Bioprotective Cultures

  • Graciela Vignolo
  • Silvina Fadda
  • Patricia Castellano

Although the globalization and liberalization of world food trade offers many benefits and opportunities, it also presents new risks. As food is distributed from the original points of production, processing, and packaging to locations thousands of kilometers away, there is an increased risk of cross-border transmission of infectious agents and exposure of consumers to new hazards. In the last few years, food safety concerns have increased their importance due to the dramatic impact that they have on public health. Despite the recent progress in food biotechnology, the meat industry is still under scrutiny from consumers and media due to recent food safety crises; a series of food scandals erupted involving meat and meat products, which impacted prominently on consumer confidence.


Lactic Acid Bacterium Meat Product Listeria Monocytogenes Food Protection Fermented Sausage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amézquita, A., & Brashears, M. (2002). Competitive inhibition of Listeria monocytogenes in ready-to-eat products by lactic acid bacteria. Journal of Food Protection, 65, 316–325.Google Scholar
  2. Autio, T., Hielm, S., Miettinen, M., Sjöberg, A., Aamisalo, K., Björkroth, J., et al. (1999). Sources of Listeria monocytogenes contamination in a cold-smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing. Applied Environmental Microbiology, 65, 150–155.Google Scholar
  3. Aymerich, M. T., Artigas, M. G., Garriga, M., Monfort, J. & Hugas, M. (2000). Effect of sausage ingredients and additives on the production of enterocins A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. Journal of Applied Microbiology, 88, 686–694.Google Scholar
  4. Aymerich, M. T., Garriga, M., Ylla, J., Vallier, J., Monfort, J., & Hugas, M. (2000). Applications of enterocins as biopreservatives against Listeria innocua in meat products. Journal of Food Protection, 63, 721–726.Google Scholar
  5. Aymerich, M. T., Hugas, M., & Monfort, J. M. (1998). Review: Bacteriocinogenic lactic acid bacteria associated with meat products. Food Science and Technology International, 4, 141–158.Google Scholar
  6. Aymerich, M. T., Jofre, A., Garriga, M., & Hugas, M. (2005). Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. Journal of Food Protection, 68, 173–177.Google Scholar
  7. Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61, 1–10.Google Scholar
  8. Barboza de Martínez, Y., Ferrer, K., & Salas, E. (2002). Combined effects of lactic acid and nisin solution in reducing levels of microbiological contamination in red meat carcasses. Journal of Food Protection, 65, 1780–1783.Google Scholar
  9. Beach, J. C., Murano, E.-A., & Acuff, G. R. (2002). Prevalence of Salmonella and Campylobacter in beef from transport to slaughter. Journal of Food Protection, 65, 1687–1693.Google Scholar
  10. Belfiore, C., Castellano, P., & Vignolo, G. (2007). Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiology, 24, 223–229.Google Scholar
  11. Benkerroum, N., Daoudi, A., & Kamal, M. (2003). Behaviour of Listeria monocytogenes in raw sausages (merguez) in presence of a bacteriocins-producing lactococcal strain as a protective culture. Meat Science, 63, 479–484.Google Scholar
  12. Bhaduri, S., Wesley, I., & Bush, E. (2005). Prevalence of pathogenic Yersinia enterocolitica strains in pigs in the United States. Applied and Environmental Microbiology, 71, 7117–7121.Google Scholar
  13. Bouttefroy, A., & Milliere, J. B. (2000). Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteria resistant cell of Listeria monocytogenes ATCC 15313. International Journal of Food Microbiology, 62, 65–75.Google Scholar
  14. Bredholt, S., Nesbakken, T., & Holck, A. (2001). Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. International Journal of Food Microbiology, 66, 191–196.Google Scholar
  15. Bremer, V., Bocter, N., Rehmet, S., Klein, G., Breuer, T., & Ammon, A. (2005). Consumption, knowledge, and handling of raw meat: A representative cross-sectional survey in Germany, March 2001. Journal of Food Protection, 68, 785–789.Google Scholar
  16. Cahill, S. M., & Jouve, J.-L. (2004). Microbiological risk assessment in developing countries. Journal of Food Protection, 67, 2016–2023.Google Scholar
  17. Callewaert, R., Hugas, M., & De Vuyst, L. (2000). Competitiveness and bacteriocin production of Enterococci in the production of Spanish-style dry fermented sausages. International Journal of Food Microbiology, 57, 33–42.Google Scholar
  18. Castellano, P., Farías, M. E., Holzapfel, W., & Vignolo, G. (2001). Sensitivity variations of Listeria strains to the bacteriocins lactocin 705, enterocin CRL35 and nisin. Biotechnology Letters, 23, 605–608.Google Scholar
  19. Castellano, P., Holzapfel, W., & Vignolo, G. (2004). The control of Listeria innocua and Lactobacillus sakei in broth and meat slurry with the bacteriocinogenic strain Lactobacillus casei CRL705. Food Microbiology, 21, 291–298.Google Scholar
  20. Castellano, P., Raya, R., & Vignolo, G. (2003). Mode of action of the two-component bacteriocin lactocin 705. International Journal of Food Microbiology, 85, 35–43.Google Scholar
  21. Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by the addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43, 194–199.Google Scholar
  22. Castellano, P., Vignolo, G., Farías, R., Arrondo, J., & Chehín, R. (2007). Molecular view by Fourier transform infrared spectroscopy of the relationship between lactocin 705 and membranes: Speculations on antimicrobial mechanism. Applied of Environmental Microbiology, 73, 415–420.Google Scholar
  23. Castillo, A., Lucia, L., Mercado, I., & Acuff, G. (2001). In-plant evaluation of a lactic acid treatment for reduction of bacteria on chilled beef carcases. Journal of Food Protection, 64, 738–740.Google Scholar
  24. Cayré, M. E., Garro, O., & Vignolo, G. (2005). Effect of storage temperature and gas permeability of packaging film on the growth of lactic acid bacteria and Brochothrix thermosphacta in cooked meat emulsions. Food Microbiology, 22, 505–512.Google Scholar
  25. CDC, Centers for Disease Control and Prevention (1995). Escherichia coli O157:H7 outbreak linked to commercially distributed dry cured salami-Washington and California. Morbidity and Mortality Weekly Report, 44, 157–160.Google Scholar
  26. CDC, Centers for Disease Control and Prevention (2002). Incidence of foodborne illness: Preliminary FoodNet data on the incidence of foodborne illness-selected sites, United States. Morbidity and Mortality Weekly Report, 51, 325–329.Google Scholar
  27. CDC, Centers for Disease Control and Prevention (2007). Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food – 10 States, 2006. Morbidity and Mortality Weekly Report, 56, 336–339.Google Scholar
  28. Chang, V., Mills, E., & Cutter, C. (2003). Reduction of bacteria on pork carcasses associated with chilling method. Journal of Food Protection, 66, 1019–1024.Google Scholar
  29. Chen, C., Sebranek, J., Dickson, J., & Mendonca, A. (2004). Combining pediocin (ALTA2341) with postpackaging pasteurization for control of Listeria monocytogenes frankfurters. Journal of Food Protection, 67, 1855–1865.Google Scholar
  30. Chen, Y., Ross, W., Scott, V., & Gombas, D. (2003). Listeria monocytogenes: Low levels equal low risk. Journal of Food Protection, 66, 570–577.Google Scholar
  31. Church, D. (2004). Major factors affecting the emergence and re-emergence of infectious diseases. Clinics in Laboratory Medicine, 24, 559–586.Google Scholar
  32. Church, I., & Parsons, A. (1995). Modified atmosphere packaging technology: A review. Journal of Science and Food Agriculture, 67, 143–152.Google Scholar
  33. Coffey, A., Ryan, M., Ross, R., Hill, C., Arendt, E., & Schwarz, G. (1998). Use of a broad-host-range bacteriocins-producing Lactococcus lactis transconjugant as an alternative starter for salami manufacture. International Journal of Food Microbiology, 43, 231–235.Google Scholar
  34. Cotter, P., Hill, C., & Ross, P. (2005). Bacteriocins: Developing innate immunity for foods. Nature Reviews Microbiology, 3, 777–788.Google Scholar
  35. Cuozzo, S., Castellano, P., Sesma, F., Vignolo. G., & Raya, R. (2003). Differential roles of two component peptides of lactocin 705 in antimicrobial activity. Current Microbiology, 46, 180–183.Google Scholar
  36. Demeyer, D. (2003). Meat fermentation: Principles and applications. In Y. Hui, L. Goddik, A. Hansen, J. Josephsen, W. Nip, P. Stanfield, et al. (Eds.), Handbook of Food and Beverage Fermentation Technology (pp. 353–367). New York: Marcel Dekker.Google Scholar
  37. Desmarchelier, P., Higgs, G., Mills, L., Sullivan, A., & Vanderlinde, P. (1999). Incidence of coagulase positive Staphylococcus on beef carcasses in three Australian abattoirs. International Journal of Food Microbiology, 47, 221–229.Google Scholar
  38. Dicks, L., Mellet, F., & Hoffman, L. (2004). Use of bacteriocin-producing starter culture of Lactobacillus plantarum and Lactobacillus curvatus in production of ostrich meat salami. Meat Science, 66, 703–708.Google Scholar
  39. Elmi, M. (2004). Food safety: Current situation, unaddressed issues and the emerging priorities. Eastern Mediterranean Health Journal, 10, 794–800.Google Scholar
  40. Fegan, N., Vanderlinde, P., Higgs, G., & Desmarchelier, P. (2004). The prevalence and concentration of Escherichia coli O157 in feces of cattle from different production systems at slaughter. Journal of Applied Microbiology, 97, 362–370.Google Scholar
  41. Foegeding, P., Thomas, A., Pilkington, D., & Klaenhammer, T. (1992). Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Applied & Environmental Microbiology, 58, 3053–3059.Google Scholar
  42. Fontana, C., Cocconcelli, P., & Vignolo, G. (2005). Monitoring the bacterial population dynamics during fermentation of artisanal Argentinean sausages. International Journal of Food Microbiology, 103, 131–142.Google Scholar
  43. Fontana, C., Cocconcelli, P., & Vignolo, G. (2006). Direct molecular approach to monitoring bacterial colonization on vacuum-packaged beef. Applied Environmental Microbiology, 72, 5618–5622.Google Scholar
  44. Geornaras, I., Belk, K., Scanga, J., Kendall, P., Smite, G., & Sofos, J. (2005). Postprocessing antimicrobial treatments to control L. monocytogenes in commercial vacuum-packaged bologna ham stored at 10ˆC. Journal of Food Protection, 68, 991–998.Google Scholar
  45. Gombas, D., Chen, Y., Clavero, R., & Scott, V. (2003). Survey of Listeria monocytogenes in ready-to-eat foods. Journal of Food Protection, 66, 559–560.Google Scholar
  46. Griffin, P., & Tauxe, R. (1991). The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli and the associated haemolytic uremic syndrome. Epidemiology Reviews, 13, 60–98.Google Scholar
  47. Gurtler, M., Alter, T., Kasimir, S., Linnebur, M., & Fehlhaber, K., (2005). Prevalence of Yersinia enterocolítica in fattening pigs. Journal of Food Protection, 68, 850–854.Google Scholar
  48. Hald, T., Wingstrand, A., Swanenburg, M., von Altrock, A., & Thorberg, B. (2003). The occurrence and epidemiology of Salmonella in European pig slaughterhouses. Epidemiology Infection, 131, 1187–1203.Google Scholar
  49. Hassan, Z., Purwati, E., Radu, S., Rahim, R., & Rusul, G. (2001). Prevalence of Listeria spp and Listeria monocytogenes in meat and fermented fish in Malaysia. Southeast Asian Journal of Tropical Medicine Public Health, 32, 402–407.Google Scholar
  50. Holeckova, B., Holoda, E., Fotta, M., Kalinacova, V., Gondol’, J., & Grolmus, J. (2002). Occurrence of enterotoxigenic Staphylococcus aureus in food. Annals of Agricultural and Environmental Medicine, 9, 179–182.Google Scholar
  51. Holley, R., Lammerding, A., & Tittiger, F. (1988). Microbiological safety of traditional and starter-mediated processes for the manufacture of Italian dry sausage. International Journal of Food Microbiology, 7, 49–62.Google Scholar
  52. Holzapfel, W., Geisen, R., & Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. International Journal of Food Microbiology, 24, 343–362.Google Scholar
  53. Hugas, M., Garriga, M., Aymerich, M., & Monfort, J., (2002). Bacterial cultures and metabolites for the enhancement of safety and quality. In F. Toldrá (Ed.), Research advances in the quality of meat and meat products (pp. 225–247). India: Research Signpost.Google Scholar
  54. Hugas, M., Neumeyer, B., Pagés, F., Garriga, M., & Hammes, W. (1997). Comparison of bacteriocins-producing lactobacilli on Listeria growth in fermented sausages. Fleischwirtschaft, 76, 649–652.Google Scholar
  55. Hugas, M., Pages, F., Garriga, M., & Monfort, J. (1998). Application of the bacteriocinogenic Lactobacillus sakei CTC494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiology, 15, 639–650.Google Scholar
  56. Hussein, H., & Bollinger, L. (2005). Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. Journal of Food Protection, 68, 2224–2241.Google Scholar
  57. ICMSF International Commission on Mirobiological Specifications for Foods. (2002). Microorganisms in foods 7: Microbiological testing in food safety management (pp. 285–312). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  58. ILSI Research Foundation; Risk Science Institute. (2005). Achieving continuous improvement in reductions in foodborne listeriosis-a risk-based approach. Journal of Food Protection, 68, 1932–1994.Google Scholar
  59. Ingham, S., Engel, R., Fanslau, M., Schoeller, E., Searls, G., Buege, D., et al. (2005). Fate of Staphylococcus aureus on vacuum-packaged ready-to-eat meat products stored at 21 degrees C. Journal Food Protection, 68, 1911–1915.Google Scholar
  60. Inglis, G., Kalischuk, L., Busz, H., & Kastelic, J. (2005). Colonization of cattle intestines by Campylobacter jejuni and Campylobacter lanienae. Applied and Environmental Microbiology, 71, 5145–5153.Google Scholar
  61. Jacobsen, T., Budde, B., & Koch, A. (2003). Application of Leuconostoc carnosum for biopreservation of cooked meat products. Journal of Applied Microbiology, 95, 242–249.Google Scholar
  62. Jones, R. J. (2004). Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. International Journal of Food Microbiology, 90, 273–282.Google Scholar
  63. Kalinowski, R., Tompkin, R., Bodnaruk, P., & Pruett, W. (2003). Impact of cooking, and subsequent refrigeration on the growth or survival of Clostridium perfringes in cooked meat and poultry products. Journal of Food Protection, 66, 1227–1232.Google Scholar
  64. Kanellos, T., & Burriel, A. (2005). The bactericidal effects of lactic acid and trisodium phosphate on Salmonella enteritidis serotype pt4, total viable counts and counts of Enterobacteriaceae. Food Protection Trends, 25, 346–350.Google Scholar
  65. Katikou, P., Ambrosiadis, I., Georgantelis, D., Koidis, P., & Georgakis, S. (2005). Effect of Lactobacillus-protective cultures with bacteriocins-like inhibitory substances’ producing ability on microbiological, chemical and sensory changes during storage of refrigerated vacuum-packaged sliced beef. Journal of Applied Microbiology, 99, 1303–1313.Google Scholar
  66. Katla, T., Møretrø, T., Sveen, I., Aasen, I., Axelsson, L., & Rørvik, L. (2002). Inhibition of Listeria monocytogenes in chicken cold cuts by addition of sakacin P and sakacin P-producing Lactobacillus sakei. Journal of Applied Microbiology, 93, 191–196.Google Scholar
  67. Koort, J., Coenye, T., Santos, E., Molinero, C., Jaime, I., Rovira, J., et al. (2006). Diversity of Weissella viridescens strains associated with “Morcilla de Burgos”. International Journal of Food Microbiology, 109, 164–168.Google Scholar
  68. Kotzekidou, P., & Bloukas, J. (1998). Microbial and sensory changes in vacuum-packed frankfurter-type sausages by Lactobacillus alimentarius and fate of inoculated Salmonella enteritidis. Food Microbiology 15, 101–111.Google Scholar
  69. Lauková, A., Czikková, S., Laczková, S., & Turek, P., (1999). Use of enterocin CCM4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornád salami. International Journal of Food Microbiology, 52, 115–119.Google Scholar
  70. Leistner, L. (1997). Microbial stability and safety of healthy meat, poultry and fish products. In A. M. Pearson, & T. R. Dutson (Eds.), Production and processing of healthy meat, poultry and fish products (pp. 347–360). London: Blackie Academic and Professional.Google Scholar
  71. Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55, 181–186.Google Scholar
  72. Leroy, F., Verluyten, J., & De Vuyst, L. (2006). Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology, 106, 270–285.Google Scholar
  73. Lin, C., Takeuchi, K., Zhang, L., Dohm, C., Meyer, J., Hall, P., et al. (2006). Cross-contamination between processing equipment and deli meats by Listeria monocytogenes. Journal of Food Protection, 69, 71–79.Google Scholar
  74. Lücke, F. -K. (2000). Utilization of microbes to process and preserve meat. Meat Science, 56, 105–115.Google Scholar
  75. Marshall, K., Niebuhr, S., Acuff, G., Lucia, L., & Dickson, J. (2005). Identification of Escherichia coli O157:H7 meat processing indicators for fresh meat through comparison of the effects of selected antimicrobial interventions. Journal of Food Protection, 68, 2580–2586.Google Scholar
  76. Marzoca, M., Marucci, P., Sica, M., & Alvarez, E. (2004). Listeria monocytogenes detection in different food products and environmental samples of supermarkets of Bahia Blanca city (Argentina). Revista Argentina de Microbiología, 36, 179–181.Google Scholar
  77. McEvoy, J., Doherty, A., Sheridan, J., Blair, I., & McDowell, D. (2003). The prevalence of Salmonella spp. in bovine faecal, rumen and carcass samples at a commercial abattoir. Journal of Applied Microbiology, 94, 693–700.Google Scholar
  78. Meichtri, L., Miliwebsky, E., Gioffre, A., Chinen, I., Baschkier, A., Chillemi, G., et al. (2004). Shiga toxin-producing Escherichia coli in healthy young beef steers from Argentina: Prevalence and virulence properties. International Journal of Food Microbiology, 96, 189–198.Google Scholar
  79. Metaxopoulus, J., Mataragas, M., & Drosinos, E. (2002). Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4ˆC. Journal of Applied Microbiology, 93, 363–373.Google Scholar
  80. Morse, S. S. (2004). Factors and determinants of disease emergence. Revue Scientifique et Technique, 23, 443–451.Google Scholar
  81. Morse, S. S. (2007).Global infectious disease surveillance and health intelligence. Health Affairs, 26, 1069–1077.Google Scholar
  82. Normano, G., Parisi, A., Dambrosio, A., Quaglia, N., Montagna, D., Chiocco, D., et al. (2004). Typing of Escherichia coli O157 strains isolated from fresh sausage. Food Microbiology, 21, 79–82.Google Scholar
  83. Okutani, A., Okada, Y., Yamamoto, S., & Igimi, S. (2004). Nationwide survey of human Listeria monocytogenes infection in Japan. Epidemiology Infection, 132, 769–772.Google Scholar
  84. Omisakin, F., MacRae, M., Ogden, I., & Strachan, N. (2003). Concentration and prevalence of Escherichia coli O157 in cattle feces at slaughter. Applied and Environmental Microbiology, 69, 2444–2447.Google Scholar
  85. Pala, T., & Sevilla, A. (2004). Microbial contamination of carcasses, meat and equipment from an Iberian pork cutting plant. Journal of Food Protection, 67, 1624–1629.Google Scholar
  86. Peccio, A., Autio, T., Korkeala, H., Rosmini, R., & Trevisani, M. (2003). Listeria monocytogenes occurrence and characterization in meat-producing plants. Letters in Applied Microbiology, 37, 234–238.Google Scholar
  87. Phillips, C. A. (1996). Modified atmosphere packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science and Technology, 31, 463–479.Google Scholar
  88. Phillips, D., Jordan, D., Morris, S., Jenson, I., & Sumner, J. (2006). A national survey of the microbiological quality of beef carcasses and frozen boneless beef in Australia. Journal of Food Protection, 69, 1113–1117.Google Scholar
  89. Pitkala, A., Haveri, M., Pyorala, S., Myllys, V., & Honkanen-Buzalski, T. (2004). Bovine mastitis in Finland 2001-prevalence, distribution of bacteria, and antimicrobial resistance. Journal of Dairy Science, 87, 2433–2441.CrossRefGoogle Scholar
  90. Ransom, J., Belk, K., Sofos, J., Stopforth, J., Sacanga, J., & Smith, G. (2003). Comparison of intervention technologies for reducing Escherichia coli O157:H7 on beef cuts and trimmings. Food Protection Trends, 23, 24–34.Google Scholar
  91. Rantsiou, K., Drosinos, E., Gialitaki, M., Urso, R., Krommer, J., Gasparik-Reichardt, J., et al. (2005). Molecular characterization of Lactobacillus species isolated from naturally fermented sausages produced in Greece, Hungary and Italy. Food Microbiology, 22, 19–28.Google Scholar
  92. Rivera-Betancourt, M., Shackelford, S., Arthur, T., Westmoreland, K., Bellinger, G., Rossman, M., et al. (2004). Prevalence of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in two geographically distant commercial beef processing plants in the United States. Journal of Food Protection, 67, 295–302.Google Scholar
  93. Rodriguez, A., Pangloli, P., Richards, H., Mount, J., & Draughton, F. (2006). Prevalence of Salmonella in diverse environmental farm samples. Journal of Food Protection, 69, 2576–2580.Google Scholar
  94. Sabia, C., de Niederhausern, S., Messi, P., Manicardi, G., & Bondi, M. (2003). Bacteriocins-producing Enterococcus casseliflavus IM416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages (“cacciatore”). International Journal of Food Microbiology, 87, 173–179.Google Scholar
  95. Sagoo, S., Little, C., Allen, G., Williamson, K., & Grant, K. (2007). Microbiological safety of retail vacuum-packed and modified-atmosphere-packed cooked meats at end of shelf life. Journal of Food Protection, 70, 943–951.Google Scholar
  96. Sakala, R., Hayashidani, H., Kato, Y., Hirata, T., Makino, Y., Fukushima, A., et al. (2002). Change in the composition of the microflora on vacuum-packaged beef during chiller storage. International Journal of Food Microbiology, 74, 87–99.Google Scholar
  97. Salvat, G., & Fravalo, G. (2004). Risk assessment strategies for Europe: Integrated safety strategy or final product control: Example of Listeria monocytogenes in processed products from pork meat industry. Deutshe Tierärztliche Wochenschrift, 111,331–334.Google Scholar
  98. Samelis, J., & Georgiadou, K. G. (2000). The microbial association of Greek taverna sausage stored at 4 and 10ˆC in air, vacuum or 100%carbon dioxide, and its spoilage potential. Journal of Applied Microbiology, 88, 58–68.Google Scholar
  99. Samelis, J., Björkroth, J., Kakouri, A., & Rementzis, J. (2006). Leuconostoc carnosum associated with spoilage of refrigerated whole cooked hams in Greece. Journal of Food Protection, 69, 2268–2273.Google Scholar
  100. Savell, J., Mueller, S., & Baird, B. (2005). The chilling of carcasses – a review. Meat Science, 70, 449–459.Google Scholar
  101. Scannell, A., Ross, R., Hill, C., & Arendt, E. (2000). An effective lacticin biopreservative in fresh pork sausage. Journal of Food Protection, 63, 370–375.Google Scholar
  102. Shale, K., Jacoby, A., & Plaatjies, Z. (2006). The impact of extrinsic sources on selected indicator organisms in a typical deboning room. International Journal of Environmental Health Research, 16, 263–272.Google Scholar
  103. Shale, K., Lues, J., Venter, P., & Buys, E. (2006). The distribution of staphylococci in bioaerosols from red-meat abattoirs. Journal of Environmental Health, 69, 25–32.Google Scholar
  104. Smerdon, W., Adak, G., O’Brien, S., Gillespie, I., & Reacher, M. (2001). General outbreaks of infectious intestinal disease linked with red meat, England and Wales, 1992–1999. Communicable Disease and Public Health, 4, 259–267.Google Scholar
  105. Spescha, C., Stephan, R., & Zweifel, C. (2006). Microbiological contamination of pig carcasses at different stages of slaughter in two European Union-approved abattoirs. Journal of Food Protection, 69, 2568–2575.Google Scholar
  106. Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antoine van Leeuwenhoek, 70, 331–345.Google Scholar
  107. Talon, R., Leroy-Sétrin, S., & Fadda, S. (2003). Dry fermented sausages. In Y. Hui, L. Goddik, A. Hansen, J. Josephsen, W. Nip, P. Stanfield, et al. (Eds.), Handbook of food and beverage fermentation technology (pp. 397–416). New York: Marcel Dekker.Google Scholar
  108. Thevenot, D., Dernburg, A., & Vernozy-Rozand, C. (2006). An updated review of Listeria monocytogenes in the pork meat industry and its products. Journal of Applied Microbiology, 101, 7–17.Google Scholar
  109. Tilden, J., Young, W., McNamara, A., Custer, C., Boesel, B., Lambert-Fair, M., et al. (1996). A new route of transmission for Escherichia coli: Infection from dry fermented salami. American Journal Public Health, 86(8 Pt 1), 1142–1145.CrossRefGoogle Scholar
  110. Tjener, K., Stahnke, L., Andersen, L., & Martinussen, J. (2004). Growth and production of volatiles by Staphylococcus carnosus in dry sausages: Influence of inoculation level and ripening time. Meat Science, 67, 447–452.Google Scholar
  111. Tu, L., & Mustapha, A. (2002). Reduction of Brochothrix thermosphacta and Salmonella serotype tyyphimurium on vacuum-packaged fresh beef treated with nisin and nisin combined with EDTA. Journal of Food Science, 67, 302–306.Google Scholar
  112. Vaillant, V., de Valk, H., Baron, E., Ancelle, T., Colin, P., Delmas, M., et al. (2005). Foodborne infections in France. Foodborne Pathogens and Disease, 2, 221–232.Google Scholar
  113. Verluyten, J., Leroy, F., & De Vuyst, L. (2004). Effects of different spices used in the production of fermented sausages on growth of and curvacin A production by Lactobacillus curvatus LTH1174. Applied and Environmental Microbiology, 70, 4807–4813.Google Scholar
  114. Vermerien, L., Devlieghere, F., & Debevere, J. (2004). Evaluation of meatborne lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. International Journal of Food Microbiology, 96, 149–164.Google Scholar
  115. Vermeiren, L., Devlieghere, F., Vandekinderen, I., & Devebere, J. (2006). The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocina S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiology, 23, 511–518.Google Scholar
  116. Vignolo, G., Fadda, S., Kairuz, M., Ruiz Holgado, A., & Oliver, G. (1998). Effects of curing additives on the control of Listeria monocytogenes by lactocin 705 in meat slurry. Food Microbiology, 15, 259–264.Google Scholar
  117. Vignolo, G., Palacios, J., Farías, M., Sesma, F., Schillinger, U., Holzapfel, W. et al. (2000). Combined effect of bacteriocins on the survival of various Listeria especies in broth and meat system. Current Microbiology, 41, 410–416.Google Scholar
  118. Wen, Q., & McClane, B. (2004). Detection of enterotoxigenic Clostridium perfringes type A isolates in American retail foods. Applied and Environmental Microbiology, 70, 2685–2691.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Graciela Vignolo
    • 1
  • Silvina Fadda
  • Patricia Castellano
  1. 1.Centro de Referencia para Lactobacilos (CERELA), CONICETChacabuco 145Argentina

Personalised recommendations