Introduction to Sensors and General Applications

  • Syed Kamrul Islam
  • Mohammad Rafiqul Haider


The prolific growth of sensors and sensor technologies has an increasingly dramatic impact in our daily life. Portable microsensors and wireless links have brought security, reliability, and even harmony with our environment. The emerging field of smart sensors and wireless sensor networks is the best example for wide popularity of sensors in the recent years.


Electrochemical Sensor Sensor Unit Monitoring Unit Thermoluminescent Dosimeter Digital Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stankovic JA, Cao Q, Doan T, Fang L, He Z, Ganti R, Lin S, Son S, Stoleru R, Wood A (2005) Wireless sensor networks for in-home health-care: potential and challenges. High confidence medical device software and systems (HCMDSS) workshop, 2–3 June, 2005, Philadelphia, PAGoogle Scholar
  2. 2.
    Yuce MR, Ng SWP, Myo NL, Lee CK, Khan JY, Liu W (2007) A MICS band wireless body sensor network. IEEE wireless communications and networking conference, 2007. WCNC 2007, pp 2473–2478, March 2007Google Scholar
  3. 3.
    Clifford KH, Robinson A, Miller DR, Davis MJ (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37Google Scholar
  4. 4.
    Horton RJ (2003) Sensor development: micro-analytical solutions for water monitoring applications, SAND2003-2575P, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  5. 5.
    Ashby CIH, Kelly MJ, Yelton WG, Pfeifer KB, Muron DJ, Einfeld W, Siegal MP (2002) Functionalized nanoelectrode arrays for in situ identification and quantification of regulated chemicals in water, Sandia National Lab LDRD Annual Report, p 364Google Scholar
  6. 6.
    DePriest KR, Griffin PJ (2003) Neutron contribution to CaF2:Mn thermoluminescent dosimeter response in mixed (n/γ) field environments. IEEE Trans Nucl Sci 50(6):2393–2398CrossRefGoogle Scholar
  7. 7.
    Chang J, Satuber M (1982) Thermoluminescence response of lithium flouride to energetic light ions. IEEE Trans Nucl Sci 29(6):1960–1965CrossRefGoogle Scholar
  8. 8.
    Matalucci RV, Esparza-Baca C, Jimenez RD (1995) Characterization, monitoring, and sensor technology catalogue, SAND95-3062, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  9. 9.
    Fischerauer G, Dickert FL, Sikorski R (1998) Telemetric surface acoustic wave chemical sensors. Proceedings of the 1998 IEEE International Frequency Control Symposium, pp 608–614, May 1998Google Scholar
  10. 10.
    Sandia National Laboratories (2002) μChemLab [online] December 9,
  11. 11.
    Ho CK, McGrath LK, Davis CE, Thomas ML, Wright JL, Kooser AS, Hughes RC (2003) Chemiresistor microsensors for in-situ monitoring of volatile organic compounds, final LDRD report. SAND2003-3410, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  12. 12.
    International Sensor Technology, Electrochemical Sensor, [online]
  13. 13.
    Weppner W (1992) Advanced principles of sensors based on solid state ionics. Mater Sci Eng 15(1):48–55CrossRefGoogle Scholar
  14. 14.
    Ivanov DV (2000) Advanced sensors for multifunctional applications. JOM-e 52(10)Google Scholar
  15. 15.
    Middelhoek S (2000) Celebration of the tenth transducers conference: the past, present, and future of transducer research and development. Sens Actuators A 82:2–23CrossRefGoogle Scholar
  16. 16.
    Wise KD, Angell JB (1971) A microprobe with integrated amplifiers for neurophysiology. Proceedings of the IEEE international solid-state circuits conference, pp 100–101Google Scholar
  17. 17.
    Samaun KD, Wise JB, Angell JB (1973) An IC piezoresistive pressure sensor for biomedical instrumentation. IEEE Trans Biomed Eng 20:101–109CrossRefGoogle Scholar
  18. 18.
    Wallis G, Pomerantz DI (1969) Field-assisted glass-metal sealing. J Appl Phys 40:3946CrossRefGoogle Scholar
  19. 19.
    Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Dev 26:1880–1886CrossRefGoogle Scholar
  20. 20.
    Hillegas WJ, Wise KD (1980) Inertial confinement fusion target structures produced using solid-state process technology. Abstracts of the 158th Meeting, Electrochemical Society, Hollywood, FL, pp 1249–1251, October 1980Google Scholar
  21. 21.
    Clark SK, Wise KD (1979) Pressure sensitivity in anisotropically-etched thin-diaphragm pressure sensors. IEEE Trans Electron Dev 26:1887–1896CrossRefGoogle Scholar
  22. 22.
    Sodagar AM, Najafi K, Wise KD, Ghovanloo M (2006) A fully-integrated CMOS power regulator for telemetry-powered implantable biomedical microsystems. Proceedings of the IEEE custom international circuits conference, September 2006Google Scholar
  23. 23.
    Wise KD (2005) Silicon microsystems for use in neuroscience and neural prostheses: interfacing with the central nervous system at the cellular level. IEEE Eng Med Biol Mag 24:22–29CrossRefGoogle Scholar
  24. 24.
    Chavan AV, Wise KD (2001) Batch-processed vacuum-sealed capacitive pressure sensors. IEEE J Microelectromech Syst 10:580–588CrossRefGoogle Scholar
  25. 25.
    Chang-Chien P, Wise KD (2002) A barometric pressure sensor with integrated reference pressure control using localized CVD. Proceedings of the North American solid-state sensor, actuator, and microsystems workshop, Hilton Head, SC, June 2002Google Scholar
  26. 26.
    Hammerschmidt D, Schnatz FV, Brockherde W, Hosticka BJ, Obermeier E (1993) A CMOS piezoresistive pressure sensor with on-chip programming and calibration. Proceedings of the IEEE international solid-state circuits conference, San Francisco, pp 128–129, February 1993Google Scholar
  27. 27.
    Ji J, Cho ST, Zhang Y, Najafi K, Wise KD (1992) An ultra miniature CMOS pressure sensor for a multiplexed cardiovascular catheter. IEEE Trans Electron Dev 39:2260–2267CrossRefGoogle Scholar
  28. 28.
    DeHennis A, Wise KD (2006) A fully-integrated multi-site pressure sensor for wireless arterial flow characterization. IEEE J Microelectromech Syst 15:678–685CrossRefGoogle Scholar
  29. 29.
    Liu C (2007) Recent developments in polymer MEMS. Adv Mater 19:3783–3790CrossRefGoogle Scholar
  30. 30.
    Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr 593:253CrossRefGoogle Scholar
  31. 31.
    Chiem N, Harrison DJ (1997) Micro-chip based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem 69:373CrossRefGoogle Scholar
  32. 32.
    Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435CrossRefGoogle Scholar
  33. 33.
    Goluch ED, Nam J-M, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryua KS, Barron AE, Mirkin C, Liu C (2006) A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6:1293–1299CrossRefGoogle Scholar
  34. 34.
    Engel J, Chen J, Fan Z, Liu C (2005) Polymer micromachined multimodal tactile sensors. Sens Actuators A 117:50CrossRefGoogle Scholar
  35. 35.
    Kim S-H, Engel J, Liu C, Jones D (2005) Texture classification using a polymer-based MEMS tactile sensor. J Micromech Microeng 15:912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Engineering ScienceSonoma State UniversityRohnert ParkUSA

Personalised recommendations