Advertisement

Genetics of Lactic Acid Bacteria

  • Monique Zagorec
  • Jamila Anba-Mondoloni
  • Anne-Marie Crutz-Le Coq
  • Marie-Christine Champomier-Vergès

Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

Keywords

Lactic Acid Bacterium Lactobacillus Plantarum None None Glycine Betaine Environmental Microbiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, J. W. (1987). Bacteriophage taxonomy in 1987. Microbiology Sciences, 4, 214–218.Google Scholar
  2. Alegre, M. T., Rodriguez, M. C., & Mesas, J. M. (2004). Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbioogy Letters, 241, 73–77.CrossRefGoogle Scholar
  3. Alpert, C. A., Crutz-Le Coq, A.-M., Malleret, C., & Zagorec, M. (2003). Characterization of a theta-type plasmid from Lactobacillus sakei: A potential basis for low-copy vectors in lactobacilli. Applied and Environmental Microbiology, 69, 5574–5584.CrossRefGoogle Scholar
  4. Aukrust, T., & Blom, H. (1992). Transformation of Lactobacillus strains used in meat and vegetable fermentation. Food Research International, 25, 253–261.CrossRefGoogle Scholar
  5. Berthier, F., Zagorec, M., Champomier-Vergès, M., Ehrlich, S. D., & Morel-Deville, F. (1996). High-frequency transformation of Lactobacillus sake by electroporation. Microbiology, 142, 1273–1279.Google Scholar
  6. Boekhorst, J., Siezen, R. J., Zwahlen, M. C., Vilanova, D., Pridmore, R. D., Mercenier, A., et al. (2004). The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology, 150, 3601–3611.CrossRefGoogle Scholar
  7. Bringel, F., Frey, L., & Hubert, J. C. (1989). Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid from Lactobacillus plantarum CCM1904 and its use in shuttle vector construction. Plasmid, 22, 193–202.CrossRefGoogle Scholar
  8. Bron, P. A., Benchimol, M. G., Lambert, J., Palumbo, E., Deghorain, M., Delcour, J., et al. (2002). Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Applied and Environmental Microbiology, 68, 5663–5670.Google Scholar
  9. Caldwell, S. L., McMahon, D. J., Oberg, C. J., & Broadbent, J. R. (1999). Induction and characterization of Pediococcus acidilactici temperate bacteriophage. Systematic and Applied Microbiology, 22, 514–519.Google Scholar
  10. Chaillou, S., Champomier-Vergès, M. C., Cornet, M., Crutz Le Coq, A.-M., Dudez, A.-M., et al. (2005). Complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nature Biotechnology, 23, 1527–1533.CrossRefGoogle Scholar
  11. Chen, J. D., & Morrison, D. A. (1988). Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene, 64, 155–164.CrossRefGoogle Scholar
  12. Cosby, W. M., Axelsson, L. T., & Dobrogosz, W. J. (1989). Tn917 transposition in Lactobacillus plantarum using the highly temperature-sensitive plasmid pTV1Ts as a vector. Plasmid, 22, 236–243.CrossRefGoogle Scholar
  13. Danielsen, M. (2002). Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid, 48, 98–103.CrossRefGoogle Scholar
  14. Doi, K., Zhang, Y., Nishizaki, Y., Umeda, A., Ohmomo, S., & Ogata, S. (2003). A comparative study and phage typing of silage-making Lactobacillus bacteriophages. Journal of Bioscience and Bioengineering, 95, 518–525.Google Scholar
  15. Ferain, T., Hobbs, J. N., Jr., Richardson, J., Bernard, N., Garmyn, D., Hols, P., et al. (1996). Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. Journal of Bacteriology, 178, 5431–5437.Google Scholar
  16. Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: The agents of open source evolution. Nature Reviews Microbiology, 3, 722–732.CrossRefGoogle Scholar
  17. Gevers, D., Danielsen, M., Huys, G., & Swings, J. (2003). Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Applied and Environmental Microbiology, 69, 1270–1275CrossRefGoogle Scholar
  18. Gevers, D., Huys, G., & Swings, J. (2003). In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiology Letters, 225, 125–130.CrossRefGoogle Scholar
  19. Giacomini, A., Squartini, A., & Nuti, M. P. (2000). Nucleotide sequence and analysis of plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) involved in pediocin A production. Plasmid, 43, 111–122.CrossRefGoogle Scholar
  20. Gonzalez, C. F., & Kunka, B. S. (1983). Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501. Applied and Environmental Microbiology, 46, 81–89.Google Scholar
  21. Gonzalez, C. F., & Kunka, B. S. (1986). Evidence for plasmid linkage of raffinose utilization and associated alpha-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Applied and Environmental Microbiology, 51, 105–109.Google Scholar
  22. Gonzalez, C. F., & Kunka, B. S. (1987). Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Applied and Environmental Microbiology, 53, 2534–2538.Google Scholar
  23. Gory, L., Montel, M. C., & Zagorec, M. (2001) Use of Green Fluorescent Protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiology Letters, 194, 127–133.CrossRefGoogle Scholar
  24. Graham, D. C., & McKay, L. L. (1985). Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Applied and Environmental Microbiology, 50, 532–534.Google Scholar
  25. Gury, J., Barthelmebs, L., & Cavin, J. F. (2004). Random transposon mutagenesis of Lactobacillus plantarum by using the pGh9:ISS1 vector to clone genes involved in the regulation of phenolic acid metabolism. Archives in Microbiology, 182, 337–345.CrossRefGoogle Scholar
  26. Halami, P. M., Ramesh, A., & Chandrashekar, A. (2000). Megaplasmid encoding novel sugar utilizing phenotypes, pediocin production and immunity in Pediococcus acidilactici C20. Food Microbiology, 17, 475–483.CrossRefGoogle Scholar
  27. Hammes, W. P., & Hertel, C. (1998). New development in meat starter culture. Meat Science, 49, S125–S128.CrossRefGoogle Scholar
  28. Hertel, C., Schmidt, G., Fischer, M., Oellers, K., & Hammes, W. P. (1998). Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Applied and Environmental Microbiology, 64, 1359–1365.Google Scholar
  29. Kakikawa, M., Yamakawa, A., Yokoi, K. J., Nakamura, S., Taketo, A., & Kodaira K. (2002) Characterization of the major tail protein gpP encoded by Lactobacillus plantarum phage phi gle. Journal of Biochemistry, Molecular Biology, and Biophysics, 6, 185–191.CrossRefGoogle Scholar
  30. Kakikawa, M., Yokoi, K. J., Kimoto, H., Nakano, M., Kawasaki, K., Taketo, A., et al. (2002). Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phi g1e. Gene, 299, 227–234.CrossRefGoogle Scholar
  31. Kanatani, K., & Oshimura, M. (1994). Plasmid-associated bacteriocin production by a Lactobacillus plantarum strain. Bioscience Biotechnology Biochemistry, 58, 2084–2086.Google Scholar
  32. Kantor, A., Montville, T. J., Mett, A., & Shapira, R. (1997). Molecular characterization of the replicon of the Pediococcus pentosaceus 43200 pediocin A plasmid pMD136. FEMS Microbiology Letters, 151, 237–244.CrossRefGoogle Scholar
  33. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., et al. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Science USA, 100, 1990–1995.CrossRefGoogle Scholar
  34. Langella, P., Zagorec, M., Ehrlich, S. D., & Morel-Deville, F. (1996). Intergeneric and intrageneric conjugal transfer of plasmids pAMβ 1, pIL205 and pIP501 in Lactobacillus sake. FEMS Microbiology Letters, 139, 51–56.Google Scholar
  35. Leer, R. J., Christiaens, H., Verstraete, W., Peters, L., Posno, M., & Pouwels, P. H. (1993). Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Molecular and GeneralGenetics, 239, 269–272.Google Scholar
  36. Leloup, L., Ehrlich, S. D., Zagorec, M., & Morel-Deville, F. (1997). Single cross-over integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Applied and Environmental Microbiology, 63, 2127–2133.Google Scholar
  37. Leuschner, R. G. K., Arendt, E. K., & Hammes, W. P. (1993). Characterization of a virulentLactobacillus sake phage PWH2. Applied Microbiology and Biotechnology, 39, 617–621.CrossRefGoogle Scholar
  38. Li, Y., Canchaya, C., Fang, F., Raftis, E., Ryan, K. A., van Pijkeren, J. P., et al. (2007). Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. Journal of Bacteriology, 189, 6128–6139.CrossRefGoogle Scholar
  39. Liu, M. L., Kondo, J. K., Barnes, M. B., & Bartholomew, D. T. (1988). Plasmid-linked maltose utilization in Lactobacillus ssp. Biochimie, 70, 351–355.CrossRefGoogle Scholar
  40. Lu, Z., Altermann, E., Breidt, F., Predki, P., Fleming, H. P., & Klaenhammer, T. R. (2005). Sequence analysis of the Lactobacillus plantarum bacteriophage PhiJL-1. Gene, 348, 45–54.CrossRefGoogle Scholar
  41. Lu, Z., Breidt, F. Jr., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, phiJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84, 225–235.Google Scholar
  42. Luchansky, J. B., Muriana, P. M., & Klaenhammer, T. R. (1988). Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Molecular Microbiology, 2, 637–646.CrossRefGoogle Scholar
  43. Maguin, E., Prévost, H., Ehrlich, S. D., & Gruss, A. (1996). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. Journal of Bacteriology, 178, 931–935.Google Scholar
  44. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., et al. (2006). Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Science USA, 103, 15611–15616.CrossRefGoogle Scholar
  45. Malleret, C., Lauret, R., Ehrlich, S. D., Morel-Deville, F., & Zagorec, M. (1998). Disruption of the sole ldhL gene in Lactobacillus sakei prevents the production of both l- and d-lactate. Microbiology, 144, 3327–3333.CrossRefGoogle Scholar
  46. Mayo, B., Gonzalez, B., Arca, P., & Suarez, J. E. (1994). Cloning and expression of the plasmid encoded beta-D-galactosidase gene from a Lactobacillus plantarum strain of dairy origin. FEMS Microbiology Letters, 122, 145–151.CrossRefGoogle Scholar
  47. Miller, K. W., Ray, P., Steinmetz, T., Hanekamp, T., & Ray, B. (2005). Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Letters in Applied Microbiology, 40, 56–62.CrossRefGoogle Scholar
  48. Motlagh, A., Bukhtiyarova, M., & Ray, B. (1994). Complete nucleotide sequence of pSMB74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Letters in Applied Microbiology, 18, 305–312.CrossRefGoogle Scholar
  49. Naumoff, D. G. (2001). Beta-fructosidase superfamily: Homology with some alpha-l-arabinases and beta-d-xylosidases. Proteins, 42, 66–76.CrossRefGoogle Scholar
  50. Nes, I.. F. (1984). Plasmid profiles of ten strains of Lactobacillus plantarum. FEMS Microbiology Letters, 21, 359–361.CrossRefGoogle Scholar
  51. Nes, I. F., Brendehaug, J., & von Husby, K. O. (1988). Characterization of the bacteriophage B2 of Lactobacillus plantarum ATCC 8014. Biochimie, 70, 423–427.CrossRefGoogle Scholar
  52. Osmanagaoglu, O., Beyatli, Y., & Gunduz, U. (2000). Cloning and expression of a plasmid-linked pediocin determinant trait of Pediococcus acidilactici F. Journal of Basic Microbiology, 40, 41–49.CrossRefGoogle Scholar
  53. Pérez Pulido, R., Abriouel, H., Ben Omar, N., Lucas López, R., Martínez Canamero, M., & Gálvez, A. (2006). Plasmid profile patterns and properties of pediococci isolated from caper fermentations. Journal of Food Protection, 69, 1178–1182.Google Scholar
  54. Rodríguez, M. C., Alegre, M. T., & Mesas, J. M. (2007). Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid, 58, 44–50.CrossRefGoogle Scholar
  55. Romero, D. A., & Klaenhammer, T. R. (1992). IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 58, 699–702.Google Scholar
  56. Ruiz-Barba, J. L., Piard, J. C., & Jiménez-Díaz, R. (1991). Plasmid profiles and curing of plasmids in Lactobacillus plantarum strains isolated from green olive fermentations. Journal of Applied Bacteriology, 71, 417–421.Google Scholar
  57. Shareck, J., Choi, Y., Lee, B., & Miguez, C. B. (2004). Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: Their characteristics and potential applications in biotechnology. Critical Reviews in Biotechnology, 24, 155–208.CrossRefGoogle Scholar
  58. Shay, B. J., Egan, A. F., Wright, M., & Rogers, P. J. (1988). Cystein metabolism in an isolate of Lactobacillus sake: Plasmid composition and cystein transport. FEMS Microbiology Letters, 56, 183–188.CrossRefGoogle Scholar
  59. Simon, L., Frémaux, C., Cenatiempo, Y., & Berjeaud, J.-M. (2002). Sakacin G, a new type of antilisterial bacteriocin. Applied and Environmental Microbiology, 68, 6416–6420.CrossRefGoogle Scholar
  60. Skaugen, M., Abildgaard, C. I., & Nes, I. F. (1997). Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Molecular and General Genetics, 253, 674–686.CrossRefGoogle Scholar
  61. Sørvig, E., Mathiesen, G., Naterstad, K., Eijsink, V. G., & Axelsson, L. (2005). High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology, 151, 2439–2449.CrossRefGoogle Scholar
  62. Stentz, R., Loizel, C., Malleret, C., & Zagorec, M. (2000). Development of genetic tools for Lactobacillus sakei: Disruption of the β -galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Applied and Environmental Microbiology, 66, 4272–4278.CrossRefGoogle Scholar
  63. Stentz, R., & Zagorec, M. (1999). Ribose utilization in Lactobacillus sakei: Analysis of the regulation of the rbs operon and putative involvement of a new transporter. Journal of Molecular Microbiology and Biotechnology, 1, 165–173.Google Scholar
  64. Takala, T. M., & Saris, P. E. (2002). A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Applied Microbiology and Biotechnology, 59, 467–471.CrossRefGoogle Scholar
  65. Takala, T. M., Saris, P. E., & Tynkkynen, S. S. (2003). Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG. Applied Microbiology and Biotechnology, 60, 564–570.Google Scholar
  66. Talon, R., Leroy, S., & Lebert, I. (2007). Microbial ecosystems of traditional fermented meat products: the importance of indigenous starters. Meat Science, 77, 55–62.CrossRefGoogle Scholar
  67. Van Reenen, C. A., Van Zyl, W. H., & Dicks, L. M. (2006). Expression of the immunity protein of plantaricin 423, produced by Lactobacillus plantarum 423, and analysis of the plasmid encoding the bacteriocin. Applied and Environmental Microbiology, 72, 7644–7651.CrossRefGoogle Scholar
  68. Vaughan, A., Eijsink, V. G., & Van Sinderen, D. (2003). Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Applied and Environmental Microbiology, 69, 7194–7203.CrossRefGoogle Scholar
  69. Ventura, M., Canchaya, C., Kleerebezem, M., de Vos, W. M., Siezen, R. J., & Brüssow, H. (2003). The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology, 316, 245–255.CrossRefGoogle Scholar
  70. Vogel, R. F., Becke-Schmid, M., Entgens, P., Gaier, W., & Hammes, W. P. (1992). Plasmid transfer and segregation in Lactobacillus curvatus LTH1432 in vitro and during sausage fermentations. Systematics and Applied Microbiology, 15, 129–136.Google Scholar
  71. Vogel, R. F., Lohmann, M., Weller, A. N., Hugas, M., & Hammes, W. P. (1991). Structural similarity and distribution of small cryptic plasmids of Lactobacillus curvatus and Lactobacillus sake. FEMS Microbiology Letters, 68, 183–190.CrossRefGoogle Scholar
  72. Wang, T. T., & Lee, B. H. (1997). Plasmids in Lactobacillus. Critical Reviews in Biotechnology, 17, 227–272.CrossRefGoogle Scholar
  73. West, C. A., & Warner, P. J. (1985). Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Applied and Environmental Microbiology, 50, 1319–1321.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Monique Zagorec
    • 1
  • Jamila Anba-Mondoloni
  • Anne-Marie Crutz-Le Coq
  • Marie-Christine Champomier-Vergès
  1. 1.Unité Flore Lactique et Environnement Carné UR309 INRADomaine de VilvertFrance

Personalised recommendations