Molecular Methods for Identification of Microorganisms in Traditional Meat Products

  • Luca Cocolin
  • Paola Dolci
  • Kalliopi Rantsiou

Traditional fermentations are those that have been used for centuries and even pre-date written historical records. Fermentation processes have been developed to upgrade plant and animal materials, to yield a more acceptable food, to add flavor, to prevent the growth of pathogenic and spoilage microorganisms, and to preserve food without refrigeration (Hesseltine & Wang, 1980). Among fermented foods, sausages are the meat products with a longer history and tradition. It is often assumed that sausages were invented by the Sumerians, in what is Iraq today, around 3000 BC. Chinese sausage làcháng, which consisted of goat and lamb meat, was first mentioned in 589 BC. Homer, the poet of The Ancient Greece, mentioned a kind of blood sausage in the Odyssey (book 20, verse 25), and Epicharmus (ca. 550 BC–ca. 460 BC) wrote a comedy entitled “The Sausage”.


Lactic Acid Bacterium Meat Product Environmental Microbiology Fermented Sausage Food Microbiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S. F., Madden, T. L., Shaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Research, 25, 3389–3402.CrossRefGoogle Scholar
  2. Ammor, S., Rachman, C., Chaillou, S., Prevost, H., Dousset, X., Zagorec, M., et al. (2005). Phenotypic and genotypic identification of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. Food Microbiology, 22, 373–382.CrossRefGoogle Scholar
  3. Ampe, F., Ben Omar, N., Moizan, C., Wacher, C., & Guyot, J. P. (1999). Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Applied and Environmental Microbiology, 65, 5464–5473.Google Scholar
  4. Andrighetto, C., Zampese, L., & Lombardi, A. (2001). RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy). Letter in Applied Microbiology, 33, 26–30.CrossRefGoogle Scholar
  5. Aymerich, T., Martin, B., Garriga, M., & Hugas, M. (2003). Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Applied and Environmental Microbiology, 69, 4583–4594.CrossRefGoogle Scholar
  6. Aymerich, T., Martin, B., Garrica, M., Vidal-Carou, M. C., Bover-Cid, S., & Hugas, M. (2006). Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. Journal of Applied Microbiology, 100, 40–49.CrossRefGoogle Scholar
  7. Bacus, J. N. (1986). Fermented meat and poultry products. In A. M. D. Pearson (Ed.), Advances in meat and poultry microbiology (pp. 123–164). London: Macmillan.Google Scholar
  8. Baruzzi, F., Matarante, A., Caputo, L., & Morea, M. (2006). Molecular and physiological characterization of natural microbial communities isolated from a traditional Southern Italian processed sausages. Meat Science, 72, 261–269.CrossRefGoogle Scholar
  9. Berthier, F., & Ehrlich, S. D. (1998). Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiology Letters, 161, 97–106.CrossRefGoogle Scholar
  10. Berthier, F., & Ehrlich, S. D. (1999). Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA. International Journal of Systematic Bacteriology, 49, 997–1007.Google Scholar
  11. Blaiotta, G., Casaburi, A., & Villani, F. (2005). Identification and differentiation of Staphylococcus carnosus and Staphylococcus simulans by species-specific PCR assays of sodA genes. Systematic and Applied Microbiology, 28, 519–526.CrossRefGoogle Scholar
  12. Blaiotta, G., Ercolini, D., Mauriello, G., Salzano, G., & Villani, F. (2004). Rapid and reliable identification of Staphylococcus equorum by a species-specific PCR assay targeting the sodA gene. Systematic and Applied Microbiology, 27, 696–702.CrossRefGoogle Scholar
  13. Blaiotta, G., Pennacchia, C., Ercolini, D., Moschetti, G., & Villani, F. (2003). Combining denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S-23S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages. Systematic and Applied Microbiology, 26, 423–433.CrossRefGoogle Scholar
  14. Blaiotta, G., Pennacchia, C., Parente, E., & Villani, F. (2003). Design and evaluation of specific PCR primers for rapid and reliable identification of Staphylococcus xylosus strains isolated from dry fermented sausages. Systematic and Applied Microbiology, 26, 601–610.CrossRefGoogle Scholar
  15. Blaiotta, G., Pennacchia, C., Villani, F., Ricciardi, A., Tofalo, R., & Parente, E. (2004). Diversity and dynamics of communities of coagulase-negative staphylococci in traditional fermented sausages. Journal of Applied Microbiology, 97, 271–284.CrossRefGoogle Scholar
  16. Bottari, B., Ercolini, D., Gatti, M., & Neviani, E. (2006). Application of FISH technology for microbiological analysis: Current state and prospects. Applied Microbiology and Biotechnology, 73, 485–494.CrossRefGoogle Scholar
  17. Caetono-Anollés, G. (1993). Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods and Applications, 3, 85–94.Google Scholar
  18. Cocolin, L., Bisson, L. F., & Mills, D. A. (2000). Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiology Letters, 189, 81–87.CrossRefGoogle Scholar
  19. Cocolin, L., Diez, A., Urso, R., Rantsiou, K., Comi, G., Bergmaier, I., et al. (2007). Optimization of conditions for profiling bacterial populations in food by culture-independent methods. International Journal of Food Microbiology, 20, 400–409.Google Scholar
  20. Cocolin, L., Manzano, M., Aggio, D., Cantoni, C., & Comi, G. (2001). A novel polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages. Meat Science, 57, 59–64.CrossRefGoogle Scholar
  21. Cocolin, L., Manzano, M., Cantoni, C., & Comi, G. (2000). Development of a rapid method for the identification of Lactobacillus spp. isolated from naturally fermented Italian sausage using a polymerase chain reaction—temperature gradient gel electrophoresis. Letters in Applied Microbiology, 30, 126–129.CrossRefGoogle Scholar
  22. Cocolin, L., Manzano, M., Cantoni, C., & Comi, G. (2001). Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Applied and Environmental Microbiology, 67, 5113–5121.CrossRefGoogle Scholar
  23. Cocolin, L., Rantsiou, K., Iacumin, L., Urso, R., Cantoni, C., & Comi, G. (2004). Study of the ecology of fresh sausages and characterization of populations of lactic acid bacteria by molecular methods. Applied and Environmental Microbiology, 70, 1883–1894.CrossRefGoogle Scholar
  24. Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., & Comi, G. (2006a). Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Research, 6, 692–701.CrossRefGoogle Scholar
  25. Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., & Comi, G. (2006b). Multiphasic approach to study the bacterial ecology of fermented sausages inoculated with a commercial starter culture. Applied and Environmental Microbiology, 72, 942–945.CrossRefGoogle Scholar
  26. Collins, M. D., Rodriguez, U., Ash, C., Aguirre, M., Farrow, J. E., Martinezmurcia, A., et al. (1991). Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse-transcriptase sequencing of 16S ribosomal-RNA. FEMS Microbiology Letters, 77, 5–12.CrossRefGoogle Scholar
  27. Comi, G., Urso, R., Iacumin, L., Rantsiou, K., Cattaneo, P., Cantoni, C., et al. (2005). Characterization of naturally fermented sausages produced in the North East of Italy. Meat Science, 69, 381–392.CrossRefGoogle Scholar
  28. Coppola, R., Iorizzo, M., Saotta, R., Sorrentino, E., & Grazia, L. (1997). Characterization of micrococci and staphylococci isolated from soppressata molisana, a Southern Italy fermented sausage. Food Microbiology, 14, 47–53.CrossRefGoogle Scholar
  29. Corbiere Morot-Bizot, S., Leroy, S., & Talon, R. (2006). Staphylococcal community of a small unit manufacturing traditional dry fermented sausages. International Journal of Food Microbiology, 108, 210–217.CrossRefGoogle Scholar
  30. Corbiere Morot-Bizot, S., Leroy, S., & Talon, R. (2007). Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages. Journal of Applied Microbiology, 102, 238–244.CrossRefGoogle Scholar
  31. Corbiere Morot-Bizot, S., Talon, R., & Leroy, S. (2004). Development of a multiplex PCR for the identification of Staphylococcus genus and four staphylococcal species isolated from food. Journal of Applied Microbiology, 97, 1087–1094.CrossRefGoogle Scholar
  32. Corich, V., Mattiazzi, A., Soldati, E., Carraro, A., & Giacomini, A. (2005). Sau-PCR, a novel amplification technique for genetic fingerprinting of microorganisms. Applied and Environmental Microbiology, 71, 6401–6406.CrossRefGoogle Scholar
  33. Couto, I., Pereira, S., Miragaia, M., Sanches, I. S., & de Lancastre, H. (2001). Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. Journal of Clinical Microbiology, 39, 3099–3103.Google Scholar
  34. Dahllof, I., Baillie, H., & Kjelleberg, S. (2000). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Applied and Environmental Microbiology, 66, 3376–3380.CrossRefGoogle Scholar
  35. Demeyer, D. I. (1982). Stoichiometry of dry sausage fermentation. Antonie Leeuwenhoek, 48, 414–416.CrossRefGoogle Scholar
  36. Demeyer, D. I., Verplaetse, A., & Gistelink, M. (1986). Fermentation of meat: An integrated process. Belgian Journal of Food Chemistry and Biotechnology, 41, 131–140.Google Scholar
  37. Di Maria, S., Basso, A. L., Santoro, E., Grazia, L., & Coppola, R. (2002). Monitoring of Staphylococcus xylosus DSM 20266 added as starter during fermentation and ripening of soppressata molisana, a typical Italian sausage. Journal of Applied Microbiology, 92, 158–164.Google Scholar
  38. Ercolini, D. (2004). PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food. Journal of Microbiological Methods, 56, 297–314.CrossRefGoogle Scholar
  39. Ercolini, D., Hill, P. J., & Dodd, E. R. (2003). Bacterial community structure and location in Stilton cheese. Applied and Environmental Microbiology, 69, 3540–548.CrossRefGoogle Scholar
  40. Ercolini, D., Moschetti, G., Blaiotta, G., & Coppola, S. (2001a). Behavior of variable V3 region from 16S rDNA of important lactic acid bacteria in denaturing gradient gel electrophoresis. Current Microbiology, 42, 199–202.CrossRefGoogle Scholar
  41. Ercolini, D., Moschetti, G., Blaiotta, G., & Coppola, S. (2001b). The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of natural whey cultures from water-buffalo Mozzarella cheese production: Bias of “culture dependent” and “culture independent” approaches. Systematic and Applied Microbiology, 24, 610–617.CrossRefGoogle Scholar
  42. Fadda, S., Sanz, Y., Vignolo, G., Aristoy, M.-C., Oliver, G., & Toldrà, F. (1999a). Hydrolysis of pork muscle sarcoplasmatic proteins by Lactobacillus curvatus and Lactobacillus sake. Applied and Environmental Microbiology, 65, 578–584.Google Scholar
  43. Fadda, S., Sanz, Y., Vignolo, G., Aristoy, M.-C., Oliver, G., & Toldrà, F. (1999b). Characterization of muscle sarcoplasmatic and myofibrillar protein hydrolysis caused by Lactobacillus plantarum. Applied and Environmental Microbiology, 65, 3540–3546.Google Scholar
  44. Ferris, M. J., Muyzer, G., & Ward, D. M. (1996). Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology, 62, 340–346.Google Scholar
  45. Flores, M., Durà, M.-A., Marco, A., & Toldrà, F. (2004). Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science, 68, 439–446.CrossRefGoogle Scholar
  46. Fontana, C., Cocconcelli, P. S., & Vignolo, G. (2005). Monitoring the bacterial population dynamics during fermentation of artisanal Argentinean sausages. International Journal of Food Microbiology, 103, 131–142.CrossRefGoogle Scholar
  47. Fontana, C., Vignolo, G., & Cocconcelli, P. S. (2005). PCR-DGGE analysis for the identification of microbial populations from Argentinean dry fermented sausages. Journal of Microbiological Methods, 63, 254–263.CrossRefGoogle Scholar
  48. Forsman, P., Tilsala-Timisijarvi, A., & Alatossava, T. (1997). Identification of the staphylococcal and streptococcal causes of the bovine mastitis using 16S–23S rRNA spacer regions. Microbiology, 143, 3491–3500.Google Scholar
  49. Garcia-Varona, M., Santos, E. M., Jaime, I., & Rovira, J. (2000). Characterization of Micrococcaceae isolated from different varieties of chorizo. International Journal of Food Microbiology, 54, 189–195.CrossRefGoogle Scholar
  50. Gevers, D., Huys, G., & Swings, J. (2001). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiology Letters, 205, 31–36.CrossRefGoogle Scholar
  51. Gilson, E., Clement, J. M., Brutlag, D., & Hofnung, M. (1984). A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO Journal, 3, 1417–1421.Google Scholar
  52. Gory, L., Millet, L., Godon, J. J., & Montel, M. C. (1999). Identification of Staphylococcus carnosus and Staphylococcus warneri isolated from meat by florescent in situ hybridization with 16S-targeted oligonucleotide probes. Systematic and Applied Microbiology, 22, 225–228.Google Scholar
  53. Greco, M., Mazzette, R., De Santis, E. P. L., Corona, A., & Cosseddu, A. M. (2005). Evolution and identification of lactic acid bacteria isolated during the ripening of Sardinian sausages. Meat Science, 69, 733–739.Google Scholar
  54. Hammes, W. P., Bantleon, A., & Min, S. (1990). Lactic acid bacteria in meat fermentation. FEMS Microbiology Reviews, 87, 165–174.CrossRefGoogle Scholar
  55. Hammes, W. P., & Knauf, H. J. (1994). Starters in processing of meat products. Meat Science, 36, 155–168.CrossRefGoogle Scholar
  56. Hertel, C., Ludwig, W., Obst, M., Vogel, R. F., Hammes, W. P., & Schleifer, K. H. (1991). 23S rRNA-targeted oligonucleotide probes for the rapid identification of meat lactobacilli. Systematic and Applied Microbiology, 14, 173–177.Google Scholar
  57. Hesseltine, C. W., & Wang, H. L. (1980). The importance of traditional fermented foods. Bioscience, 30, 402–404.CrossRefGoogle Scholar
  58. Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.Google Scholar
  59. Iacumin, L., Comi, G., Cantoni, C., & Cocolin, L. (2006a). Molecular and technological characterization of Staphylococcus xylosus isolated from Italian naturally fermented sausages by RAPD, Rep-PCR and Sau-PCR analysis. Meat Science, 74, 281–288.CrossRefGoogle Scholar
  60. Iacumin, L., Comi, G., Cantoni, C., & Cocolin, L. (2006b). Ecology and dynamics of coagulase-negative cocci isolated from naturally fermented Italian sausages. Systematic and Applied Microbiology, 29, 480–486.CrossRefGoogle Scholar
  61. Jensen, M. A., Webster, J. A., & Strauss, N. (1993). Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer region polymorphisms. Applied and Environmental Microbiology, 59, 945–952.Google Scholar
  62. Klijn, N., Weerkamp, A. H., & de Vos, W. M. (1991). Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Applied and Environmental Microbiology, 57, 3390–3393.Google Scholar
  63. Kurtzman, C. P., & Robnett, C. J. (1997). Identification of clinically important ascomycetous yeast based on nucleotide divergence in the 5’ and of the large-subunit (26S) ribosomal DNA gene. Journal of Clinical Microbiology, 35, 1216–1223.Google Scholar
  64. Kurtzman, C. P.., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequence. Antonie van Leeuwenhoek 73, 331–371.CrossRefGoogle Scholar
  65. Lane, D. J. (1991). 16S/23S sequencing. In E. Stackebrandt, & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester: John Wiley & Sons.Google Scholar
  66. Lee, J., Jang, J., Kim, B., Kim, J., Jeong, G., & Han, H. (2004). Identification of Lactobacillus sakei and Lactobacillus curvatus by multiplex PCR-based restriction enzyme analysis. Journal of Microbiological Methods, 59, 1–6.CrossRefGoogle Scholar
  67. Lerche, M., & Reuter, G. (1960). A contribution to the method of isolation and differentation of aerobic “lactobacilli” (Genus Lactobacillus Beijerinck). Archiv fur Hygiene und Bakteriologie, 179, 354–370.Google Scholar
  68. Lücke, F. K. (1974). Fermented sausages. In B. J. B. Wood (Ed.), Microbiology of fermented foods (pp. 41–49). London: Applied Science Publishers.Google Scholar
  69. Lücke, F. K. (2000). Utilization of microbes to process and preserve meat. Meat Science, 56, 105–115.CrossRefGoogle Scholar
  70. Martin, B., Garriga, M., Hugas, M., Bover-Cid, S., Veciana-Nogues, M. T, & Aymerich, T. (2006). Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. International Journal of Food Microbiology, 107, 148–158.CrossRefGoogle Scholar
  71. Martin, B., Jofré, A., Garriga, M., Pla, M., & Aymerich, T. (2006). Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Applied and Environmental Microbiology, 72, 6040–6048.CrossRefGoogle Scholar
  72. Mendoza, M., Meugnier, H., Bes, M., Etienne, J., & Freney, J. (1998). Identification of Staphylococcus species by 16S–23S rDNA intergenic spacer PCR analysis. International Journal of Systematic Bacteriology, 48, 1049–105.CrossRefGoogle Scholar
  73. Morot-Bizot, S., Talon, R., & Leroy-Setrin, S. (2003). Development of specific primers for a rapid and accurate identification of Staphylococcus xylosus, a species used in food fermentation. Journal of Microbiological Methods, 55, 279–286.Google Scholar
  74. Muyzer, G., De Waal, E. D., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.Google Scholar
  75. Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek, 73, 127–141.CrossRefGoogle Scholar
  76. Nissen, H., & Dainty, R. (1995). Comparsion of the use of rRNA probes and conventional methods in identifying strains of Lactobacillus sake and L. curvatus isolated from meat. International Journal of Food microbiology 25, 311–315.CrossRefGoogle Scholar
  77. Pennacchia, C., Vaughan, E. E., & Villani, F. (2006). Potential probiotic Lactobacillus strains from fermented sausages: Further investigations on their probiotic properties. Meat Science, 73, 90–101.CrossRefGoogle Scholar
  78. Pontes, S. D., Lima-Bitterncourt, I. C., Chartone-Souza, E., & Amaral Nascimiento, A. M. (2007). Molecular approaches: Advantages and artifacts in assessing bacterial diversity. Journal of Industrial Microbiology and Biotechnology, 34, 463–473.CrossRefGoogle Scholar
  79. Power, E. G. (1996). RAPD typing in microbiology—a technical review. Journal of Hospital Infection, 34, 247–265.CrossRefGoogle Scholar
  80. Rantsiou, K., & Cocolin, L. (2006). New developments in the study of the microbiota of naturally fermented sausages as determined by molecular methods: A review. International Journal of Food Microbiology, 108, 255–267.CrossRefGoogle Scholar
  81. Rantsiou, K., Comi, G., & Cocolin, L. (2004). The rpoB gene as a target for PCR-DGGE analysis to follow lactic acid bacteria population dynamics during food fermentations. Food Microbiology, 21, 481–487.CrossRefGoogle Scholar
  82. Rantsiou, K., Drosinos, E. H., Gialitaki, M., Metaxopoulos, I., Comi, G., & Cocolin, L. (2006). Use of molecular tools to characterize Lactobacillus spp. isolated from Greek traditional fermented sausages. International Journal of Food Microbiology, 112, 215–222.CrossRefGoogle Scholar
  83. Rantsiou, K., Drosinos, E. H., Gialitaki, M., Urso, R., Krommer, J., Gasparik-Reichardt, J., et al. (2005). Molecular characterization of Lactobacillus species isolated from naturally fermented sausages produced in Greece, Hungary and Italy. Food Microbiology, 22, 19–28.CrossRefGoogle Scholar
  84. Rantsiou, K., Iacumin, L., Cantoni, C., Comi, G., & Cocolin, L. (2005). Ecology and characterization by molecular methods of Staphylococcus species isolated from fresh sausages. International Journal of Food Microbiology, 97, 277–284.CrossRefGoogle Scholar
  85. Rantsiou, K., Urso, R., Iacumin, L., Cantoni, C., Cattaneo, P., Comi, G., et al. (2005). Culture dependent and independent methods to investigate the microbial ecology of Italian fermented sausages. Applied and Environmental Microbiology, 71, 1977–1986.CrossRefGoogle Scholar
  86. Rebecchi, A., Crivori, S., Sarra, P. G., & Cocconcelli, P. S. (1998). Physiological and molecular techniques for the study of bacterial community development in sausage fermentation. Journal of Applied Microbiology, 84, 1043–1049.CrossRefGoogle Scholar
  87. Reuter, G. (1972). Experimental ripening of dry sausages using lactobacilli and micrococci starter cultures. Fleischwirtschaft, 52, 465–468, 471–473.Google Scholar
  88. Rossi, F., Tofalo, R., Torriani, S., & Suzzi, G. (2001). Identification by 16S-23S rDNA intergenic region amplification, genotypic and phenotypic clustering of Staphylococcus xylosus strains from dry sausages. Journal of Applied Microbiology, 90, 365–371.CrossRefGoogle Scholar
  89. Sandhu, G. S., Kline, B. C., Stockman, L., & Roberts, G. D. (1995). Molecular probes for diagnosis of fungal infections. Journal of Clinical Microbiology, 33, 2913–2919.Google Scholar
  90. Sanz, Y., Hernandez, M., Ferrus, M. A., & Hernandez, J. (1998). Characterization of Lactobacillus sake isolates from dry-cured sausage by restriction fragment length polymorphism analysis of the 16S rRNA gene. Journal of Applied Microbiology, 84, 600–6006.CrossRefGoogle Scholar
  91. Schleifer, K. H. (1986). Gram positive cocci. In P. H. A Sneath, N. S. Mair, & Holt, J. G. (Eds.), Bergey’s manual of systematic bacteriology (Vol. 2, pp. 999–1003). Baltimore: Williams & Wilkins.Google Scholar
  92. Silvestri, G., Santarelli, S., Aquilanti, L., Beccaceci, A., Osimani, A., Tonucci, F., et al. (2007). Investigation of the microbial ecology of Ciauscolo, a traditional Italian salami, by culture-dependent techniques and PCR-DGGE. Meat Science, 77, 413–423.CrossRefGoogle Scholar
  93. Simonova, M., Strompfova, V., Marcinakova, M., Laukova, A., Vetserlund, S., Moratella, et al. (2006). Characterization of Staphylococcus xylosus and Staphylococcus carnosus isolated from Slovak meat products. Meat Science, 73, 559–564.Google Scholar
  94. Talon, R., Leroy, S., & Lebert, I. (2007). Microbial ecosystems of traditional fermented meat products: The importance of indigenous starters. Meat Science, 77, 55–62.CrossRefGoogle Scholar
  95. Talon, R., Walter, D., Chartier, S., Barriere, C., & Montel, M. C. (1999). Effect of nitrate and incubation conditions on the production of catalase and nitrate reductase by staphylococci. International Journal of Food Microbiology, 52, 47–56.CrossRefGoogle Scholar
  96. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H., et al. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. Journal of Clinical Microbiology, 33,2233–2239.Google Scholar
  97. Urso, R., Comi, G., & Cocolin, L. (2006). Ecology of lactic acid bacteria in Italian fermented sausages: Isolation, identification and molecular characterization. Systematic and Applied Microbiology, 29, 671–680.CrossRefGoogle Scholar
  98. Villani, F., Casaburi, A., Pennacchia, C., Filosa, L., Russo, F., & Ercolini, D. (2007). The microbial ecology of the Soppressata of Vallo di Diano, a traditional dry fermented sausage from southern Italy, and in vitro and in situ selection of autochthonous starter cultures. Applied and Environmental Microbiology, 73, 5453–5463.CrossRefGoogle Scholar
  99. Villard, L., Kodjo, A., Borges, E., Maurin, F., & Richard, Y. (2000). Rybotiping and rapid identification of Staphylococcus xylosus by 16S–23S spacer amplification. FEMS Microbiology Letters, 185, 83–87.Google Scholar
  100. Walter, J., Tannock, G. W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D. M., Munro, K., et al. (2000). Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Applied and Environmental Microbiology, 66, 297–303.CrossRefGoogle Scholar
  101. Yu, Z., & Morrison, M. (2004). Comparison of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 70, 4800–4806.CrossRefGoogle Scholar
  102. Zoetendal, E. G., Akkermans, A. D. L., & de Vos, W. M. (1998). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology, 64, 3854–3859.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Luca Cocolin
    • 1
  • Paola Dolci
  • Kalliopi Rantsiou
  1. 1.Dipartimento di Valorizzazione e Protezione delle Risorse AgroforestaliUniversity of Turin, Faculty of AgricultureItaly

Personalised recommendations