardiac tissue predicted using the bidomain model. J Cardiovasc Electrophysiol1996;7:722–737PubMedCrossRefGoogle Scholar
  67. 67.
    Rodriguez B, Tice BM, Eason JC, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Heart Rhythm2004;1:695– 703PubMedCrossRefGoogle Scholar
  68. 68.
    Bray M-A, Roth BJ, The effect of electroporation on the strength—interval curve during unipolar stimulation of cardiac tissue. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct. 30–Nov. 2. Chicago: IEEE; 1997:15–18Google Scholar
  69. 69.
    Mehra R, McMullen M, Furman S. Time-dependence of unipolar cathodal and anodal strength—interval curves. PAC E1980;3:526–530Google Scholar
  70. 70.
    Bennett JA, Roth BJ. Time dependence of anodal and cathodal refractory periods in cardiac tissue. PAC E1999;22:1031–1038Google Scholar
  71. 71.
    El-Sherif N, Mehra R, Gough WB, Zeiler RH. Reentrant ventricular arrhythmias in the late myocardial infarction period. Circulation1983;68:644–656PubMedGoogle Scholar
  72. 72.
    Davidenko JM, Pertsov AM, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature1992;355:349–351PubMedCrossRefGoogle Scholar
  73. 73.
    Pertsov AM, Davidenko JM, Salomonsz R, Baxter W, Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res1993;72:631–650PubMedGoogle Scholar
  74. 74.
    Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, Pertsov AM. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation1995;91:2454–2469PubMedGoogle Scholar
  75. 75.
    Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, Pertsov AM. Mechanisms of cardiac fibrillation. Science1995;270:1222–1225PubMedCrossRefGoogle Scholar
  76. 76.
    Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE. Stimulus-induced critical point: mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest1989;83:1039–1052PubMedCrossRefGoogle Scholar
  77. 77.
    Winfree AT. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton, NJ: Princeton University Press; 1987Google Scholar
  78. 78.
    Shibata N, Chen P-S, Dixon EG, Wolf PD, Danieley ND, Smith WM, Ideker RE. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am J Physiol Heart1988;255:H891–H901Google Scholar
  79. 79.
    Matta RJ, Verrier RL, Lown B. Repetitive extrasystole as an index of vulnerability to ventricular fibrillation. Am J Physiol1976;230:1469–1473PubMedGoogle Scholar
  80. 80.
    Winfree AT. Ventricular reentry in three dimensions. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders; 1990:224– 234Google Scholar
  81. 81.
    Saypol JM, Roth BJ. A mechanism for anisotropic reentry in electrically active tissue. J Cardiovasc Electrophysiol1992;3:558–566Google Scholar
  82. 82.
    Lin S-F, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol1999;10:574–586PubMedCrossRefGoogle Scholar
  83. 83.
    Sidorov VY, Aliev RR, Woods MC, Baudenbacher F, Baudenbacher P, Wikswo JP. Spatiotemporal dynamics of damped propagation in excitable cardiac tissue. Phys Rev Lett2003;91:208104PubMedCrossRefGoogle Scholar
  84. 84.
    Gotoh M, Uchida T, Mandel WJ, Fishbein MC, Chen P-S, Karagueuzian HS. Cellular graded responses and ventricular vulnerability to reentry by a premature stimulus in isolated canine ventricle. Circulation1997;95:2141–2154PubMedGoogle Scholar
  85. 85.
    Trayanova NA, Gray RA, Bourn DW, Eason JC. Virtual electrode-induced positive and negative graded responses: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol2003;14:756–763PubMedGoogle Scholar
  86. 86.
    Bray M-A, Lin S-F, Aliev RR, Roth BJ, Wikswo JP Jr. Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue. J Cardiovasc Electrophysiol2001;12:716–722PubMedCrossRefGoogle Scholar
  87. 87.
    Bray M-A, Wikswo JP Jr. Considerations in phase plane analysis for non-stationary reentrant cardiac behavior. Phys Rev E2002;65:051902CrossRefGoogle Scholar
  88. 88.
    Bray M-A, Wikswo JP. Interaction dynamics of a pair of vortex filament rings. Phys Rev Lett2003;90:238303PubMedCrossRefGoogle Scholar
  89. 89.
    Gray RA, Iyer A, Bray M-A, Wikswo JP. Voltage-calcium state-space dynamics during initiation of reentry. Heart Rhythm2006;3:247–248PubMedCrossRefGoogle Scholar
  90. 90.
    Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early after depolarizations and torsade de pointes in rabbit hearts with type 2 long QT syndrome. J Physiol2002;543(2):615–631PubMedCrossRefGoogle Scholar
  91. 91.
    Verrier RL, Brooks WW, Lown B. Protective zone and determination of vulnerability to ventricular-fibrillation. Am J Physiol1978;234:H592–H596PubMedGoogle Scholar
  92. 92.
    Bonometti C, Hwang C, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, Chen P-S. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res1995;77:407–416PubMedGoogle Scholar
  93. 93.
    Hwang C, Fan W, Chen PS. Recurrent appearance of protective zones after an unsuccessful defibrillation shock. Am J Physiol Heart1996;40:H1491–H1497Google Scholar
  94. 94.
    Hildebrandt MC, Roth BJ. Simulation of protective zones during quatrefoil reentry in cardiac tissue. J Cardiovasc Electrophysiol2001;12:1062–1067PubMedCrossRefGoogle Scholar
  95. 95.
    Roth BJ. Art Winfree and the bidomain model of cardiac tissue. J Theor Biol2004;230:445–449PubMedCrossRefGoogle Scholar
  96. 96.
    Winfree AT. Various ways to make phase singularities by electric shock. J Cardiovasc Electrophysiol2000;11:286–289PubMedCrossRefGoogle Scholar
  97. 97.
    Winfree AT. The Geometry of Biological Time. New York: Springer; 2001Google Scholar
  98. 98.
    Roth BJ. An S1 gradient of refractoriness is not essential for reentry induction by an S2 stimulus. IEEE Trans Biomed Eng2000;47:820–821PubMedCrossRefGoogle Scholar
  99. 99.
    Cheng YN, Nikolski V, Efimov IR. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. J Cardiovasc Electrophysiol2000;11:998–1007PubMedCrossRefGoogle Scholar
  100. 100.
    Sidorov VY, Woods MC, Baudenbacher F. Cathodal stimulation in the recovery phase of a propagating planar wave in the rabbit heart reveals four stimulation mechanisms. J Physiol2007;583:237–250PubMedCrossRefGoogle Scholar
  101. 101.
    Lindblom AE, Roth BJ, Trayanova NA. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited. J Cardiovasc Electrophysiol2000;11:274–285PubMedCrossRefGoogle Scholar
  102. 102.
    Lindblom AE, Aguel F, Trayanova NA. Virtual electrode polarization leads to reentry in the far field. J Cardiovasc Electrophysiol2001;12:946–956PubMedCrossRefGoogle Scholar
  103. 103.
    Roth BJ. The pinwheel experiment revisited. J Theor Biol1998;190:389–393PubMedCrossRefGoogle Scholar
  104. 104.
    Sambelashvili A, Efimov IR. The pinwheel experiment re-revisited. J Theor Biol2002;214:147–153PubMedCrossRefGoogle Scholar
  105. 105.
    Efimov IR, Cheng YN, Biermann M, VanWagoner DR, Mazgalev TN, Tchou PJ. Trans-membrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol1997;8:1031–1045PubMedCrossRefGoogle Scholar
  106. 106.
    Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev TN, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res1998;82:918–925PubMedGoogle Scholar
  107. 107.
    Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res1999;85:1056–1066PubMedGoogle Scholar
  108. 108.
    Efimov IR, Cheng Y, Yamanouchi Y, Tchou PJ. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol2000;11:861–868PubMedCrossRefGoogle Scholar
  109. 109.
    Efimov IR, Gray RA, Roth BJ. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol2000;11:339–353PubMedCrossRefGoogle Scholar
  110. 110.
    Trayanova NA, Skouibine KB, Moore PB. Virtual electrode effects in defibrillation. Prog Biophys Mol Biol1998;69:387–403PubMedCrossRefGoogle Scholar
  111. 111.
    Skouibine KB, Trayanova NA. Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans Biomed Eng 1999;46:769–777PubMedCrossRefGoogle Scholar
  112. 112.
    Skouibine K, Trayanova N, Moore P. Success and failure of the defibrillation shock: insights from a simulation study. J Cardiovasc Electrophysiol 2000;11:785– 796PubMedCrossRefGoogle Scholar
  113. 113.
    Trayanova N. Induction of reentry and defibrillation: the role of virtual electrodes. In: Virag N, Blanc O, Kappenberger L, eds. Computer Simulation and Experimental Assessment of Cardiac Electrophysiology. Armonk, NY: Futura; 2001:165–172Google Scholar
  114. 114.
    Cheng Y, Mowrey KA, Nikolski V, Tchou PJ, Efimov IR. Mechanisms of shock-induced arrhythmogenesis during acute global ischemia. Am J Physiol Heart 2002;282:H2141–H2151Google Scholar
  115. 115.
    Rodriguez B, Tice BM, Eason JC, Aguel F, Ferrero JM, Trayanova N. Effect of acute global ischemia on the upper limit of vulnerability: a simulation study. Am J Physiol Heart 2004;286:H2078–H2088CrossRefGoogle Scholar
  116. 116.
    Hillebrenner MG, Eason JC, Trayanova NA. Mechanistic inquiry into decrease in probability of defibrillation success with increase in complexity of preshock reentrant activity. Am J Physiol Heart 2004;286:H909–H917CrossRefGoogle Scholar
  117. 117.
    Anderson C, Trayanova N, Skouibine K. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization. J Cardiovasc Electrophysiol 2000;11:1386–1396PubMedCrossRefGoogle Scholar
  118. 118.
    Rodriguez B, Li L, Eason JC, Efimov IR, Trayanova NA. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res 2005;97:168–175PubMedCrossRefGoogle Scholar
  119. 119.
    Entcheva E, Eason J, Efimov IR, Cheng Y, Malkin RA, Claydon F. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping. J Cardiovasc Electrophysiol 1998;9:949–961PubMedCrossRefGoogle Scholar
  120. 120.
    Trayanova NA, Roth BJ, Malden LJ. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. IEEE Trans Biomed Eng 1993;40:899–908PubMedCrossRefGoogle Scholar
  121. 121.
    Entcheva E, Trayanova NA, Claydon FJ. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis. IEEE Trans Biomed Eng 1999;46:260–270PubMedCrossRefGoogle Scholar
  122. 122.
    Knisley SB, Trayanova NA, Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J 1999;77:1404–1417PubMedGoogle Scholar
  123. 123.
    Latimer DC, Roth BJ. Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks. IEEE Trans Biomed Eng 1999;46:612–614PubMedCrossRefGoogle Scholar
  124. 124.
    Lin S-F, Wikswo JP Jr. New perspectives in electrophysiology from the cardiac bidomain. In: Rosenbaum DS, Jalife J, eds. Optical Mapping of Cardiac Excitation and Arrhythmias. Armonk, NY: Futura Publishing; 2001:335–359Google Scholar
  125. 125.
    Fishler MG, Vepa K. Spatiotemporal effects of syncytial heterogeneities on cardiac far-field excitations during monophasic and biphasic shocks. J Cardiovasc Electrophysiol 1998;9:1310–1324PubMedCrossRefGoogle Scholar
  126. 126.
    Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 2002;91:331–338PubMedCrossRefGoogle Scholar
  127. 127.
    Fast VG, Sharifov OF, Cheek ER, Newton JC, Ideker RE. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Circulation 2002;106:1007–1014PubMedCrossRefGoogle Scholar
  128. 128.
    Sharifov OF, Fast VG. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations. J Cardiovasc Electrophysiol 2003;14:1215–1222PubMedCrossRefGoogle Scholar
  129. 129.
    Sharifov OF, Ideker RE, Fast VG. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall. Cardiovasc Res 2004;64:448–456PubMedCrossRefGoogle Scholar
  130. 130.
    Sharifov OF, Fast VG. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface. Heart Rhythm 2006;3:1063–1073PubMedCrossRefGoogle Scholar
  131. 131.
    Pitruzello AM, Woods MC, Wikswo JP Jr, Lin S-F. Differences in cardiac activation times for endocardium and epicardium in response to external electric shock. In: Blanchard SM, ed. Proceedings of the First Joint BMES/EMBS Conference: Serving Humanity Advancing Technology, Atlanta: Piscataway, NJ: IEEE; 1999:286Google Scholar
  132. 132.
    Woods MC, Pitruzello AM, Wikswo JP. Analysis of the shock-response of rabbit cardiac tissue. Presented at BMES Annual Fall Meeting, Philadelphia, PA, 2004Google Scholar
  133. 133.
    Woods MC. Field stimulation of the diastolic rabbit heart: the role of shock strength and duration on epicardial activation and propagation. In: The Response of the Cardiac Bidomain to Electrical Stimulation. Ph.D. Dissertation, Biomedical Engineering, Vanderbilt University; 2005:109–138Google Scholar
  134. 134.
    Woods MC, Maleckar MM, Sidorov VY, Holcomb MR, Mashburn DN, Trayanova NA, Wikswo JP. Negative virtual electrode polarization in the rabbit left ventricle delays activation during diastolic field stimulation. Heart Rhythm 2006;3(Suppl 1):S181–S182CrossRefGoogle Scholar
  135. 135.
    Maleckar MM, Woods MC, Sidorov VY, Holcomb MR, Mashburn DN, Wikswo JP, Trayanova NA. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Am J Physiol Heart Circ Physiol 2008;295;doi:10.1152/ajpheart.00706.2008Google Scholar
  136. 136.
    Holcomb MR. Measurement and Analysis of Cardiac Tissue during Electrical Stimulation. Ph.D. Dissertation, Physics, Vanderbilt University; 2007Google Scholar
  137. 137.
    Zemlin CW, Mironov S, Pertsov AM. Near-threshold field stimulation: intramural versus surface activation. Cardiovasc Res 2006;69:98–106PubMedCrossRefGoogle Scholar
  138. 138.
    Roth BJ. A mechanism for the “no-response” phenomenon during anodal stimulation of cardiac tissue. In: Jaeger RJ, Robert J, eds. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct. 30–Nov. 2, Chicago, IL. Piscataway, NJ: IEEE, 1997:176–179Google Scholar
  139. 139.
    Janks DL, Roth BJ. The bidomain theory of pacing. In: Efimov I, Kroll M, Tchou P, eds. Cardiac Bioelectric Therapy: Mechanisms and Practical Implications; New York: Springer; 2008:63–83Google Scholar
  140. 140.
    Chen P-S, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73:1022–1028PubMedGoogle Scholar
  141. 141.
    Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res 1999;85:742–752PubMedGoogle Scholar
  142. 142.
    Rodriguez B, Trayanova N. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles. J Electrocardiol 2003;36:51–56PubMedCrossRefGoogle Scholar
  143. 143.
    Langrill Beaudoin D, Roth BJ. The effect of the fiber curvature gradient on break excitation in cardiac tissue. PAC E2006;29:496–501Google Scholar
  144. 144.
    Langrill DM, Roth BJ. The effect of plunge electrodes during electrical stimulation of cardiac tissue. IEEE Trans Biomed Eng 2001;48:1207–1211PubMedCrossRefGoogle Scholar
  145. 145.
    Langrill Beaudoin D, Roth BJ. Effect of plunge electrodes in active cardiac tissue with curving fibers. Heart Rhythm 2004;1:476–481CrossRefGoogle Scholar
  146. 146.
    Woods MC, Sidorov VY, Holcomb MR, Langrill Beaudoin D, Roth BJ, Wikswo JP. Virtual electrode effects around an artificial heterogeneity during field stimulation of cardiac tissue. Heart Rhythm 2006;3:751–752PubMedCrossRefGoogle Scholar
  147. 147.
    Chattipakorn N, Fotuhi PC, Chattipakorn SC, Ideker RE. Three-dimensional mapping of earliest activation after near-threshold ventricular defibrillation shocks. J Cardiovasc Electrophysiol 2003;14:65–69PubMedCrossRefGoogle Scholar
  148. 148.
    Patel SG, Roth BJ. How epicardial electrodes influence the transmembrane potential during a strong shock. Ann Biomed Eng 2001;29:1028–1031PubMedCrossRefGoogle Scholar
  149. 149.
    Knisley SB, Pollard AE. Use of translucent indium tin oxide to measure stimulatory effects of a passive conductor during field stimulation of rabbit hearts. Am J Physiol Heart 2005;289:H1137–H1146CrossRefGoogle Scholar
  150. 150.
    Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrilla-tion. Chaos 1998;8:221–233PubMedCrossRefGoogle Scholar
  151. 151.
    Trayanova NA, Skouibine KB. Modeling defibrillation: effects of fiber curvature. J Electrocardiol 1998;31(Suppl):23–29PubMedCrossRefGoogle Scholar
  152. 152.
    Roth BJ, Langrill Beaudoin D. Approximate analytical solutions of the bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Phys Rev E 2003;67: 051925CrossRefGoogle Scholar
  153. 153.
    Roth BJ. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans Biomed Eng 1997;44:326–328Google Scholar
  154. 154.
    Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells. Am J Physiol Heart 2000;279:H1579–H1590Google Scholar
  155. 155.
    Plonsey R, Barr RC. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillation (stimulating) currents. Med Biol Eng Comput 1986;24:130–136PubMedCrossRefGoogle Scholar
  156. 156.
    Krassowska W, Pilkington TC, Ideker RE. Periodic conductivity as a mechanism for cardiac stimulation and defibrillation. IEEE Trans Biomed Eng 1987;34:555–560PubMedCrossRefGoogle Scholar
  157. 157.
    Keener JP. Direct activation and defibrillation of cardiac tissue. J Theor Biol 1996;178:313–324PubMedCrossRefGoogle Scholar
  158. 158.
    Krinsky VI, Pumir A. Models of defibrillation of cardiac tissue. Chaos 1998;8:188–203PubMedCrossRefGoogle Scholar
  159. 159.
    Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ Res 1996;79:676–690PubMedGoogle Scholar
  160. 160.
    Zhou XH, Knisley SB, Smith WM, Rollins D, Pollard AE, Ideker RE. Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ Res 1998;83:1003–1014PubMedGoogle Scholar
  161. 161.
    Krassowska Kumar MS. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks. Ann Biomed Eng 1997;25:949–963PubMedGoogle Scholar
  162. 162.
    Fishler MG. Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks. J Cardiovasc Electrophysiol 1998;9:384–394PubMedCrossRefGoogle Scholar
  163. 163.
    Langrill Beaudoin D, Roth BJ. How the spatial frequency of polarization influences the induction of reentry in cardiac tissue. J Cardiovasc Electrophysiol 2005;16:748–752CrossRefGoogle Scholar
  164. 164.
    Woods MC, Holcomb MR, Sidorov VY, Gray RA, Wikswo JP. Transient virtual anodes during strong field shock of rabbit hearts. Presented at BMES Annual Fall Meeting, Los Angeles, CA, 2007Google Scholar
  165. 165.
    Woods MC. The Response of the Cardiac Bidomain to Electrical Stimulation. Ph.D. Dissertation, Biomedical Engineering, Vanderbilt University; 2005Google Scholar
  166. 166.
    Trew M, Sands GB. Shock-induced transmembrane potential fields in a model of cardiac microstructure. J Cardiovasc Electrophysiol2005;16:1024PubMedCrossRefGoogle Scholar
  167. 167.
    Plank G, Prassl AJ, Vigmond EJ, Burton RAB, Schneider J, Trayanova NA, Kohl P. Development of a microanatomically accurate rabbit ventricular wedge model. Heart Rhythm2006;3(Suppl 1):S111–S112CrossRefGoogle Scholar
  168. 168.
    Gray RA. What exactly are optically recorded “action potentials”? J Cardiovasc Electrophysiol1999;10:1463–1466PubMedCrossRefGoogle Scholar
  169. 169.
    Efimov IR, Sidorov V, Cheng Y, Wollenzier B. Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart. J Cardiovasc Electrophysiol1999;10:1452–1462PubMedCrossRefGoogle Scholar
  170. 170.
    Bray MA, Wikswo JP. Examination of optical depth effects on fluorescence imaging of cardiac propagation. Biophys J2003;85:4134–4145PubMedGoogle Scholar
  171. 171.
    Janks DL, Roth BJ. Averaging over depth during optical mapping of unipolar stimulation. IEEE Trans Biomed Eng2002;49:1051–1054PubMedCrossRefGoogle Scholar
  172. 172.
    Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Physiol Heart1997;42:H2817–H2825Google Scholar
  173. 173.
    Kodama I, Sakuma I, Shibata N, Honjo H, Toyama J. Arrhythmogenic changes in action potential configuration in the ventricle induced by DC shocks. J Electrocardiol1999;32(Suppl 1):92–99PubMedCrossRefGoogle Scholar
  174. 174.
    Al Khadra A, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res2000;87:797–804PubMedGoogle Scholar
  175. 175.
    Janks DL, Roth BJ. Simulations of optical mapping during electroporation. EMBC 2004, 26th Annual International Conference of the Engineering in Medicine and Biology Society, San Francisco, CA. Piscataway, NJ: IEEE; 2004:3581–3584Google Scholar
  176. 176.
    Hyatt CJ, Mironov SF, Wellner M, Berenfeld O, Popp AK, Weitz DA, Jalife J, Pertsov AM. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys J2003;85:2673–2683PubMedGoogle Scholar
  177. 177.
    Bernus O, Wellner M, Mironov SF, Pertsov AM. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys Med Biol2005;50:215–229PubMedCrossRefGoogle Scholar
  178. 178.
    Bishop MJ, Rodriguez B, Eason J, Whiteley JP, Trayanova N, Gavaghan DJ. Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping. Biophys J2006;90:2938–2945PubMedCrossRefGoogle Scholar
  179. 179.
    Mironov SF, Vetter FJ, Pertsov AM. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol2006;291:H327–H335PubMedCrossRefGoogle Scholar
  180. 180.
    Krassowska W, Neu JC. Effective boundary conditions for syncytial tissues. IEEE Trans Biomed Eng1994;41:143–150PubMedCrossRefGoogle Scholar
  181. 181.
    Roth BJ. A comparison of two boundary-conditions used with the bidomain model of cardiac tissue. Ann Biomed Eng1991;19:669–678PubMedCrossRefGoogle Scholar
  182. 182.
    Latimer DC, Roth BJ. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans Biomed Eng1998;45:1449–1458PubMedCrossRefGoogle Scholar
  183. 183.
    Knisley SB, Pollard AE, Fast VG. Effects of electrode-myocardial separation on cardiac stimulation in conductive solution. J Cardiovasc Electrophysiol2000;11:1132– 1143PubMedCrossRefGoogle Scholar
  184. 184.
    Trayanova NA. Effects of the tissue-bath interface on the induced transmembrane potential: a modeling study in cardiac stimulation. Ann Biomed Eng1997;25:783–792PubMedCrossRefGoogle Scholar
  185. 185.
    Roth BJ. Mechanism for polarisation of cardiac tissue at a sealed boundary. Med Biol Eng Comput1999;37:523–525PubMedCrossRefGoogle Scholar
  186. 186.
    Roth BJ, Patel SG, Murdick RA. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation. IEEE Trans Biomed Eng2006;53:1187– 1190PubMedCrossRefGoogle Scholar
  187. 187.
    Corbin LV II, Scher AM. The canine heart as an electrocardiographic generator. Dependence on cardiac cell orientation. Circ Res1977;41:58–67PubMedGoogle Scholar
  188. 188.
    Roberts DE, Hersh LT, Scher AM. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ Res1979;44:701–712PubMedGoogle Scholar
  189. 189.
    Roberts DE, Scher AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res1982;50:342–351PubMedGoogle Scholar
  190. 190.
    Barry WH, Fairbank WM, Harrison DC, Lehrman KL, Malmivuo JAV, Wikswo JP Jr. Measurement of the human magnetic heart vector. Science1977;198:1159–1162PubMedCrossRefGoogle Scholar
  191. 191.
    Wikswo JP Jr. A theoretical analysis of the relation between cardiac electric and magnetic fields. Biophys J1978;21:91aGoogle Scholar
  192. 192.
    Wikswo JP Jr, Barach JP. Possible sources of new information in the magnetocardio-gram. J Theor Biol1982;95:721–729PubMedCrossRefGoogle Scholar
  193. 193.
    Wikswo JP Jr, Barach JP, Gundersen SC, McLean MJ, Freeman JA. First magnetic measurements of action currents in isolated cardiac Purkinje fibers. IL Nuovo Cimento1983;2D:368–378CrossRefGoogle Scholar
  194. 194.
    Roth BJ, Wikswo JP Jr. Electrically silent magnetic fields. Biophys J1986;50:739–745PubMedGoogle Scholar
  195. 195.
    Barach JP. A simulation of cardiac action currents having curl. IEEE Trans Biomed Eng1993;40:49–58PubMedCrossRefGoogle Scholar
  196. 196.
    Barach JP, Wikswo JP Jr. Magnetic fields from simulated cardiac action currents. IEEE Trans Biomed Eng1994;41:969–974PubMedCrossRefGoogle Scholar
  197. 197.
    Staton DJ, Friedman RN, Wikswo JP Jr. High-resolution SQUID imaging of octupolar currents in anisotropic cardiac tissue. IEEE Trans Appl Supercond1993;3:1934–1936CrossRefGoogle Scholar
  198. 198.
    Baudenbacher F, Peters NT, Baudenbacher P, Wikswo JP. High resolution imaging of biomagnetic fields generated by action currents in cardiac tissue using a LTS-SQUID microscope. Physica C2002;368:24–31CrossRefGoogle Scholar
  199. 199.
    Staton DJ. Magnetic imaging of applied and propagating action current in cardiac tissue slices: determination of anisotropic electrical conductivities in a two dimensional bidomain. Ph.D. dissertation, Physics, Vanderbilt University; 1994Google Scholar
  200. 200.
    Fong LE, Holzer JR, McBride KK, Lima EA, Baudenbacher F, Radparvar M. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev Sci Instrum2005;76:053703CrossRefGoogle Scholar
  201. 201.
    Fong LE, Holzer JR, McBride K, Lima EA, Baudenbacher F, Radparvar M. High-resolution imaging of cardiac biomagnetic fields using a low-transition-temperature superconducting quantum interference device microscope. Appl Phys Lett2004;84:3190–3192CrossRefGoogle Scholar
  202. 202.
    Holzer JR, Fong LE, Sidorov VY, Wikswo JP Jr, Baudenbacher F. High resolution magnetic images of planar wave fronts reveal bidomain properties of cardiac tissue. Biophys J2004;87:4326–4332PubMedCrossRefGoogle Scholar
  203. 203.
    Baudenbacher F, Peters NT, Wikswo JP Jr. High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures. Rev Sci Instrum2002;73:1247–1254CrossRefGoogle Scholar
  204. 204.
    Roth BJ, Woods MC. The magnetic field associated with a plane wave front propagating through cardiac tissue. IEEE Trans Biomed Eng1999;46:1288–1292PubMedCrossRefGoogle Scholar
  205. 205.
    Barbosa CRH. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model. Phys Med Biol2003;48:4151–4164PubMedCrossRefGoogle Scholar
  206. 206.
    dos Santos RW, Koch H. Interpreting biomagnetic fields of planar wave fronts in cardiac muscle. Biophys J2005;88:3731–3733PubMedCrossRefGoogle Scholar
  207. 207.
    Murdick RA, Roth BJ. A comparative model of two mechanisms from which a magnetic field arises in the heart. J Appl Phys2004;95:5116–5122CrossRefGoogle Scholar
  208. 208.
    Baudenbacher F, Fong LE, Holzer JR, Radparvar M. Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl Phys Lett2003;82:3487–3489CrossRefGoogle Scholar
  209. 209.
    Ideker RE, Chattipakorn N, Gray RA. Defibrillation mechanisms: the parable of the blind men and the elephant. J Cardiovasc Electrophysiol2000;11:1008–1013PubMedCrossRefGoogle Scholar
  210. 210.
    Roth BJ, Guo W-Q, Wikswo JP Jr. The effects of spiral anisotropy on the electric potential and the magnetic field at the apex of the heart. Math Biosci1988;88:191–221CrossRefGoogle Scholar
  211. 211.
    Roth BJ. The electrical potential produced by a strand of cardiac muscle: a bidomain analysis. Ann Biomed Eng1988;16:609–637PubMedCrossRefGoogle Scholar
  212. 212.
    Knisley SB, Maruyama T, Buchanan JW. Interstitial potential during propagation in bathed ventricular muscle. Biophys J1991;59:509–515PubMedGoogle Scholar
  213. 213.
    Plonsey R, Henriquez CS, Trayanova NA. Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology. Med Biol Eng Comput1988;26:126–129PubMedCrossRefGoogle Scholar
  214. 214.
    Wu J, Johnson EA, Kootsey JM. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys J1996;71:2427–2439PubMedGoogle Scholar
  215. 215.
    Wu J, Wikswo JP Jr. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications. Biophys J1997;73:2347–2358PubMedCrossRefGoogle Scholar
  216. 216.
    Roth BJ. Effect of a perfusing bath on the rate of rise of an action potential propagating through a slab of cardiac tissue. Ann Biomed Eng1996;24:639–646PubMedCrossRefGoogle Scholar
  217. 217.
    Roth BJ. Influence of a perfusing bath on the foot of the cardiac action potential. Circ Res2000;86:E19–E22PubMedGoogle Scholar
  218. 218.
    Roth BJ, Saypol JM. The formation of a re-entrant action potential wave front in tissue with unequal anisotropy ratios. Int J Bifurcat Chaos1991;1:927–928CrossRefGoogle Scholar
  219. 219.
    Roth BJ. Frequency locking of meandering spiral waves in cardiac tissue. Phys Rev E1998;57:R3735–R3738CrossRefGoogle Scholar
  220. 220.
    Roth BJ. Meandering of spiral waves in anisotropic cardiac tissue. Phys D: Nonlinear Phenomena2001;150:127–136CrossRefGoogle Scholar
  221. 221.
    Janks DL, Roth BJ. Quatrefoil reentry caused by burst pacing. J Cardiovasc Electro-physiol2006;17:1362–1368CrossRefGoogle Scholar
  222. 222.
    Spach MS, Miller WT III, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA. The discontinuous nature of propagation in normal canine cardiac muscle. Circ Res1981;48:39–54PubMedGoogle Scholar
  223. 223.
    Roth BJ, Lin S-F, Wikswo JP Jr. Unipolar stimulation of cardiac tissue. J Electrocar-diol1998;31(Suppl):6–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • John P. Wikswo
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, The Vanderbilt Institute for Integrative Biosystems Research and EducationVanderbilt UniversityNashvilleUSA
  2. 2.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations