Skip to main content

Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems

  • Chapter

Preservative packaging of meat and meat products should maintain acceptable appearance, odour and flavour and should delay the onset of microbial spoilage. Typically fresh red meats are placed on trays and over-wrapped with an oxygen permeable film or alternatively, meats are stored in modified atmosphere packages (MAP) containing high levels of oxygen and carbon dioxide (80% O2:20% CO2) (Georgala & Davidson, 1970). Cooked meats are usually stored in 70% N2:30% CO2 (Smiddy, Papkovsky, & Kerry, 2002). The function of oxygen in MAP is to maintain acceptable fresh meat colour and carbon dioxide inhibits the growth of spoilage bacteria (Seideman & Durland, 1984). Nitrogen is used as an inert filler gas either to reduce the proportions of the other gases or to maintain the pack shape (Bell & Bourke, 1996).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Ahvenainen, R. (2003). Active and intelligent packaging: An introduction. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 5–21). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Ahvenainen, R., Eilamo, M., & Hurme, E. (1997). Detection of improper sealing and quality deterioration of modified-atmosphere-packed pizza by a colour indicator. Food Control, 8, 177–184.

    Article  Google Scholar 

  • Alocilja, E. C., & Radke, S. M. (2003). Market analysis of biosensors for food safety. Biosensors and Bioelectronics, 18, 841–846.

    Article  CAS  Google Scholar 

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.

    Article  CAS  Google Scholar 

  • Bell, R. G. & Bourke, B. J. (1996). Recent developments in packaging of meat and meat products. Proceedings of the international developments in process efficiency and quality in the meat industry (pp. 99–119). Dublin Castle, Ireland.

    Google Scholar 

  • Bodenhammer, W. T. (2002). Method and apparatus for selective biological material detection. US Patent 6376204.

    Google Scholar 

  • Bodenhammer, W. T., Jakowski, G., & Davies, E. (2004). Surface binding of an immunoglobulin to a flexible polymer using a water soluble varnish matrix. US Patent 6692973.

    Google Scholar 

  • Butler, B. L. (2002). CryovacˆledR OS2000\texttrademark Polymeric oxygen scavenging systems. Presented at Worldpak 2002. From http://www.sealedair.com/library/articles/article-os2000.html.

  • Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.

    Article  CAS  Google Scholar 

  • Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33, 19–33.

    Article  CAS  Google Scholar 

  • Davies, E. S., & Gardner, C. D. (1996). Oxygen indicating composition. British Patent 2298273.

    Google Scholar 

  • Eilamo, M., Ahvenainen, R., Hurme, E., Heiniö, R. L., & Mattila-Sandholm, T. (1995). The effect of package leakage on the shelf life of modified atmosphere packed minced meat steaks and its detection. Lebensmittel-Wissenschaft und Technologie, 28, 62–71.

    CAS  Google Scholar 

  • Fitzgerald, M., Papkovsky, D. B., Kerry, J. P., O’Sullivan, C. K., Buckley, D. J., & Guilbault, G. G. (2001). Nondestructive monitoring of oxygen profiles in packaged foods using phase-fluorimetric oxygen sensor. Journal of Food Science, 66, 105–110.

    CAS  Google Scholar 

  • Floros, J. D., Dock, L. L., & Han, J. H. (1997). Active packaging technologies and applications. Food Cosmetics and Drug Packaging, 20, 10–17.

    Google Scholar 

  • Georgala, D. L., & Davidson, C. L. (1970). Food package. British Patent 1199998.

    Google Scholar 

  • Han, J. H. (2000). Antimicrobial food packaging. Food Technology, 54, 56–65.

    Google Scholar 

  • Hong, S. I., & Park, W. S. (2000). Use of color indicators as an active packaging system for evaluating kimchi fermentation. Journal of Food Engineering, 46, 67–72.

    Article  Google Scholar 

  • Hurme, E. (2003). Detecting leaks in modified atmosphere packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 276–286). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Hurme, E., & Ahvenainen, R. (1998). A nondestructive leak detection method for flexible food packages using hydrogen as a tracer gas. Journal of Food Protection, 61, 1165–1169.

    CAS  Google Scholar 

  • Hutton, T. (2003). Food packaging: An introduction. Key topics in food science and technology – number 7 (p. 108). Chipping Campden, Gloucestershire, UK: Campden and Chorleywood Food Research Association Group.

    Google Scholar 

  • Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilization of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74, 113–130.

    Article  Google Scholar 

  • Kerry J. P., & Papkovsky, D. B. (2002). Development and use of non-destructive, continuous assessment, chemical oxygen sensors in packs containing oxygen sensitive foodstuffs. Research Advances in Food Science, 3, 121–140.

    Google Scholar 

  • Kress-Rogers, E. (1998a). Chemosensors, biosensors and immunosensors. In E. Kress-Rodgers (Ed.), Instrumentation and sensors for the food industry (pp. 581–669). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Kress-Rogers, E. (1998b). Terms in instrumentation and sensors technology. In E. Kress-Rodgers (Ed.), Instrumentation and sensors for the food industry (pp. 673–691). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Kress-Rogers, E. (2001). Instrumentation for food quality assurance. In E. Kress-Rodgers, & C. J. B. Brimelow (Eds.), Instrumentation and sensors for the food industry (2nd ed.,pp. 581–669). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Krumhar, K. C., & Karel, M. (1992). Visual indicator system. US Patent 5096813.

    Google Scholar 

  • Lövenklev, M., Artin, I., Hagberg, O., Borch, E., Holst, E., & Rådström, P. (2004). Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B. Applied and Environmental Microbiology, 70, 2928–2934.

    Article  CAS  Google Scholar 

  • Mattila-Sandholm, T., Ahvenainen, R., Hurme, E., & Järvi-Kääriänen, T. (1995). Leakage indicator. Finnish Patent 94802.

    Google Scholar 

  • Mattila-Sandholm, T., Ahvenainen, R., Hurme, E., & Järvi-Kääriänen, T. (1998). Oxygen sensitive colour indicator for detecting leaks in gas-protected food packages. European Patent EP 0666977.

    Google Scholar 

  • Mennecke, B., & Townsend, A. (2005). Radio frequency identification tagging as a mechanism of creating a viable producer’s brand in the cattle industry. MATRIC (Midwest Agribusiness research and Information Center) Research Paper 05-MRP 8 http://www.matric.iastate.edu.

  • Mills, A., Qing Chang, Q., & McMurray, N. (1992). Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Analytical Chemistry, 64, 1383–1389.

    Article  CAS  Google Scholar 

  • Møller, J. K. S., Jensen, J. S., Olsen, M. B., Skibsted, L. S., & Bertelsen, G. (2000). Effect of residual oxygen on colour stability during chill storage of sliced, pasteurised ham packaged in modified atmosphere. Meat Science, 54, 399–405.

    Article  Google Scholar 

  • Mousavi, A., Sarhadi, M., Lenk, A., & Fawcett, S. (2002). Tracking and traceability in the meat processing industry: A solution. British Food Journal, 104, 7–19.

    Article  Google Scholar 

  • Neurater, G., Klimant, I., & Wolfbeis, O. S. (1999). Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Analytica Chimica Acta, 382, 67–75.

    Article  Google Scholar 

  • Nychas, G. E., Drosinos, E. H., & Board, R. G. (1998). Chemical changes in stored meat. In A. Davies, & R. G. Board (Eds.), The microbiology of meat and poultry (pp. 288–326). London: Blackie Academic & Professional.

    Google Scholar 

  • O’Grady, M. N., Monahan, F. J., Bailey, J., Allen, P., Buckley, D. J., & Keane, M. G. (1998). Colour-stabilising effect of muscle vitamin E in minced beef stored in high oxygen packs. Meat Science, 50, 73–80.

    Article  CAS  Google Scholar 

  • Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44, 185–193.

    Article  CAS  Google Scholar 

  • Papkovsky, D. B., Olah, J., Troyanovsky, I. V., Sadovsky, N. A., Rumyantseva, V. D., Mironov, A. F., et al. (1991). Phosphorescent polymer films for optical oxygen sensors. Biosensors and Bioelectronics, 7, 199–206.

    Article  Google Scholar 

  • Papkovsky, D. B., Papovskaia, N., Smyth, A., Kerry, J. P., & Ogurtsov, V. I. (2000). Phosphorescent sensor approach for a non-destructive measurement of oxygen in packaged foods. Analytical Letters, 33, 1755–1777.

    Article  CAS  Google Scholar 

  • Papkovsky, D. B., Ponomarev, G. V., Trettnak, W., & O’Leary, P. (1995). Phosphorescent complexes of porphyrin-ketones: Optical properties and application to oxygen sensing. Analytical Chemistry, 67, 4112–4117.

    Article  CAS  Google Scholar 

  • Papkovsky, D. B., Smiddy, M. A., Papkovskaia, N. Y., & Kerry, J. P. (2002). Nondestructive measurement of oxygen in modified atmosphere packaged hams using a phase-fluorimetric sensor system. Journal of Food Science, 67, 3164–3169.

    Article  Google Scholar 

  • Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science 62, 373–380.

    Article  Google Scholar 

  • Randell, K., Ahvenainen, R., Latva-Kala, K., Hurme, E., Mattila-Sandholm, T., & Hyvönen, L. (1995). Modified atmosphere-packed marinated chicken breast and rainbow trout quality as affected by package leakage. Journal of Food Science, 60, 667–672, 684.

    Article  CAS  Google Scholar 

  • Riva, M., Piergiovanni, L., & Schiraldi, A. (2001). Performance of time-temperature indicators in the study of temperature exposure of packaged fresh foods. Packaging Technology and Science, 14, 1–9.

    Article  Google Scholar 

  • Rooney, M. L. (1995). Active packaging in polymer films. In M. L. Rooney (Ed.), Active food packaging (pp. 74–110). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Seideman, S. C., & Durland, P. R. (1984). The utilization of modified atmosphere packaging fro fresh meat: A review. Journal of Food Quality, 6, 239–252.

    Article  CAS  Google Scholar 

  • Shimoni, E., Anderson, E. M., & Labuza, T. P. (2001). Reliability of time temperature indicators under temperature abuse. Journal of Food Science, 66, 1337–1340.

    Article  CAS  Google Scholar 

  • Shu, H. C., Håkanson, E. H., & Mattiason, B. (1993). D-lactic acid in pork as a freshness indicator monitored by immobilized D-lactate dehydrogenase using sequential injection analysis. Analytica Chimica Acta, 283, 727–737.

    Article  CAS  Google Scholar 

  • Sivertsvik, M. (2003). Active packaging in practice: Fish. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 384–400). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Smiddy, M., Fitzgerald, M., Kerry, J. P., Papkovsky, D. B., O’Sullivan, C. K., & Guilbault, G. G. (2002). Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: Impact of oxygen content on lipid oxidation. Meat Science, 61, 285–290.

    Article  CAS  Google Scholar 

  • Smiddy, M., Papkovskaia, N., Papkovsky, D. B., & Kerry, J. P. (2002). Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Research International, 35, 577–584.

    Article  CAS  Google Scholar 

  • Smiddy, M., Papkovsky, D. B., & Kerry, J. P. (2002). Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats. Food Research International, 35, 571–575.

    Article  CAS  Google Scholar 

  • Smith, J. P., Ramaswamy, H. S., & Simpson, B. K. (1990). Developments in food packaging technology. Part II. Storage aspects. Trends in Food Science and Technology, 1, 111–118.

    Article  CAS  Google Scholar 

  • Smolander, M. (2003). The use of freshness indicators in packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 128–143). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Smolander, M., Alakomi, H.-L., Ritvanen, T., Vainionpää, J., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler cuts stored in different temperature conditions. A. Time-temperature indicators as quality-indicating tools. Food Control, 15, 217–229.

    Article  Google Scholar 

  • Ahvenainen, R. (1997). Leak indicators for modified-atmosphere packages. Trends in Food Science & Technology, 8, 101–106.

    Article  Google Scholar 

  • Smolander, M., Hurme, E., Latva-Kala, K., Luoma, T., Alakomi, H. L., & Ahvenainen, R. (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innovative Food Science and Emerging Technologies, 3, 279–288.

    Article  CAS  Google Scholar 

  • Stauffer, T. (1988). Non-destructive in-line detection of leaks in food and beverage packages – an analysis of methods. Journal of Packaging Technology, 2, 147–149.

    Google Scholar 

  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.

    Article  CAS  Google Scholar 

  • Taoukis, P. S., & Labuza, T. P. (1989). Applicability of time temperature indicators as shelf life monitors of food products. Journal of Food Science, 54, 783–788.

    Article  Google Scholar 

  • Taoukis, P. S., & Labuza, T. P. (2003). Time-temperature indicators (TTIs). In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 103–126). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Townsend, A., & Mennecke, B. (2008). Application of radio frequency identification (RFID) in meat production: Two case studies. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3, 1–10.

    Article  Google Scholar 

  • Trettnak, W., Gruber, W., Reiniger, F., & Klimant, I. (1995). Recent progress in optical sensor instrumentation. Sensors and Actuators B, 29, 219–225.

    Article  Google Scholar 

  • Vermeiren, L., Devlieghere, F., Van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10, 77–86.

    Article  CAS  Google Scholar 

  • Welt, B. A., Sage, D. S., & Berger, K. L. (2003). Performance specification of time-temperature integrators designed to protect against botulism in refrigerated fresh foods. Journal of Food Science, 68, 2–9.

    Article  CAS  Google Scholar 

  • Wolfbeis, O. S., Weis, L. J., Leiner, M. J. P., & Ziegler, W. E. (1988). Fibre-optic fluorosensor for oxygen and carbon dioxide. Analytical Chemistry, 60, 2028–2030.

    Article  CAS  Google Scholar 

  • Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: Concepts and applications. Journal of Food Science, 70, 1–10.

    Article  Google Scholar 

  • Yoon, S. H., Lee, C. H., Kim, D. Y., Kim, J. W., & Park, K. H. (1994). Time-temperature indicator using a phospholipids-phospholipase system and application to storage of frozen pork. Journal of Food Science, 59, 490–493.

    Article  CAS  Google Scholar 

  • Yoshikawa, Y., Nawata, T., Goto, M., & Fujii, Y. (1987). Oxygen indicator. US Patent 4169811.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Grady, M.N., Kerry, J.P. (2008). Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems. In: Toldrá, F. (eds) Meat Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79382-5_19

Download citation

Publish with us

Policies and ethics