Characteristics and Applications of Microbial Starters in Meat Fermentations

  • Pier Sandro Cocconcelli
  • Cecilia Fontana

Fermentation and drying are among the most ancient food preservation techniques used by man. Developed through the years, these processes prolonged the storage time of meats (and meat products) and brought favorable changes to their organoleptic properties, with respect to the original substrate.


Lactic Acid Bacterium Biogenic Amine Starter Culture Fermented Sausage Food Microbiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarestrup, F. M., Agersø, Y., Ahrens, P., Østergaard Jørgensen, J. C., Madsen, M., & Bogø Jensen, L. (2000). Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Veterinary Microbiology, 74, 353–364CrossRefGoogle Scholar
  2. Agvald-Ohman, C., Lund, B., & Edlun, C. (2004). Multiresistant coagulase-negative staphylococci disseminate frequently between intubated patient into a multidisciplinary intensive care unit. Critical Care, 8, 42–47.CrossRefGoogle Scholar
  3. Ahn, C., Collins-Thompson, D., Duncan, C., & Stiles, M. E. (1992). Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid, 27, 169–176.CrossRefGoogle Scholar
  4. Ammor, M. S., Gueimonde, M., Danielsen, M., Zagorec, M., van Hoek, A. H., de Los Reyes-Gavilán, C. G., et al. (2008). Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally-encoded transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Applied Environmental Microbiology (Epub ahead of print).Google Scholar
  5. Axelsson, L. (2004). Lactic acid bacteria: Classification and physiology. In S. Salminen, A. Ouwehand, & A. Von Wright (Eds.), Lactic acid bacteria: Microbiology and functional aspects (3rd ed.). New York: Marcel Dekker, Inc.Google Scholar
  6. Bacus, J. (1984). Utilization of microorganisms in meat processing: A handbook for meat plant operators. Research Studies, Letchworth (UK).Google Scholar
  7. Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61, 1–10.CrossRefGoogle Scholar
  8. Bannerman, T. L. (2003). Staphylococcus, Micrococcus, and other catalase-positive cocci that grow aerobically. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller, R. H. Yolken (Eds.), Manual of Clinical Microbiology (Vol. 5, pp. 384–404). Washington: American Society Microbiology.Google Scholar
  9. Barriere, C., Bruckner, R., Centeno, D., & Talon, R. (2002). Characterization of the katA gene encoding a catalase and evidence for at least a second catalase activity in Staphylococcus xylosus, bacteria used in food fermentation. FEMS Microbiology Letters, 216(2), 277–283.Google Scholar
  10. Barriere, C., Centeno, D., Lebert, A., Leroy-Setrin, S., Berdague’, J., & Talon, R. (2001a). Roles of superoxide dismutase and catalase of Staphylococcus xylosus in the inhibition of linoleic acid oxidation. \textit{FEMS Microbiology Letters, 201, 181–185.Google Scholar
  11. Barriere, C., Leroy-Sétrin, S., & Talon, R. (2001b). Characterization of catalase and superoxide dismutase in Staphylococcus carnosus 833 strain. Journal of Applied Microbiology, 91,514–519.CrossRefGoogle Scholar
  12. Beck, H., Hansen, A., & Lauritsen, F. (2002). Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus. Enzyme and Microbial Technology, 31, 94–101.CrossRefGoogle Scholar
  13. Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M. (2001). Effectiveness of a Lactobacillus sakei starter culture in the reduction of biogenic amine accumulation as a function of the raw material quality. Journal of Food Protection, 64, 367–373.Google Scholar
  14. Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M., & Vidal-Carou, M. (2000a). Reduction of biogenic amine formation using a negative amino acid-decarboxylase starter culture for fermentation of “Fuet” sausages. Journal of Food Protection, 63, 237–243.Google Scholar
  15. Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M. (2000b). Mixed starter cultures to control biogenic amine production in dry fermented sausages. Journal of Food Protection, 63,1556–1562.Google Scholar
  16. Bover-Cid, S., & Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53, 33–41.CrossRefGoogle Scholar
  17. Bover-Cid, S., Schoppen, S., Izquierdo-Pulido, M., & Vidal-Carou, M. C. (1999). Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Science 51, 305–311.CrossRefGoogle Scholar
  18. Buckenhüskes, H. J. (1994). Bacterial starter cultures for fermented sausages. Meat Focus International, 12, 497–500.Google Scholar
  19. Chaillou, S., Champomier-Verges, M. C., Cornet, M., Crutz-Le Coq, A. M., Dudez, A. M., Martin, V., et al. (2005). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nature Biotechnology, 23, 1527–1533.CrossRefGoogle Scholar
  20. Champomier-Verges, M. C., Marceau, A., Mera, T., & Zagorec, M. (2002). The pepR gene of Lactobacillus sakei is positively regulated by anaerobiosis at the transcriptional level. Applied and Environmental Microbiology, 68(8), 3873–3877.CrossRefGoogle Scholar
  21. Champomier-Verges, M. C., Zúñiga, M, Morel-Deville, F., Pérez-Martinez, G., Zagorec, M., & Ehrlich, S. D. (1999). Relationships between arginine degradation, pH and survival in Lactobacillus sakei. FEMS Microbiology Letters, 180, 297–304.CrossRefGoogle Scholar
  22. Cocconcelli, P. S., Cattivelli, D., & Gazzola, S. (2003). Gene transfer of vancomycin and tetracycline resistances among Enterococcus faecalis during cheese and sausage fermentation. International Journal of Food Microbiology, 88, 315–323.CrossRefGoogle Scholar
  23. Dordet-Frisoni, E., Talon R., &. Leroy, S. (2007). Physical and genetic map of the Staphylococcus xylosus C2a chromosome. FEMS Microbiology Letters, 266(2), 184–193.CrossRefGoogle Scholar
  24. EFSA The EFSA Journal. (2007). 587, 1–16 © European Food Safety Authority, 2007 Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA.Google Scholar
  25. Eijsink, V., & Axelsson, L. (2005). Bacterial lessons in sausages making. Nature Biotechnology, 23(12), 1494–1495.CrossRefGoogle Scholar
  26. Eitenmiller, R. R., Koehler, P. E., & Reagan, J. O. (1978). Tyramine in fermented sausages: factors affecting formation of tyramine and tyrosine decarboxylase. Journal of Food Science, 43,689–693.CrossRefGoogle Scholar
  27. Erkkilä, S., Suihko, M. L., Eerola, S., Petaja, E., & Mattila-Sandholm, T. (2001). Dry sausage fermented by Lactobacillus rhamnosus strains. International Journal of Food Microbiology, 64, 205–210.CrossRefGoogle Scholar
  28. Fadda, S., Oliver, G., & Vignolo, G. (2002). Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a sausage model system. Journal of Food Science, 67, 1179–1183.CrossRefGoogle Scholar
  29. Fadda, S., Vignolo, G., Aristoy, M. C., Oliver, G., & Toldrá, F. (2001a). Effect of curing conditions and Lactobacillus casei CRL705 on the hydrolysis of meat proteins. Journal of Applied Microbiology, 91(3), 478–487.CrossRefGoogle Scholar
  30. Fadda, S., Vignolo, G., & Oliver, G. (2001b). Tyramine degradation and tyramine/histamine production by lactic acid bacteria and Kocuria strains. Biotechnology Letters, 23, 2015–2019.CrossRefGoogle Scholar
  31. Fadda, S., Sanz, Y., Vignolo, G., Aristoy, M. C., Oliver, G., & Toldrà, F. (1999a). Hydrolysis of pork muscle sarcoplasmic proteins by Lactobacillus curvatus and Lactobacillus sakei. Applied and Environmental Microbiology, 65, 578–584.Google Scholar
  32. Fadda, S., Sanz, Y., Vignolo, G., Aristoy, M. C., Oliver, G., & Toldra, F. (1999b). Characterization of pork muscle protein hydrolysis caused by Lactobacillus plantarum. Applied and Environmental Microbiology, 65, 3540–3546.Google Scholar
  33. FAO. (2006). Probiotics in Food. Health and nutritional properties and guidelines for evaluation. FAO food and nutrition paper. 85.Google Scholar
  34. Fedtke, I., Kamps, A., Krismer, B., & Gotz, F. (2002). The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. Journal of Bacteriology, 184(23), 6624–6634.CrossRefGoogle Scholar
  35. Fontana, C., Cocconcelli, P. S., & Vignolo, G. (2005). Monitoring the bacterial population dynamics during fermentation of artisanal Argentinean sausages. International Journal of Food Microbiology, 103, 131–142.CrossRefGoogle Scholar
  36. Gardini, F., Tofalo, R., & Suzzi, G. (2003). A survey of antibiotic resistance in Micrococcaceae isolated from Italian dry fermented sausages. Journal of Food Protection, 66, 937–945.Google Scholar
  37. Gardini, F., Matruscelli, M., Crudele, M. A., Paparella, A., & Suzzi, G. (2002). Use of Staphylococcus xylosus as a starter culture in dried sausages: effect on biogenic amine content. Meat Science, 61, 275– 283.CrossRefGoogle Scholar
  38. Garrity, G. M., Bell, J. A. & Lilburn, T. G. (2004). Taxonomic Outline of the Prokaryotes. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. Release 5.0, May 2004. Springer-Verlag, NY.Google Scholar
  39. Gevers, D., Masco, L., Baert, L., Huys, G., Debevere, J., & Swings, J. (2003). Prevalence and diversity of tetracycline resistant lactic acid bacteria and their tet genes along the process line of fermented dry sausages. Systematic and Applied Microbiology, 26(2), 277–283.CrossRefGoogle Scholar
  40. Ghebremedhin, B., Layer, F., König, W. & König, B. (2008). Genetic classification and distinguishing of Staphylococcus species based on different partial gene sequences: gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene. Journal of Clinical Microbiology (In press).Google Scholar
  41. González-Fernández, C., Santos, E., Jaime, I., & Rovira, J. (2003). Influence of starter cultures and sugar concentrations on biogenic amine contents in chorizo dry sausage. Food Microbiology, 20, 275–284.CrossRefGoogle Scholar
  42. Halàsz, A., BaraÂth, A., Simon-Sarkadi, L. & Holzapfel, W. (1994). Biogenic amines and their production by micro-organisms in food. Trends in Food Science and Technology 5, 42±48.CrossRefGoogle Scholar
  43. Hammes, W. P., Bantleon, A., & Min, S. (1990). Lactic acid bacteria in meat fermentation. FEMS Microbiology Letters, 87, 165–173.CrossRefGoogle Scholar
  44. Hernández-Jover, T., Izquierdo-Pulido, M., Veciana-Noguéz, M., Mariné-Font, A., & Vidal-Carou, M. (1997a). Biogenic amine and polyamine contents in meat and meat products. Journal of Agricultural Food Chemistry, 45, 2098–2102.CrossRefGoogle Scholar
  45. Hernández-Jover, T., Izquierdo-Pulido, M., Veciana-Noguéz, M., Mariné-Font, A., & Vidal-Carou, M. (1997b). Effect of starters cultures on biogenic amine formation during sausages production. Journal of Food Protection, 60, 825–830.Google Scholar
  46. Hertel, C., Schmidt, G., Fischer, M., Oellers, K., & Hammes, W. P. (1998). Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677 Applied and Environmental Microbiology, 64(4), 1359–1365.Google Scholar
  47. Holley, R. A., & Blaszyk, M. (1997). Antibiotic challenge of meat starter cultures and effects upon fermentations. Food Research International, 30, 513–522.CrossRefGoogle Scholar
  48. Igarashi, T., Kono, Y., & Tanaka, K. (1996). Molecular cloning of manganese catalase from Lactobacillus plantarum. Journal of Biological Chemistry, 271, 29521–29524.CrossRefGoogle Scholar
  49. Incze, K. (1998). Dry fermented sausages. Meat Science 49 (Suppl 1) S169-S177.CrossRefGoogle Scholar
  50. Kailasapathy, K., & Rybka, S. (1997). L. acidophilus and Bifidobacterium spp.—their therapeutic potential and survival in yogurt. The Australian Journal of Dairy Technology, 52, 28–33.Google Scholar
  51. Kearney, L., Upton, M., & McLoughlin, A. (1990). Meat fermentations with immobilized lactic acid bacteria. Applied Microbiology and Biotechnology, 33, 648–651.CrossRefGoogle Scholar
  52. Kenneally, M., Fransen, G., Grau, H., O’Neill, E., & Arendt, K. (1999). Effects of environmental conditions on microbial proteolysis in a pork myofibril model system. Journal of Applied Microbiology, 87, 794–803.CrossRefGoogle Scholar
  53. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., et al. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, U S A. 100, 1990–1995.CrossRefGoogle Scholar
  54. Klingberg, D., Axelsson, L., Naterstad, K., Elsser, D., & Budde, B. (2005). Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. International Journal of Food Microbiology, 105, 419–431.CrossRefGoogle Scholar
  55. Komprda, T., Smêlá, D., Pechova’, P., Kalhotka, L., Stencl, J., & Klejdus, B. (2004). Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages. Meat Science 67, 607– 616.CrossRefGoogle Scholar
  56. Kuipers, P., Buist, G., & Kok, J. (2000). Current strategies for improving food bacteria. Research in Microbiology, 151, 815–822.CrossRefGoogle Scholar
  57. Kwok, A. Y., & Chow, A. W. (2003). Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. International Journal of Systematic Evolutionary Microbiology, 53, 87–92.CrossRefGoogle Scholar
  58. Larrouture, C., Ardaillon, V., Pepin, M., & Montel, C. (2000). Ability of meat starter cultures to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiology, 17, 563–570.CrossRefGoogle Scholar
  59. Leroy, F., Verluyten, J., & De Vuyst, L. (2006). Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology, 106, 270–285.CrossRefGoogle Scholar
  60. Lin, C. F., Fung, Z. F., Wu, C. L., & Chung, T. C. (1996). Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid, 36, 116–124.CrossRefGoogle Scholar
  61. Lücke, K. (2000). Utilization of microbes to process and preserve meat. Meat Science, 56,105–115.CrossRefGoogle Scholar
  62. Lücke, K. (1985). Fermented sausages. In B. J. Wood (Ed.), Microbiology of fermented foods (pp. 41–83). London: Elsevier.Google Scholar
  63. Martuscelli, M., Crudele, A., Gardini, F., & Suzzi, G. (2000). Biogenic amine formation and oxidation by Staphylococcus xylosus from artisanal fermented sausages. Letters and Applied Microbiology, 31, 228–232.CrossRefGoogle Scholar
  64. Mauriello, G., Casaburi, A., Blaiotta, G., & Villani, F. (2004). Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 67, 49–158.CrossRefGoogle Scholar
  65. Molly, K., Demeyer, D., Johansson, G., Raemaekers, M., Ghistelinck, M., & Geenen, I. (1997). The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project Food Chemistry, 59(4), 539–545.Google Scholar
  66. Muthukumarasamy, P., & Holley, R. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111, 164–169CrossRefGoogle Scholar
  67. Niinivaara, F. (1955). Über den Einfluss von Bacterienreinkulturen auf die Reifung und Umrötung der Rohwurst. In Acta Agralia Fennica, 84, 1–128.Google Scholar
  68. Noonpakdeea, W., Pucharoen, K., Valyasevi, R., & Panyim, S. (1996). Molecular cloning, DNA sequencing and expression of catalase gene of Lactobacillus sake SR911. Journal of Molecular Biology and Biotechnology, 4, 229–235.Google Scholar
  69. Olesen, P., Strunge Meyer, A., & Stahnke, L. (2004). Generation of flavour compounds in fermented sausages—the influence of curing ingredients, Staphylococcus starter culture and ripening time. Meat Science, 66, 675–687.CrossRefGoogle Scholar
  70. Papamanoli, E., Tzanetakis, N., Litopoulou-Tzanetaki, E., & Kotzekidou, P. (2003). Characterization of lactic acid bacteria isolated from a Greek dry fermented sausage in respect of their technological and probiotic properties. Meat Science, 65, 859–867.CrossRefGoogle Scholar
  71. Parente, E., Martuscelli, M., Gardini, F., Grieco, S., Crudele, M. A., & Suzzi, G. (2001). Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. Journal of Applied Microbiology, 90 (6), 882–891.CrossRefGoogle Scholar
  72. Pennacchia, C., Ercolini, D., Blaiotta, G., Pepe, O., Mauriello, G., & Villani, F. (2004). Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Science, 67, 309–317.CrossRefGoogle Scholar
  73. Pereira, C. I., Barreto Crespo, M. T., & San Romão, M. V. (2001). Evidence for proteolytic activity and biogenic amines production in Lactobacillus curvatus and L. homohiochii. International Journal of Food Microbiology 68(3), 211–216.CrossRefGoogle Scholar
  74. Place, R., Hiestand, D., Gallmann, H. R., & Teuber, M. (2003). Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheese. Systematic Applied Microbiology, 26, 30–37.CrossRefGoogle Scholar
  75. Planchon, S., Chambon, C., Desvaux, M., Chafsey, I., Leroy, S., Talon, R., et al. (2007). Proteomic analysis of cell envelope proteins from Staphylococcus xylosus C2a. Journal of Proteomics Research, Submitted.Google Scholar
  76. Planchon, S. (2006). Aptitude de Staphylococcus carnosus et Staphylococcus xylosus à former des biofilms- Etude d’une souche biofilm positif par une approuche protèomique. These de Docteur de l’Universitè Blaise Pascal, Clemont Ferrand II.Google Scholar
  77. Rosenstein, R., Nerz, C., Resch, A., & Götz, F. (2005). Comparative genome analysis of staphylococcal species. 2nd European Conference on prokaryotic genomes. Prokagen.Google Scholar
  78. Sanz, Y., & Toldrá, F. (2002). Purification and characterization of an arginine aminopeptidase from Lactobacillus sakei. Applied and Environmental Microbiology, 68(4), 1980–1987.CrossRefGoogle Scholar
  79. Sanz, Y., Fadda, S., Vignolo, G., Aristoy, C., Oliver, G., & Toldrá, F. (1999). Hydrolysis of muscle myofibrillar proteins by Lactobacillus curvatus and Lactobacillus sakei. International Journal of Food Microbiology, 53, 115–125.CrossRefGoogle Scholar
  80. Shah, N. P. (2000). Probiotic bacteria: Selective enumeration and survival in dairy foods. Journal of Dairy Science, 83(4), 894–907.CrossRefGoogle Scholar
  81. Shah, N. P., & Ravula, R. (2000). Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Australian Journal of Dairy Technology, 55(3), 139–144.Google Scholar
  82. Shalaby, A. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29(7), 675–690.CrossRefGoogle Scholar
  83. Spergser, J., Wieser, M., Taubel, M., Rossello-Mora, R. A., Rosengarten, R., & Busse, H. J. (2003). Staphylococcus nepalensis sp. nov., isolated from goats of the Himalayan region. International Journal of Systematic Evolutionary Microbiology, 53, 2007–2011.CrossRefGoogle Scholar
  84. Stahnke, H., Holck, A., Jensen, A., Nilsen, A., & Zanardi,. E. (2002). Maturity acceleration of Italian dried sausage by Staphylococcus carnosus—relationship between maturity and flavor compounds. Journal of Food Science, 67, 1914–1921.CrossRefGoogle Scholar
  85. Suzzi, G., & Gardini, F. (2003). Biogenic amines in dry fermented sausages: a review. International Journal of Food Microbiology, 88, 41–54.CrossRefGoogle Scholar
  86. Talón, D., Deliere, E., & Bertrand, X. (2002). Characterization of methicillin-resistant Staphylococcus aureus strains susceptible to tobramycin. International Journal of Antimicrobial Agents, 20(3), 174–179.CrossRefGoogle Scholar
  87. Talón, R., Walter, D., Chartier, S., Barriere, C., & Montel, M. (1999). Effect of nitrate and incubation conditions on the production of catalase and nitrate reductase by staphylococci. International Journal of Food Microbiology, 52, 47–50.CrossRefGoogle Scholar
  88. Tannock, G. W., Luchansky, J. B., Miller, L., Connell, H., Thode-Andersen, S., & Mercer, A. (1994). Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100–63. Plasmid, 31, 60–71.CrossRefGoogle Scholar
  89. Teuber, M., & Perreten, V. (2000). Role of milk and meat products as vehicles for antibiotic-resistant bacteria. Acta Veterinaria Scandinavica, (Suppl. 93), discussion 111–7, 75–87.Google Scholar
  90. Työppönen, S., Petäjä, E., & Mattila-Sandholm, T. (2003). Bioprotectives and probiotics for dry sausages. International Journal of Food Microbiology, 83, 233–244.CrossRefGoogle Scholar
  91. Vandekerckove, P. (1977). Amines in dry fermented sausage: a research note. Journal of Food Science, 42, 283–285.CrossRefGoogle Scholar
  92. Vergnais, L., Masson, F., Montel, M. C., Berdague’, J. L., & Talon, R. (1998). Evaluation of solid-phase microextraction for analysis of volatile metabolites produced by staphylococci. Journal of Agricultural and Food Chemistry, 46, 228–234.CrossRefGoogle Scholar
  93. Vernozy-Rozand, C., Mazuy, C., Prevost, G., Lapeyre, C., Bes, M., Brun, Y., et al. (1996). Enterotoxin production by coagulase-negative staphylococci isolated from goat’s milk and cheese. International Journal of Food Microbiology, 30(3), 271–280.CrossRefGoogle Scholar
  94. Vogel, R. F., Becke-Schmid, M., Entgens, P., Gaier, W., & Hammes, W. (1992). Plasmid transfer and segregation in Lactobacillus curvatus LTH1432 in vitro and during sausage fermentations. Systematic and Applied Microbiology, 15, 129–136.Google Scholar
  95. Wagner, E., Doskar, J., & Gotz, F. (1998). Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology, 144, 509–517.CrossRefGoogle Scholar
  96. Wielders, C., Vriens, M., Brisse, S., de Graaf-Miltenburg, L., Troelstra, A., Fleer, A., Schmitz, F., Verhoof, J., & Fluit, A. (2001). Evidence for in vivo transfer of mecA DNA between strains of Staphylococcus aureus. Lancet, 357, 1674–1675.CrossRefGoogle Scholar
  97. Witte, W. (2000). Selective pressure by antibiotic use in livestock. International Journal of Antimicrobial Agents, 16, S19–S24.CrossRefGoogle Scholar
  98. Zúríga, M., Miralles, M., & Pérez- Martínez, G. (2002). The product of arcR, the sixth gene of the arc peron of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Applied Environmental Microbiology, 68(12), 6051–6058.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pier Sandro Cocconcelli
    • 1
  • Cecilia Fontana
  1. 1.Istituto di Microbiologia, Centro Ricerche BiotecnologicheUniversità Cattolica del Sacro CuoreItaly

Personalised recommendations