Sensors Prototypes and Applications



Intelligent sensors are extensively contributing to a broad range of our day-to-day life activities. Safeguarding human and environmental resources against harmful agents requires the development of new in situ, real-time monitoring devices that can be deployed in multiple strategic locations. The ideal sensor system should be compact, cost-effective, and capable of detecting low concentrations of pollutants, toxic chemicals, and warfare agents. The emergence of the telemedicine concept coupled with the tremendous growth of wireless sensor networks has opened up a new and innovative application of wireless sensor technology in medical as well as in healthcare field. The broad range of sensor applications is quite difficult to cover in such a short extent. Here, in this chapter, mainly three areas will be covered where sensors applications are creating the most impact.


Green Fluorescent Protein Sensor Network Wireless Sensor Network Surface Enhance Raman Spectroscopy Wireless Local Area Network 


  1. 1.
    Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6:657–664CrossRefGoogle Scholar
  2. 2.
    Brett CMA (2001) Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl Chem 73(12):1969–1977CrossRefGoogle Scholar
  3. 3.
    King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1991) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781CrossRefGoogle Scholar
  4. 4.
    Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16:332–338CrossRefGoogle Scholar
  5. 5.
    Islam SK, Vijayaraghavan R, Zhang M, Ripp S, Caylor S, Weathers B, Moser S, Terry SC, Blalock BJ, Sayler GS (2007) Integrated circuit biosensors using living whole-cell bioreporters for environmental monitoring. IEEE Trans Circuits Syst I 54(1):89–98CrossRefGoogle Scholar
  6. 6.
    Nivens DE, McKnight TE, Moser SA, Osbourn SJ, Simpson ML, Sayler GS (2004) Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J Appl Microbiol 96:33–46CrossRefGoogle Scholar
  7. 7.
    Vijayaraghavan R, Islam SK, Zhang M, Ripp S, Caylor S, Bull ND, Moser S, Terry SC, Blalock BJ, Sayler GS (2007) A bioluminescent bioreporter integrated circuit for very low-level chemical sensing in both gas and liquid environments. Sens Actuators B 123:922–928CrossRefGoogle Scholar
  8. 8.
    Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B 85:179–185CrossRefGoogle Scholar
  9. 9.
    Ripp S, Daumer KA, McKnight T, Levine LH, Garland JL, Simpson ML, Sayler GS (2003) Bioluminescent bioreporter integrated circuit sensing of microbial volatile organic compounds. J Ind Microbiol Biotechnol 30:636–642CrossRefGoogle Scholar
  10. 10.
    Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853CrossRefGoogle Scholar
  11. 11.
    Meighen EA (1994) Genetics of bacterial bioluminescence. Annu Rev Genet 28:117–139CrossRefGoogle Scholar
  12. 12.
    Ripp S, Applegate B, Nivens DE, Simpson ML, Sayler GS (2000) Advances in whole-cell bioluminescent bioreporters for environmental monitoring and chemical sensing. AIChE Annual MeetingGoogle Scholar
  13. 13.
    Hermens J, Busser F, Leeuwangh P, Musch A (1985) Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test. Ecotoxicol Environ Saf 9:17–25CrossRefGoogle Scholar
  14. 14.
    Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2(1–2):41–52CrossRefGoogle Scholar
  15. 15.
    Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg P (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48(1):55–66CrossRefGoogle Scholar
  16. 16.
    Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis M (2003) A B cell-based sensor for rapid identification of pathogens. Science 301(5630):213–215CrossRefGoogle Scholar
  17. 17.
    Misteli T, Spector DL (1997) Application of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol 15:961–964CrossRefGoogle Scholar
  18. 18.
    Sattler I, Roessner CA, Stolowich NJ, Hardin SH, Harris-Haller LW, Yokubaitis NT, Murooka Y, Hashimoto Y, Scott AI (1995) Cloning, sequencing, and expression of the uroporphyrinogen III methyltransferase cobA gene of Propionibacterium freudenreichii (shermanii). J Bacteriol 177(6):1564–1569Google Scholar
  19. 19.
    Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738CrossRefGoogle Scholar
  20. 20.
    King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescence reporter technology for naphthalene exposure and biodegradation. Science 249:778–781CrossRefGoogle Scholar
  21. 21.
    Heitzer A, Webb OF, Thonnard JE, Sayler GS (1992) Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 58:1839–1846Google Scholar
  22. 22.
    Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735Google Scholar
  23. 23.
    Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64:5023–5026Google Scholar
  24. 24.
    Johnston WH (1996) Fate of Pseudomonas fluorescens 5RL and its reporter plasmid for naphthalene biodegradation in soil environments. Ph.D. Dissertation, University of TennesseeGoogle Scholar
  25. 25.
    Hay AG, Applegate BM, Bright NG, Sayler GS (2000) A bioluminescent whole-cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol 66:4589–4594CrossRefGoogle Scholar
  26. 26.
    Abd-El-Haleem D, Ripp S, Scott C, Sayler GS (2002) A luxCDABE-based bioluminescent bioreporter for the detection of phenol. J Ind Microbiol Biotechnol 29:233–237CrossRefGoogle Scholar
  27. 27.
    Wessen B, Schoeps K-O (1996) Microbial volatile organic compounds-what substances can be found in sick buildings? Analyst 121:1203–1205CrossRefGoogle Scholar
  28. 28.
    Baschirotto A, Capone S, D’Amico A, Di Natale C, Ferragina V, Ferri G, Francioso L, Grassi M, Guerrini N, Malcovati P, Martinelli E, Siciliano P (2008) A portable integrated wide-range gas sensing system with smart A/D front-end. Sens Actuators B 130:164–174CrossRefGoogle Scholar
  29. 29.
    Lauf RJ, Hoffheins BS (1991) Analysis of liquid fuels using a gas sensor array. Fuel 70:935–940CrossRefGoogle Scholar
  30. 30.
    Shurmer HV (1990) The fifth sense: on the scent of the electronic nose. IEEE Rev 36:95–98CrossRefGoogle Scholar
  31. 31.
    Sugimoto I, Seiyama M, Nakamura M (1999) Detection of petroleum hydrocarbons at low ppb levels using quartz resonator sensors and instrumentation of a smart environmental monitoring system. J Environ Monit 1(2):135–142CrossRefGoogle Scholar
  32. 32.
    Ueyama S, Hijikata K, Hirotsuji J (2001) Water monitoring system for oil contamination using polymer-coated quartz crystal microbalance chemical sensor. Instrumentation, control and automation, (IWA-ICA 2001), Malmo, Sweden, pp 287–292, 2001.Google Scholar
  33. 33.
    Szczurek A, Szecowka PM, Licznerki BW (1999) Application of sensor array and neural networks for quantification of organic solvent vapors in air. Sens Actuators B 58:427–432CrossRefGoogle Scholar
  34. 34.
    Llobet E, Ionescu R, Al-Khalifa S, Brezmes J, Vilanova X, Correig X, Barsan N, Gardner JW (1997) Multicomponent gas mixture analysis using a single tin oxide sensor and dynamic pattern recognition. IEEE Sens J 1(3):207–213CrossRefGoogle Scholar
  35. 35.
    Lee DS, Jung HY, Lim JW, Huh JS, Lee DD (2000) Recognition of VOC gases using the nanocrystalline thick film SnO2 gas sensor array and pattern recognition analysis. Technical digest of the 8th international meeting on chemical sensors, Basel, SwitzerlandGoogle Scholar
  36. 36.
    Negri M, Reich S (2001) Identification of pollutant gases and its concentrations with a multisensor array. Sens Actuators B 75:172–178CrossRefGoogle Scholar
  37. 37.
    Furlong C, Stewart JR (2000) Using a portable electronic nose for identification of odorous chemicals. Electronic Noses and Olfaction 2000, conference proceedings, Brighton, UK, pp 285–290Google Scholar
  38. 38.
    Dickert FL, Hayden O, Zenkel ME (1999) Detection of volatile compounds with mass-sensitive sensor arrays in the presence of variable ambient humidity. Anal Chem 71:1338–1341CrossRefGoogle Scholar
  39. 39.
    Beach DG, Quilliamc MA, Hellou J (2009) Analysis of pyrene metabolites in marine snails by liquid chromatography using fluorescence and mass spectrometry detection. J Chromatogr B 877:2142–2152CrossRefGoogle Scholar
  40. 40.
    Péron O, Rinnerta E, Lehaitrea M, Crassousb P, Compèrea C (2009) Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS). Talanta 79:199–204CrossRefGoogle Scholar
  41. 41.
    Baby RE, Cabezas M, Walsoe de Reca EN (2000) Electronic nose: a useful tool for monitoring environmental pollution. Sens Actuators B 69:214–218CrossRefGoogle Scholar
  42. 42.
    McGill RE, Nguyen VK, Chung R, Shaffer RE, DiLella D, Stepnowski JL, Mlsna TE, Venezky DL, Dominguez D (2000) The “NRL-SAWRHINO”: a nose for toxic gases. Sens Actuators B 65:10–13CrossRefGoogle Scholar
  43. 43.
    Delpha C, Lumberas M, Siadat M (2001) Discrimination of Forane 134a and carbon dioxide concentrations in an air conditioned atmosphere with an electronic nose: influence of the relative humidity. Sens Actuators B 80:59–67CrossRefGoogle Scholar
  44. 44.
    Kalman EL, Winquist F, Lundstrom I (1997) A new pollen detection method based on an electronic nose. Atmos Environ 31(11):1715–1719CrossRefGoogle Scholar
  45. 45.
    Ogawa S, Sugimoto I (2001) Detecting odorous materials in water using quartz crystal microbalance sensors. Instrumentation, control and automation, (IWA-ICA 2001), Malmo, Sweden, conf. preprints, pp 317–322Google Scholar
  46. 46.
    Bourgeois W, Hogben P, Pike A, Stuetz RM (2003) Development of a sensor array based measurement system for continuous monitoring of water and wastewater. Sens Actuators B 88:312–319CrossRefGoogle Scholar
  47. 47.
    Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626CrossRefGoogle Scholar
  48. 48.
    Lieberzeit PA, Rehman A, Iqbal N, Najafi B, Dickert FL (2009) QCM sensor array for monitoring terpene emissions from odoriferous plants. Monatsh Chem 140:947–952CrossRefGoogle Scholar
  49. 49.
    Perera A, Pardo T, Sundi T, Gutierrez-Osuna R, Marco S, Nicolas J (2001) IpNose: electronic nose for remote bad odour monitoring system in landfill sites. Proceedings of the 8th conference Eurodeur, Paris, pp 19–21, June, 2001.Google Scholar
  50. 50.
    Pan L, Yang SX (2009) An electronic nose network system for online monitoring of livestock farm odors. IEEE/ASME Trans Mechatron 14(3):371–376CrossRefGoogle Scholar
  51. 51.
    Gostelow P, Parsons SA, Stuetz RM (2001) Odour measurements for sewage treatment works. Water Res 35(3):579–597CrossRefGoogle Scholar
  52. 52.
    Hobbs PJ, Misselbrook TH, Pain BF (1995) Assessment of odours from livestock wastes by photo-ionization detector, electronic nose, olfactometry and gas chromatography-mass spectrometry. J Agric Eng Res 60:137–144CrossRefGoogle Scholar
  53. 53.
    Persaud KC, Khaffaf SM, Hobbs PJ, Sneath RW (1996) Assessment of conducting polymer odour sensors for agricultural malodour measurements. Chem Senses 21:495–505CrossRefGoogle Scholar
  54. 54.
    Misselbrook TH, Hobbs PJ, Persaud KC (1997) Use of an electronic nose to measure odour concentration following application of cattle slurry to grassland. J Agric Eng Res 66:213–220CrossRefGoogle Scholar
  55. 55.
    Stuetz RM, White M, Fenner RA (1998) Use of an electronic nose to detect tainting compounds in raw and treated potable water. J Water Serv Res Technol – Aqua 47:223–228Google Scholar
  56. 56.
    Stuetz RM, Engin G, Fenner RA (1998) Sewage odour measurements using a sensory panel and an electronic nose. Water Sci Technol 38:331–335Google Scholar
  57. 57.
    Romain AC, Nicolas J, Wiertz V, Maternova J, Andre PH (2000) Use of a simple tin oxide sensor array to identify five malodours collected in the field. Sens Actuators B 62:73–79CrossRefGoogle Scholar
  58. 58.
    Pan L, Liu R, Peng S, Yang SX, Grego S (2007) Real-time monitoring system for odours around livestock farms. 2007 IEEE international conference on networking, sensing and control, ICNSC’07. Art. No. 4239111, pp 883–888Google Scholar
  59. 59.
    Pan L, Yang SX, DeBruyn J (2007) Factor analysis of downwind odours from livestock farms. Biosyst Eng 96(3):387–397CrossRefGoogle Scholar
  60. 60.
    Pinnaduwage LA, Zhao W, Gehl AC, Allman SL, Shepp A, Mahmud KK, Leis JW (2007) Quantitative analysis of tannery vapor mixtures using a microcantilever-based electronic nose. Appl Phys Lett 91(4). Art. No. 044105Google Scholar
  61. 61.
    Capelli L, Sironi S, Del Rosso R, Centola P, Il Grande M (2006) Electronic noses for odour impact assessment of a composting plant in Italy. CHISA 2006 – 17th international congress of chemical and process engineering. p 14Google Scholar
  62. 62.
    Sironi S, Capelli L, Centola P, Del Rosso R (2007) Development of a system for the continuous monitoring of odours from a composting plant: focus on training, data processing and results validation methods. Sens Actuators B Chem 124(2):336–346CrossRefGoogle Scholar
  63. 63.
    Micone PG, Guy C (2007) Odour quantification by a sensor array: an application to landfill gas odours from two different municipal waste treatment works. Sens Actuators B Chem 120(2):628–637CrossRefGoogle Scholar
  64. 64.
    Littarru P (2007) Environmental odours assessment from waste treatment plants: dynamic olfactometry in combination with sensorial analysers “electronic noses”. Waste Manag 27(2):302–309CrossRefGoogle Scholar
  65. 65.
    Sohn JH, Pioggia G, Craig IP, Stuetz RM, Atzeni MG (2009) Identifying major contributing sources to odour annoyance using a non-specific gas sensor array. Biosyst Eng 102:305–312CrossRefGoogle Scholar
  66. 66.
    Stuetz RM, Engin G, Fenner RA (1998) Sewage odour measurements using a sensory panel and an electronic nose. Water Sci Technol 38:331–335Google Scholar
  67. 67.
    Stuetz RM, Fenner RA (1998) Electronic nose technology: a new tool for odour management. Water Qual Int 15–17Google Scholar
  68. 68.
    Hudon G, Guy C, Hermia J (2000) Measurement of odor intensity by an electronic nose. J Air Waste Manag Assoc 50:1750–1758Google Scholar
  69. 69.
    Ramalho O (2000) Correspondences between olfactometry, analytical and electronic nose data for 10 indoor paints. Analusis 28(3):207–215CrossRefGoogle Scholar
  70. 70.
    Gutierrez-Osuna R, Schiffman SS, Nagle HT (2001) Correlation of sensory analysis with electronic nose data for swine odor remediation assessment. 3rd European congress on odours, metrology and electronic noses, Paris, FranceGoogle Scholar
  71. 71.
    Stuetz R, Nicolas J (2001) Sensor arrays: an inspired idea or an objective measurement of environmental odours? Water Sci Technol 44:53–58Google Scholar
  72. 72.
    Persaud KC (1999) A smart gas sensor for monitoring environmental changes in closed systems: results from the MIR space station. Sens Actuators B 2–3(55):118–126CrossRefGoogle Scholar
  73. 73.
    Nanto H, Yokoi Y, Mukai T, Fujioka J, Kusano E, Kinbara A, Douguchi Y (2000) Novel gas sensor using polymer-film-coated quartz resonator for environmental monitoring. Mater Sci Eng C 12:43–48CrossRefGoogle Scholar
  74. 74.
    Bissi L, Placidi P, Scorzoni A, Elmi I, Zampolli S (2007) Environmental monitoring system compliant with the IEEE 1451 standard and featuring a simplified transducer interface. Sen Actuators A 137:175–184CrossRefGoogle Scholar
  75. 75.
    Stuetz RM, Fenner RA, Engin G (1999) Characterisation of wastewater using an electronic nose. Water Res 33:442–452CrossRefGoogle Scholar
  76. 76.
    Stuetz RM, Georges S, Fenner RA, Hall SJ (1999) Monitoring wastewater BOD using a non-specific sensor array. J Chem Technol Biotechnol 74:1069–1074CrossRefGoogle Scholar
  77. 77.
    Gomez MJ, Gomez-Ramos MM, Aguera A, Mezcua M, Herrera S, Fernandez-Alba AR (2009) A new gas chromatography/mass spectrometry method for the simultaneous analysis of target and non-target organic contaminants in waters. J Chromatogr A 1216:4071–4082CrossRefGoogle Scholar
  78. 78.
    Regueiro J, Llompart M, Garcia-Jares C, Cela R (2009) Development of a solid-phase microextraction-gas chromatography-tandem mass spectrometry method for the analysis of chlorinated toluenes in environmental waters. J Chromatogr A 1216:2816–2824CrossRefGoogle Scholar
  79. 79.
    Taheri A, Noroozifar M, Khorasani-Motlagh M (2009) Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol-gel. J Electroanal Chem 628:48–54CrossRefGoogle Scholar
  80. 80.
    Colton RJ, Russell JN (2003) Making the world a safer place. Science 299:1324–1325CrossRefGoogle Scholar
  81. 81.
    Fainberg A (1992) Explosive detection for aviation security. Science 255:1531–1537CrossRefGoogle Scholar
  82. 82.
    Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54:487–500CrossRefGoogle Scholar
  83. 83.
    Harris CM (2002) The science of detecting terror. Anal Chem 74:127AGoogle Scholar
  84. 84.
    Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232CrossRefGoogle Scholar
  85. 85.
    Harper RJ, Furton KG (2007) Biological detection of explosives. In: Yinon J (ed) Counterterrorist detection techniques of explosives. Elsevier, New YorkGoogle Scholar
  86. 86.
    Yinon J (2003) Detection of explosives by electronic noses. Anal Chem 75:99A–105ACrossRefGoogle Scholar
  87. 87.
    Hill HH, Simpson G (1997) Capabilities and limitations of ion mobility spectrometry for field screening applications. Field Anal Chem Technol 1:119–134CrossRefGoogle Scholar
  88. 88.
    Sharma SK, Misra AK, Sharma B (2005) Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochim Acta A Mol Biomol Spectrosc 61:2404–2412CrossRefGoogle Scholar
  89. 89.
    Hallowell SF (2001) Screening people for illicit substances: a survey of current portal technology. Talanta 54:447–458CrossRefGoogle Scholar
  90. 90.
    Pinnaduwage LA, Ji H-F, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sens J 5(4):774–785CrossRefGoogle Scholar
  91. 91.
    Kong D, Qi Y, Zhou L, Lin B, Li Z, Zhu R, Chen C (2008) MEMS based sensors for explosive detection development and discussion. Proceedings of the 3rd IEEE int. conf. on nano/micro engineered and molecular systems, Sanya, China, pp 265–269Google Scholar
  92. 92.
    Van Neste CW, Senesac LR, Yi D, Thundat T (2008) Standoff detection of explosive residues using photothermal microcantilevers. Appl Phys Lett 92:134102CrossRefGoogle Scholar
  93. 93.
    Yi D, Greve A, Hales JH, Senesac LR, Davis ZJ, Nicholson DM, Boisen A, Thundat T (2008) Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges. Appl Phys Lett 93:154102CrossRefGoogle Scholar
  94. 94.
    Hsieh MD, Zellers ET (2004) Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal Chem 76:1885–1895CrossRefGoogle Scholar
  95. 95.
    Walt DR (2005) Electronic noses: wake up and smell the coffee. Anal Chem 77:45ACrossRefGoogle Scholar
  96. 96.
    Lu CJ, Whiting J, Sacks RD, Zellers ET (2003) Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Anal Chem 75:1400–1409CrossRefGoogle Scholar
  97. 97.
    Senesac LR, Dutta P, Datskos PG, Sepaniak MJ (2006) Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks. Anal Chim Acta 558:94–101CrossRefGoogle Scholar
  98. 98.
    Jaworski JW, Raorane D, Huh JH, Majumdar A, Lee SW (2008) Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 24:4938–4943CrossRefGoogle Scholar
  99. 99.
    Parmeter JE (2004) The challenge of standoff explosives detection. Proceedings of the 38th annual 2004 international Carnahan conference on security technology, IEEE Cat. No.04CH37572, New York, pp 355–358Google Scholar
  100. 100.
    Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA (1995) Vapor detection using resonating microcantilevers. Anal Chem 67:519–521CrossRefGoogle Scholar
  101. 101.
    Fair RB, Pamula VK, Pollack M (1997) MEMS-based explosive particle detection and remote particle stimulation. SPIE conference on detection and remediation technologies for mines and minelike targets, SPIE vol 3079, pp 671–679Google Scholar
  102. 102.
    Pamula VK, Fair RB (1999) Detection of nanogram explosive particles with a MEMS sensor. SPIE conference on detection and remediation technologies for mines and minelike targets, SPIE vol 3710, pp 321–327Google Scholar
  103. 103.
    Rajic S, Datskos PG, Datskou T, Marlar TA (1999) Ultra-responsive thermal sensors for the detection of explosives using Calorimetric Spectroscopy (CalSpec). SPIE conference on detection and remediation technologies for mines and minelike targets, SPIE vol 3710, pp 356–361Google Scholar
  104. 104.
    Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD (2003) A microsensor for trinitrotoluene vapour. Nature 425:424CrossRefGoogle Scholar
  105. 105.
    Pinnaduwage LA, Hedden DL, Gehl A, Boiadjiev VI, Hawk JE, Farahi RH, Thundat T, Houser EJ, Stepnowski S, McGill RA, Deel L, Lareau RT (2004) A sensitive, handheld vapor sensor based on microcantilevers. Rev Sci Instrum 75:4554–4557CrossRefGoogle Scholar
  106. 106.
    Van Neste CW, Senesac LR, Yi D, Thundat T (2008) Standoff detection of explosive residues using photothermal microcantilevers. Appl Phys Lett 92:134102CrossRefGoogle Scholar
  107. 107.
    Haider MR (2008) System-on-package low-power telemetry and signal conditioning unit for Biomedical Applications. Ph. D. Dissertation, Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, December 2008Google Scholar
  108. 108.
    Malan D, Fulford-Jones T, Welsh M, Moulton S (2004) Codeblue: an ad hoc sensor network infrastructure for emergency medical care. In: Proceeding of the international workshop on wearable and implantable body sensor networksGoogle Scholar
  109. 109.
    Jovanov E, Milenkovic A, Otto C, de Groen P, Johnson B, Warren S, Taibi G (2005) A WBAN system for ambulatory monitoring of physical activity and health status: applications and challenges. Proceedings of the 27th annual international conference of the IEEE engineering in medicine and biology society (EMBS), Shanghai, China, September, 2005Google Scholar
  110. 110.
    Catarinucci L, Cappelli M, Colella R, Tarricone L (2008) A novel low-cost multisensory-tag for RFID applications in healthcare. IEEE Microw Opt Technol Lett 50(11):2877–2880CrossRefGoogle Scholar
  111. 111.
    Chevrollier N, Golmie N (2005) On the use of wireless network technologies in healthcare environments. Proceedings of applications and services in wireless networks, Paris, France, June 2005Google Scholar
  112. 112.
    Golmie N, Cypher D, Rebala O (2005) Performance analysis of low rate wireless technologies for medical applications. Comput Commun 28(10):1255–1275Google Scholar
  113. 113.
    Golmie N, Cypher D, Rebala O (2005) Performance evaluation of low rate WPANs for sensors and medical applications. Comput Commun 28(10):1266–1275CrossRefGoogle Scholar
  114. 114.
    Jovanov E, Milenkovic A, Otto C, de Groen PC (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J Neuroeng Rehabil 2(6):6CrossRefGoogle Scholar
  115. 115.
    Fok C-L, Roman G-C, Lu C (2004) Efficient network exploration and fire detection using mobile agents in a wireless sensor network. ONR-MURI Review, Baltimore, MDGoogle Scholar
  116. 116.
    Stuetz RM, Fenner RA (1998) Electronic nose technology: a new tool for odour management. Water Qual Int 15–17Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Engineering ScienceSonoma State UniversityRohnert ParkUSA

Personalised recommendations