Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems

  • Michael N. O’Grady
  • Joseph P. Kerry

Preservative packaging of meat and meat products should maintain acceptable appearance, odour and flavour and should delay the onset of microbial spoilage. Typically fresh red meats are placed on trays and over-wrapped with an oxygen permeable film or alternatively, meats are stored in modified atmosphere packages (MAP) containing high levels of oxygen and carbon dioxide (80% O2:20% CO2) (Georgala & Davidson, 1970). Cooked meats are usually stored in 70% N2:30% CO2 (Smiddy, Papkovsky, & Kerry, 2002). The function of oxygen in MAP is to maintain acceptable fresh meat colour and carbon dioxide inhibits the growth of spoilage bacteria (Seideman & Durland, 1984). Nitrogen is used as an inert filler gas either to reduce the proportions of the other gases or to maintain the pack shape (Bell & Bourke, 1996).


Oxygen Sensor Food Packaging Packaging System Oxygen Scavenge Packaging Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahvenainen, R. (2003). Active and intelligent packaging: An introduction. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 5–21). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  2. Ahvenainen, R., Eilamo, M., & Hurme, E. (1997). Detection of improper sealing and quality deterioration of modified-atmosphere-packed pizza by a colour indicator. Food Control, 8, 177–184.CrossRefGoogle Scholar
  3. Alocilja, E. C., & Radke, S. M. (2003). Market analysis of biosensors for food safety. Biosensors and Bioelectronics, 18, 841–846.CrossRefGoogle Scholar
  4. Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.CrossRefGoogle Scholar
  5. Bell, R. G. & Bourke, B. J. (1996). Recent developments in packaging of meat and meat products. Proceedings of the international developments in process efficiency and quality in the meat industry (pp. 99–119). Dublin Castle, Ireland.Google Scholar
  6. Bodenhammer, W. T. (2002). Method and apparatus for selective biological material detection. US Patent 6376204.Google Scholar
  7. Bodenhammer, W. T., Jakowski, G., & Davies, E. (2004). Surface binding of an immunoglobulin to a flexible polymer using a water soluble varnish matrix. US Patent 6692973.Google Scholar
  8. Butler, B. L. (2002). CryovacˆledR OS2000\texttrademark Polymeric oxygen scavenging systems. Presented at Worldpak 2002. From
  9. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.CrossRefGoogle Scholar
  10. Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33, 19–33.CrossRefGoogle Scholar
  11. Davies, E. S., & Gardner, C. D. (1996). Oxygen indicating composition. British Patent 2298273.Google Scholar
  12. Eilamo, M., Ahvenainen, R., Hurme, E., Heiniö, R. L., & Mattila-Sandholm, T. (1995). The effect of package leakage on the shelf life of modified atmosphere packed minced meat steaks and its detection. Lebensmittel-Wissenschaft und Technologie, 28, 62–71.Google Scholar
  13. Fitzgerald, M., Papkovsky, D. B., Kerry, J. P., O’Sullivan, C. K., Buckley, D. J., & Guilbault, G. G. (2001). Nondestructive monitoring of oxygen profiles in packaged foods using phase-fluorimetric oxygen sensor. Journal of Food Science, 66, 105–110.Google Scholar
  14. Floros, J. D., Dock, L. L., & Han, J. H. (1997). Active packaging technologies and applications. Food Cosmetics and Drug Packaging, 20, 10–17.Google Scholar
  15. Georgala, D. L., & Davidson, C. L. (1970). Food package. British Patent 1199998.Google Scholar
  16. Han, J. H. (2000). Antimicrobial food packaging. Food Technology, 54, 56–65.Google Scholar
  17. Hong, S. I., & Park, W. S. (2000). Use of color indicators as an active packaging system for evaluating kimchi fermentation. Journal of Food Engineering, 46, 67–72.CrossRefGoogle Scholar
  18. Hurme, E. (2003). Detecting leaks in modified atmosphere packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 276–286). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  19. Hurme, E., & Ahvenainen, R. (1998). A nondestructive leak detection method for flexible food packages using hydrogen as a tracer gas. Journal of Food Protection, 61, 1165–1169.Google Scholar
  20. Hutton, T. (2003). Food packaging: An introduction. Key topics in food science and technology – number 7 (p. 108). Chipping Campden, Gloucestershire, UK: Campden and Chorleywood Food Research Association Group.Google Scholar
  21. Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilization of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74, 113–130.CrossRefGoogle Scholar
  22. Kerry J. P., & Papkovsky, D. B. (2002). Development and use of non-destructive, continuous assessment, chemical oxygen sensors in packs containing oxygen sensitive foodstuffs. Research Advances in Food Science, 3, 121–140.Google Scholar
  23. Kress-Rogers, E. (1998a). Chemosensors, biosensors and immunosensors. In E. Kress-Rodgers (Ed.), Instrumentation and sensors for the food industry (pp. 581–669). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  24. Kress-Rogers, E. (1998b). Terms in instrumentation and sensors technology. In E. Kress-Rodgers (Ed.), Instrumentation and sensors for the food industry (pp. 673–691). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  25. Kress-Rogers, E. (2001). Instrumentation for food quality assurance. In E. Kress-Rodgers, & C. J. B. Brimelow (Eds.), Instrumentation and sensors for the food industry (2nd ed.,pp. 581–669). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  26. Krumhar, K. C., & Karel, M. (1992). Visual indicator system. US Patent 5096813.Google Scholar
  27. Lövenklev, M., Artin, I., Hagberg, O., Borch, E., Holst, E., & Rådström, P. (2004). Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B. Applied and Environmental Microbiology, 70, 2928–2934.CrossRefGoogle Scholar
  28. Mattila-Sandholm, T., Ahvenainen, R., Hurme, E., & Järvi-Kääriänen, T. (1995). Leakage indicator. Finnish Patent 94802.Google Scholar
  29. Mattila-Sandholm, T., Ahvenainen, R., Hurme, E., & Järvi-Kääriänen, T. (1998). Oxygen sensitive colour indicator for detecting leaks in gas-protected food packages. European Patent EP 0666977.Google Scholar
  30. Mennecke, B., & Townsend, A. (2005). Radio frequency identification tagging as a mechanism of creating a viable producer’s brand in the cattle industry. MATRIC (Midwest Agribusiness research and Information Center) Research Paper 05-MRP 8
  31. Mills, A., Qing Chang, Q., & McMurray, N. (1992). Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Analytical Chemistry, 64, 1383–1389.CrossRefGoogle Scholar
  32. Møller, J. K. S., Jensen, J. S., Olsen, M. B., Skibsted, L. S., & Bertelsen, G. (2000). Effect of residual oxygen on colour stability during chill storage of sliced, pasteurised ham packaged in modified atmosphere. Meat Science, 54, 399–405.CrossRefGoogle Scholar
  33. Mousavi, A., Sarhadi, M., Lenk, A., & Fawcett, S. (2002). Tracking and traceability in the meat processing industry: A solution. British Food Journal, 104, 7–19.CrossRefGoogle Scholar
  34. Neurater, G., Klimant, I., & Wolfbeis, O. S. (1999). Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Analytica Chimica Acta, 382, 67–75.CrossRefGoogle Scholar
  35. Nychas, G. E., Drosinos, E. H., & Board, R. G. (1998). Chemical changes in stored meat. In A. Davies, & R. G. Board (Eds.), The microbiology of meat and poultry (pp. 288–326). London: Blackie Academic & Professional.Google Scholar
  36. O’Grady, M. N., Monahan, F. J., Bailey, J., Allen, P., Buckley, D. J., & Keane, M. G. (1998). Colour-stabilising effect of muscle vitamin E in minced beef stored in high oxygen packs. Meat Science, 50, 73–80.CrossRefGoogle Scholar
  37. Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44, 185–193.CrossRefGoogle Scholar
  38. Papkovsky, D. B., Olah, J., Troyanovsky, I. V., Sadovsky, N. A., Rumyantseva, V. D., Mironov, A. F., et al. (1991). Phosphorescent polymer films for optical oxygen sensors. Biosensors and Bioelectronics, 7, 199–206.CrossRefGoogle Scholar
  39. Papkovsky, D. B., Papovskaia, N., Smyth, A., Kerry, J. P., & Ogurtsov, V. I. (2000). Phosphorescent sensor approach for a non-destructive measurement of oxygen in packaged foods. Analytical Letters, 33, 1755–1777.CrossRefGoogle Scholar
  40. Papkovsky, D. B., Ponomarev, G. V., Trettnak, W., & O’Leary, P. (1995). Phosphorescent complexes of porphyrin-ketones: Optical properties and application to oxygen sensing. Analytical Chemistry, 67, 4112–4117.CrossRefGoogle Scholar
  41. Papkovsky, D. B., Smiddy, M. A., Papkovskaia, N. Y., & Kerry, J. P. (2002). Nondestructive measurement of oxygen in modified atmosphere packaged hams using a phase-fluorimetric sensor system. Journal of Food Science, 67, 3164–3169.CrossRefGoogle Scholar
  42. Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science 62, 373–380.CrossRefGoogle Scholar
  43. Randell, K., Ahvenainen, R., Latva-Kala, K., Hurme, E., Mattila-Sandholm, T., & Hyvönen, L. (1995). Modified atmosphere-packed marinated chicken breast and rainbow trout quality as affected by package leakage. Journal of Food Science, 60, 667–672, 684.CrossRefGoogle Scholar
  44. Riva, M., Piergiovanni, L., & Schiraldi, A. (2001). Performance of time-temperature indicators in the study of temperature exposure of packaged fresh foods. Packaging Technology and Science, 14, 1–9.CrossRefGoogle Scholar
  45. Rooney, M. L. (1995). Active packaging in polymer films. In M. L. Rooney (Ed.), Active food packaging (pp. 74–110). Glasgow: Blackie Academic and Professional.Google Scholar
  46. Seideman, S. C., & Durland, P. R. (1984). The utilization of modified atmosphere packaging fro fresh meat: A review. Journal of Food Quality, 6, 239–252.CrossRefGoogle Scholar
  47. Shimoni, E., Anderson, E. M., & Labuza, T. P. (2001). Reliability of time temperature indicators under temperature abuse. Journal of Food Science, 66, 1337–1340.CrossRefGoogle Scholar
  48. Shu, H. C., Håkanson, E. H., & Mattiason, B. (1993). D-lactic acid in pork as a freshness indicator monitored by immobilized D-lactate dehydrogenase using sequential injection analysis. Analytica Chimica Acta, 283, 727–737.CrossRefGoogle Scholar
  49. Sivertsvik, M. (2003). Active packaging in practice: Fish. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 384–400). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  50. Smiddy, M., Fitzgerald, M., Kerry, J. P., Papkovsky, D. B., O’Sullivan, C. K., & Guilbault, G. G. (2002). Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: Impact of oxygen content on lipid oxidation. Meat Science, 61, 285–290.CrossRefGoogle Scholar
  51. Smiddy, M., Papkovskaia, N., Papkovsky, D. B., & Kerry, J. P. (2002). Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Research International, 35, 577–584.CrossRefGoogle Scholar
  52. Smiddy, M., Papkovsky, D. B., & Kerry, J. P. (2002). Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats. Food Research International, 35, 571–575.CrossRefGoogle Scholar
  53. Smith, J. P., Ramaswamy, H. S., & Simpson, B. K. (1990). Developments in food packaging technology. Part II. Storage aspects. Trends in Food Science and Technology, 1, 111–118.CrossRefGoogle Scholar
  54. Smolander, M. (2003). The use of freshness indicators in packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 128–143). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  55. Smolander, M., Alakomi, H.-L., Ritvanen, T., Vainionpää, J., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler cuts stored in different temperature conditions. A. Time-temperature indicators as quality-indicating tools. Food Control, 15, 217–229.CrossRefGoogle Scholar
  56. Ahvenainen, R. (1997). Leak indicators for modified-atmosphere packages. Trends in Food Science & Technology, 8, 101–106.CrossRefGoogle Scholar
  57. Smolander, M., Hurme, E., Latva-Kala, K., Luoma, T., Alakomi, H. L., & Ahvenainen, R. (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innovative Food Science and Emerging Technologies, 3, 279–288.CrossRefGoogle Scholar
  58. Stauffer, T. (1988). Non-destructive in-line detection of leaks in food and beverage packages – an analysis of methods. Journal of Packaging Technology, 2, 147–149.Google Scholar
  59. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.CrossRefGoogle Scholar
  60. Taoukis, P. S., & Labuza, T. P. (1989). Applicability of time temperature indicators as shelf life monitors of food products. Journal of Food Science, 54, 783–788.CrossRefGoogle Scholar
  61. Taoukis, P. S., & Labuza, T. P. (2003). Time-temperature indicators (TTIs). In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 103–126). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  62. Townsend, A., & Mennecke, B. (2008). Application of radio frequency identification (RFID) in meat production: Two case studies. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3, 1–10.CrossRefGoogle Scholar
  63. Trettnak, W., Gruber, W., Reiniger, F., & Klimant, I. (1995). Recent progress in optical sensor instrumentation. Sensors and Actuators B, 29, 219–225.CrossRefGoogle Scholar
  64. Vermeiren, L., Devlieghere, F., Van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10, 77–86.CrossRefGoogle Scholar
  65. Welt, B. A., Sage, D. S., & Berger, K. L. (2003). Performance specification of time-temperature integrators designed to protect against botulism in refrigerated fresh foods. Journal of Food Science, 68, 2–9.CrossRefGoogle Scholar
  66. Wolfbeis, O. S., Weis, L. J., Leiner, M. J. P., & Ziegler, W. E. (1988). Fibre-optic fluorosensor for oxygen and carbon dioxide. Analytical Chemistry, 60, 2028–2030.CrossRefGoogle Scholar
  67. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: Concepts and applications. Journal of Food Science, 70, 1–10.CrossRefGoogle Scholar
  68. Yoon, S. H., Lee, C. H., Kim, D. Y., Kim, J. W., & Park, K. H. (1994). Time-temperature indicator using a phospholipids-phospholipase system and application to storage of frozen pork. Journal of Food Science, 59, 490–493.CrossRefGoogle Scholar
  69. Yoshikawa, Y., Nawata, T., Goto, M., & Fujii, Y. (1987). Oxygen indicator. US Patent 4169811.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael N. O’Grady
    • 1
  • Joseph P. Kerry
  1. 1.Department of Food and Nutritional Sciences University College CorkNational University of IrelandIreland

Personalised recommendations