Advertisement

Antimicrobial Activity of Bacteriocins and Their Applications

  • Eleftherios H. Drosinos
  • Marios Mataragas
  • Spiros Paramithiotis

Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

Keywords

Lactic Acid Bacterium Listeria Monocytogenes Starter Culture Environmental Microbiology Bacteriocin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., & Storro, I. (2000). Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Applied Microbiology and Biotechnology, 53, 159–166.CrossRefGoogle Scholar
  2. Abriouel, H., Maqueda, M., Galvez, A., Martinez-Bueno, M., & Valdivia, E. (2002). Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Applied and Environmental Microbiology, 68, 1473–1477.CrossRefGoogle Scholar
  3. Ahn, C., & Stiles, M. E. (1990). Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat. Applied and Environmental Microbiology, 56, 2503–2510.Google Scholar
  4. Albano, H., Todorov, S. D., van Reenen, C. A., Hogg, T., Dicks, L. M. T., & Texixeira, P. (2007a). Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from ‘Alheira’, a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology, 116, 239–247.CrossRefGoogle Scholar
  5. Albano, H., Oliveira, M., Aroso, R., Cubero, N., Hogg, T., & Teixeira, P. (2007b). Antilisterial activity of lactic acid bacteria isolated from ‘Alheiras’ (traditional Portuguese fermented sausages): In situ assays. Meat Science, 76, 796–800.CrossRefGoogle Scholar
  6. Ananou, S., Galvez, A., Martinez-Bueno, M., Maqueda, M., & Valdivia, E. (2005). Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology, 99, 1364–1372.CrossRefGoogle Scholar
  7. Ananou, S., Maqueda, M., Martinez-Bueno, M., Galvez, A., & Valdivia, E. (2005). Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Science, 71, 549–556CrossRefGoogle Scholar
  8. Ananou, S., Valdivia, E., Martínez Bueno, M., Galvez, A., & Maqueda, M. (2004). Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aureus CECT 976 strain. Journal of Applied Microbiology, 97, 48–56.CrossRefGoogle Scholar
  9. Aymerich, T., Holo, H., Havarstein, L.S., Hugas, M., Garriga, M., & Nes, I. F. (1996). Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology, 62, 1676–1682.Google Scholar
  10. Aymerich, T., Artigas, M. G., Garriga, M., Monfort, J. M., & Hugas, M. (2000a). Effect of sausage ingredients and additives on the production of enterocins A and B by Enterococcus faecium CTC492.Optimization of in vitro production and anti-listerial effect in dry.fermented sausages. Journal of Applied Microbiology, 88, 686–694.CrossRefGoogle Scholar
  11. Aymerich, M. T., Garriga, M., Monford, J. M., Nes, I., & Hugas, M. (2000b). Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: characterization of bacteriocins. Food Microbiology, 17, 33–45.CrossRefGoogle Scholar
  12. Bakes, S. H., Kitis, F. Y. E., Quattlebaum, R. G., & Barefoot, S. F. (2004). Sensitization of Gram-negative and Gram-positive bacteria to jenseniin G by sublethal injury. Journal of Food Protection, 67, 1009–1013.Google Scholar
  13. Barcena, B. J. M., Sineriz, F., Gonzalez de Llano, D., Rodriguez, A., & Suarez, J. E. (1998). Chemo-stat production of plantaricin C by Lactobacillus plantarum LL41. Applied and Environmental Microbiology, 57, 3512–3514.Google Scholar
  14. Benkerroum, N., Daoudi, A., Hamraoui, T., Ghalfi, H., Thiry, C., Duroy, M., Evrart, P., Roblain, D., & Thonart, P. (2005). Lyophilized preparations of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. Journal of Applied Microbiology, 98, 56–63.CrossRefGoogle Scholar
  15. Benthin, S., Schulze, U., Nielsen, J., & Villadsen, J. (1994). Growth energetics of Lactococcus cremoris FD1 during energy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chemical Engineering Science, 49, 589–609.CrossRefGoogle Scholar
  16. Bhunia, A. K., Johnson, M. C., Ray, B., & Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. Journal of Applied Bacteriology, 70, 25–33.Google Scholar
  17. Biswas, S. R., Ray, P., Johnson, M. C., & Ray, B. (1991). Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Applied and Environmental Microbiology, 57, 1265–1267.Google Scholar
  18. Boziaris, I. S., Humpheson, I., & Adams, M. R. (1998). Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. International Journal of Food Microbiology, 43, 7–13.CrossRefGoogle Scholar
  19. Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification, and meat application experiments.International Journal of Food Microbiology, 83, 171–184.CrossRefGoogle Scholar
  20. Campanini, M., Pedrazzoni, I., Barbuti, S., & Baidini, P. (1993). Behaviour of Listeria monocytogenes during the maturation of naturally and artificially contaminated salami: Effect of lactic-acid bacteria starter cultures lnternational Journal of Food Microbiology, 21, 169–175.CrossRefGoogle Scholar
  21. Casaus, P., Nilsen, T., Cintas, L. M., Nes, I. F., Hernandez, P. E., & Holo, H. (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology, 143, 2287–2294.Google Scholar
  22. Chatterjee, C., Paul, M., Xie, L., & van der Donk, W. A. (2005). Biosynthesis and mode of action of Lantibiotics. Chemistry Reviews, 105, 633–683.CrossRefGoogle Scholar
  23. Cintas, L. M., Rodriguez, J. M., Fernandez, M. F., Sletten, K., Nes, I. F., Hernandez, P. E., & Holo, H. (1995). Isolation and Characterization of Pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Applied and Environmental Microbiology, 61, 263–2648.Google Scholar
  24. Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63, 4321–4330.Google Scholar
  25. Cintas, L. M., Casaus, P., Holo, H., Hernandez, P. E., Nes, I. F., & Havarstein, L. S. (1998). Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, and related to staphylococcal hemolysins. Journal of Bacteriology, 180, 1988–1994.Google Scholar
  26. Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1–20.CrossRefGoogle Scholar
  27. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.CrossRefGoogle Scholar
  28. Cutter, C. N., & Siragusa, G. R. (1994). Decontamination of beef carcass tissue with nisin using a pilot scale model carcass washer. Food Microbiology, 11, 481–489.CrossRefGoogle Scholar
  29. Daba, H., Lacroix, C., Huang, J., & Simard, R. (1993). Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Applied Microbiology and Biotechnology, 39, 166–173.CrossRefGoogle Scholar
  30. Daeschel, M. A., Mcguire, J., & Almakhla, H. (1992). Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. Journal of Food Protection, 55, 731–735.Google Scholar
  31. De Vuyst, L., Callewaert, R., & Crabbe, K. (1996). Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin under unfavourable growth conditions. Microbiology, 142, 817–827.Google Scholar
  32. De Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. London: Blackie Academic and Professional.Google Scholar
  33. Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.CrossRefGoogle Scholar
  34. Dicks, L. M. T., Mellett, F. D., & Hoffman, L. C. (2004). Use of bacteriocin-producing starter cultures of Lactobacillus plantarum and Lactobacillus curvatus in production of ostrich meat salami. Meat Science, 66, 703–708.CrossRefGoogle Scholar
  35. Dominguez, A. P. M., Bimani, D., Caldera-Olivera, F., & Brandelli, A. (2007). Cerein 8 production in soybean protein using response surface methodology. Biochemical Engineering Journal, 35, 238–243.CrossRefGoogle Scholar
  36. Drosinos, E. H., Mataragas, M., & Metaxopoulos, J. (2005a). Biopreservation: A new direction towards food safety. In A. P. Riley (Ed.), New developments in food policy, control and research (pp. 31–64). New York: Nova Science Publishers, Inc.Google Scholar
  37. Drosinos, E. H., Mataragas, M., & Metaxopoulos, J. (2006). Modeling of growth and bacteriocin production by Leuconostoc mesenteroides E131. Meat Science, 74, 690–696.CrossRefGoogle Scholar
  38. Drosinos, E. H., Mataragas, M., Nasis, P., Galiotou, M., & Metaxopoulos, J. (2005b). Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. Journal of Applied Microbiology, 99, 1314–1323.CrossRefGoogle Scholar
  39. Enan, G., El-Essawy, A. A., Uyttendaele, M., & Debevere, J. (1996). Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: Characterization production and bactericidal action of plantaricin UG1. International Journal of Food Microbiology, 30, 189–215.CrossRefGoogle Scholar
  40. Fang, T. J., & Lin, L. W. (1994). Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination. Journal of Food Protection, 57, 479–485.Google Scholar
  41. Foegeding, P. M., Thomas, A. B., Pilkington, D. H., & Klaenhammer, T. R. (1992). Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage productiont. Applied and Environmental Microbiology, 58, 884–890.Google Scholar
  42. Franz, C. M. A. P., van Belkum, M. J., Holzapfel, W. H., Abriouel, H., & Galvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews, 31, 293–310.CrossRefGoogle Scholar
  43. Galvez, A., Abriouel, H., Lopez, R. L., & Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology (in press) doi:10.1016/j.ijfoodmicro.2007.06.001.Google Scholar
  44. Garcia, M. T., Ben Omar, N., Lucas, R., Perez-Pulido, R., Castro, A., Grande, M. J., Martinez-Canamero, M., & Galvez, A. (2003). Antimicrobial activity of enterocin EJ97 on Bacillus coagulans CECT 12. Food Microbiology, 20, 533–536.CrossRefGoogle Scholar
  45. Garcia, M. T., Lucas, R., Abriouel, H., Ben Omar, N., Perez, R., Grande, M. J., Martinez-Canamero, M., & Galvez, A. (2004a). Antimicrobial activity of enterocin EJ97 against ‘Bacillus macroides/Bacillus maroccanus’ isolated from zucchini purée. Journal of Applied Microbiology, 97, 731–737.CrossRefGoogle Scholar
  46. Garcia, M. T., Martinez Canamero, M., Lucas, R., Ben Omar, N., Perez Pulido, R., & Galvez, A. (2004b). Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. International Journal of Food Microbiology, 90, 161–170.CrossRefGoogle Scholar
  47. Ghalfi, H., Benkerroum, N., Doguiet, D. D. K., Bensaid, M., & Thonart, P. (2007). Effectiveness of cell-adsorbed bacteriocin produced by Lactobacillus curvatus CWBI-B28 and selected essential oils to control Listeria monocytogenes in pork meat during cold storage. Letters in Applied Microbiology, 44, 268–273.CrossRefGoogle Scholar
  48. Gill, A. O., & Holley, R. A. (2003). Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24ˆC. International Journal of Food Microbiology, 80, 251–259.CrossRefGoogle Scholar
  49. Grande, Ma. J., Lucas, R., Abriouel, H., Valdivia, E., Ben Omar, N., Maqueda, M., Martinez-Bueno, M., Martinez-Canamero, M., & Galvez, A. (2006). Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. International Journal of Food Microbiology, 106, 185–194.CrossRefGoogle Scholar
  50. Grande, Ma. J., Lucas, R., Abriouel, H., Valdivia, E., Ben Omar, N., Maqueda, M., Martinez-Canamero, M., & Galvez, A. (2007). Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. Journal of Food Protection, 70, 405–411.Google Scholar
  51. Guerra, N. P., Macias, C. L., Agrasar, A. T., & Castro, L. P. (2005). Development of a bioactive packaging cellophane using Nisaplin as biopreservative agent. Letters in Applied Microbiology, 40, 106–1610.CrossRefGoogle Scholar
  52. Hampikyan, H., & Ugur, M. (2007). The effect of nisin on L. monocytogenes in Turkish fermented sausages (sucuks). Meat Science, 76, 327–332.CrossRefGoogle Scholar
  53. Harding, C. D., & Saw, B. G. (1990). Antimicrobial activity of Leuconostoc gelidum against closely related species and Listeria monocytogenes. Journal of Applied Bacteriology, 69, 648–654.Google Scholar
  54. Holck, A. L., Axelsson, L., Huhne, K., & Krockel, L. (1994). Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiology Letters, 115, 143–150.CrossRefGoogle Scholar
  55. Holck, A., Axelsson, L., & Schillinger, U. (1996). Divergicin 750, a novel bacteriocin produced by Carnobacterium divergens 750. FEMS Microbiology Letters, 136, 163–168.CrossRefGoogle Scholar
  56. Hugas, M. (1998). Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Science, 49, S139–S150.CrossRefGoogle Scholar
  57. Hugas, M., Garriga, M., Pascual, M., Aymerich, M. T., & Monfort, J. M. (2002). Enhancement of sakacin K activity against Listeria monocytogenes in fermented sausages with pepper or manganese as ingredients. Food Microbiology, 19, 519–528.CrossRefGoogle Scholar
  58. Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E., Hillier, A. J., Wettenhall, R. E. H., Hickey, M. W., & Coventry, M. J. (1996). Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Applied and Environmental Microbiology, 62, 2897–2903.Google Scholar
  59. Joerger, M. C., & Klaenhammer, T. R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined, bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology, 167, 439–446.Google Scholar
  60. Joosten, H. M. L. J., & Nunez, M. (1995). Adsorption of nisin and enterocin 4 to polypropylene and glass surface and its prevention by tween 80. Letters in Applied Microbiology, 21, 389–392.CrossRefGoogle Scholar
  61. Jydegaard, A.-M., Gravesen, A., & Knøchel, S. (2000). Growth condition-related response of Listeria monocytogenes 412 to bacteriocin inactivation. Letters in Applied Microbiology, 31, 68–72.CrossRefGoogle Scholar
  62. Kaiser, A. L., & Montville, T. J. (1993). The influence of pH and growth rate on the production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. Journal of Applied Bacteriology, 75, 536–540.Google Scholar
  63. Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., & Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, Circularin A and Closticin 574. Applied and Environmental Microbiology, 69, 1589–1597.CrossRefGoogle Scholar
  64. Kim, W. S., Hall, R. J., & Dunn, N. W. (1997). The effect of nisin concentration and nutrient depletion on nisin production of Lactobacillus lactis. Applied Microbiology and Biotechnology, 50, 429–433.CrossRefGoogle Scholar
  65. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12, 39–86.Google Scholar
  66. Krier, F., Revol-Junelles, A. M., & Germain, P. (1998). Influence of temperature and pH production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Applied Microbiology and Biotechnology, 50, 359–363.CrossRefGoogle Scholar
  67. Lahti, E., Johansson, T., Honkanen-Buzalski, T., Hill, P., & Nurmi, E. (2001). Survival and detection of Escherichia coli O157:H7 and Listeria monocytogenes during the manufacture of dry sausage using two different starter cultures. Food Microbiology, 18, 75–85.CrossRefGoogle Scholar
  68. Laukova, A., Czikkova, S., Laczkova, S., & Turek, P. (1999). Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornad salami.International Journal of Food Microbiology, 52, 115–119.CrossRefGoogle Scholar
  69. Lee, S., Iwata, T., & Oyagi, H. (1993). Effects of salts on conformational change of basic amphipathic peptides from UPβ -structure to UPα -helix in the presence of phospholipid liposomes and their channel-forming ability. Biochimica et Biophysica Acta, 1151, 75–82.CrossRefGoogle Scholar
  70. Lejeune, R., Callewaert, R., Crabbe, K., & De Vuyst, L. (1998). Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. Journal of Applied Microbiology, 84, 159–168.CrossRefGoogle Scholar
  71. Leroy, F., & De Vuyst, L. (1999). Temperature and pH conditions that prevail during the fermentation of sausages are optimal for the production of the antilisterial bacteriocin sakacin K. Applied and Environmental Microbiology, 65, 974–981.Google Scholar
  72. Leroy, F., & De Vuyst, L. (2003). A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Applied and Environmental Microbiology, 69, 1093–1099.CrossRefGoogle Scholar
  73. Leroy, F., Verluyten, J., Messens, W., & De Vuyst, L. (2002). Modelling contributes to the understanding of the different behaviour of bacteriocin-producing strains in a meat environment. International Dairy Journal, 12, 247–253.CrossRefGoogle Scholar
  74. Luchansky, J. B., & Call, J. E. (2004). Evaluation of nisin-coated cellulose casings for the control of Listeria monocytogenes inoculated onto the surface of commercially prepared frankfurters. Journal of Food Protection, 67, 1017–1021.Google Scholar
  75. Luchansky, J. B., Glass, K. A., Harsono, K. D., Degnan, A. J., Faith, N. G., Cauvin, B., Baccus-Taylor, G., Arihara, K., Bater, B., Maurer, A. J., & Cassens, R. G. (1992). Genomic analysis of pediococcus starter cultures used to control Listeria monocytogenes in Turkey summer sausage. Applied and Environmental Microbiology, 58, 3053–3059.Google Scholar
  76. Lyon, W. J., Olson, D. G., & Murano, E. A. (1995). Isolation and purification of enterocin EL1, a bacteriocin produced by a strain of Enterococcus faecium. Journal of Food Protection, 58, 890–898.Google Scholar
  77. Mataragas, M., Drosinos, E. H., & Metaxopoulos, J. (2003a). Antagonistic activity of lactic acid bacteria against Listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4± 2ˆC. Food Microbiology, 20, 259–265.CrossRefGoogle Scholar
  78. Mataragas, M., Drosinos, E. H., Tsakalidou, E., & Metaxopoulos, J. (2004). Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. [International Journal of General and Molecular Microbiology] Antonie van Leeuwenhoek, 85, 191–198.CrossRefGoogle Scholar
  79. Mataragas, M., Metaxopoulos, J., Galiotou, M., & Drosinos, E. H. (2003b). Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science, 64, 265–271.CrossRefGoogle Scholar
  80. Matsusaki, H., Endo, N., Sonomoto, K., & Ishikazi, A. (1996). Lantibiotic nisin Z fermentative production by Lactobacillus lactis IO-1: Relationship between production of the lantibiotic and lactate and cell growth. Applied Microbiology and Biotechnology, 45, 36–40.CrossRefGoogle Scholar
  81. McKellar, R. C. (1997). A heterogeneous population model for the analysis of bacterial growth kinetics. International Journal of Food Microbiology, 36, 179–186.CrossRefGoogle Scholar
  82. Meghrous, J., Huot, E., Quittelier, M., & Petitdemange, H. (1992). Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Research in Microbiology, 143, 879–890.CrossRefGoogle Scholar
  83. Messens, W., Neysens, P., Vansieleghem, W., Vanderhoeven, J., & De Vuyst, L. (2002). Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Applied and Environmental Microbiology, 68, 1431–1435.CrossRefGoogle Scholar
  84. Messens, W., Verluyten, J., Leroy, F., & De Vuyst, L. (2003). Modeling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. International Journal of Food Microbiology, 81, 41–52.CrossRefGoogle Scholar
  85. Messi, P., Bondi, M., Sabia, C., Battini, R., & Manicardi G. (2001). Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. International Journal of Food Microbiology, 64, 193–198.CrossRefGoogle Scholar
  86. Millette, M., Le Tien, C., Smoragiewicz, W., & Lacroix, M. (2007). Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control, 18,878–884.CrossRefGoogle Scholar
  87. Moretro, T., Aasen, I. M., Storro, I., & Axelsson, L. (2000). Production of sakacin P by Lactobacillus sakei in a completely defined medium. Journal of Applied Microbiology, 88, 536–545.CrossRefGoogle Scholar
  88. Mortvedt, C. I., Nissen-Meyer, J., Sletten, K., & Nes I. F. (1991). Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Applied and Environmental Microbiology, 57, 1829–1834.Google Scholar
  89. Mortvedt-Abildgaard, C., Nissen-Meyer, J., Jelle, B., Grenov, B., Skaugen, M., & Nes, I. F. (1995). Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake. Applied and Environmental Microbiology, 61, 175–179.Google Scholar
  90. Motlagh, A. M., Bhunia, A. K., Szostek, F., Hansen, T. R., Johnson, M. C., & Ray B. (1992). Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Letters in Applied Microbiology, 15, 45–48.CrossRefGoogle Scholar
  91. Murray, M., & Richard, J. A. (1997). Comparative study of the antilisterial activity of nisin A and pediocin AcH in fresh ground pork stored aerobically at 5ˆC. Journal of Food Protection, 60, 1534–1540.Google Scholar
  92. Nagao, J. -I., Asaduzzaman, S. M., Aso, Y., Okuda, K. -I., Nakayama, J., & Sonomoto, K. (2006). Lantibiotics: Insight and foresight for new paradigm. Journal of Bioscience and Bioengineering, 102, 139–149.CrossRefGoogle Scholar
  93. Natrajan, N., & Sheldon, B. W. (2000). Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. Journal of Food Protection, 63, 1189–1196.Google Scholar
  94. Nes, I. F., Diep, D. B., Havarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 70, 113–128.CrossRefGoogle Scholar
  95. Nes, I. F., & Holo, H. (2000). Class II antimicrobial peptides from lactic acid bacteria. Biopolymers (Peptide Science), 55, 50–61.CrossRefGoogle Scholar
  96. Nielsen, J., Nikolajsen, K., & Villadsen, J. (1991). Structured modelling of a microbial system II. Experimental verification of a structured lactic acid fermentation model. Biotechnology and Bioengineering, 38, 11–23.CrossRefGoogle Scholar
  97. Nieto-Lozano, J. C., Reguera-Useros, J. I., Pelaez-Martinez, M., del, C., & Hardisson de la Torr, A. (2006). Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Science, 72, 57–61.Google Scholar
  98. Nilsson, L., Chen, Y., Chikindas, M. L., Huss, H. H., Gram, L., & Montville, T. J. (2000). Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Applied and Environmental Microbiology, 66, 769–774.CrossRefGoogle Scholar
  99. Noonpakdee, W., Santivarngkna, C., Jumriangrit, P., Sonomoto, K., & Panyim, S. (2003). Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. International Journal of Food Microbiology, 81, 137–145.CrossRefGoogle Scholar
  100. Osmanagaoglu, O. (2007). Detection and characterization of Leucocin OZ, a new anti-listerial bacteriocin produced by Leuconostoc carnosum with a broad spectrum of activity. Food Control, 18, 118–123.CrossRefGoogle Scholar
  101. Parente, E., & Hill, C. (1992). A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. Journal of Applied Bacteriology, 73, 290–298.Google Scholar
  102. Parente, E., & Ricciardi, A. (1994). Influence of pH on the production of enterocin 1146 during batch fermentation. Letters in Applied Microbiology, 19, 12–15.CrossRefGoogle Scholar
  103. Parente, E., & Ricciardi, A. (1999). Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied Microbiology and Biotechnology, 52, 628–638.CrossRefGoogle Scholar
  104. Patton, G. C., & van der Donk, W. A. (2005). New developments in lantibiotic biosynthesis and mode of action. Current Opinion in Microbiology, 8, 543–551.CrossRefGoogle Scholar
  105. Pawar, D. D., Malik, S. V. S., Bhilegaonkar, K. N., & Barbuddhe, S. B. (2000). Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Science, 56, 215–219.CrossRefGoogle Scholar
  106. Prema, P., Bharathy, S., Palavesam, A., Sivasubramanian, M., & Immanuel G. (2006). Detection, purification and efficacy of warnerin produced by Staphylococcus warneri. World Journal of Microbiology and Biotechnology, 22, 865–872.CrossRefGoogle Scholar
  107. Rekhif, N., Atrih, A., & Lefebvre, G. (1994). Selection and properties of spontaneous mutants of Listeria monocytogenes ATTC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Current Microbiology, 28, 237–242.CrossRefGoogle Scholar
  108. Rodriguez, J. M., Cintas, L. M., Casaus, P., Horn, N., Dodd, H. M., Hernandez, P. E., & Gasson, M. J. (1995). Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages. Journal of Applied Bacteriology, 78, 109–115.Google Scholar
  109. Rollini, M., & Manzoni, M. (2005). Influence of different fermentation parameters on glutathione volumetric productivity by Saccharomyces cerevisiae. Process Biochemistry, 41, 1501–1505.CrossRefGoogle Scholar
  110. Schneider, R., Fernandez, F. J., Aquilar, M. B., Guerrero-Legarreta, I., Alpuche-Solis, A., & Ponce-Alquicira, E. (2006). Partial characterization of a class IIa pediocin produced by Pediococcus parvulus 133 strain isolated from meat (Mexical ‘chorizo’). Food Control, 17, 909–915.CrossRefGoogle Scholar
  111. Schillinger, U., & Luecke, F. K. (1987). Lactic acid bacteria on vacuum packaged meat and their influence on shelf life. Fleischwirtschaft, 67, 1244–1248.Google Scholar
  112. Schillinger, U., & Luecke, F. K. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55, 1901–1906.Google Scholar
  113. Siragusa, G. R., Cutter, C. N., & Willett, J. L. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 61, 229–235.CrossRefGoogle Scholar
  114. Sobrino, O. J., Rodriguez, J. M., Moreira, W. L., Cintas, L. M., Fernandez, M. F., Sanz, B., & Hernandez, P.E. (1992). Sakacin M, a bacteriocin-like substance from Lactobacillus sake 148. International Journal of Food Microbiology, 16, 215–225.CrossRefGoogle Scholar
  115. Stiles, M. E., & Hastings, J. W. (1991). Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends in Food Science and Technology, 2, 247–251.CrossRefGoogle Scholar
  116. Taylor, J. I., Somer, E. B., & Kruger, L. A. (1985). Antibotulinal effectiveness of nisin-nitrite combinations in culture medium and chicken frankfurter emulsions. Journal of Food Protection, 48, 234–249.Google Scholar
  117. van Belkum, M. J., & Stiles, M. E. (2000). Nonlantibiotic antimicrobial peptides from lactic acid bacteria. Natural Product Reports, 17, 323–365.CrossRefGoogle Scholar
  118. Verluyten, J., Leroy, F., & de Vuyst, L. (2004). Effects of different spices used in production of fermented sausages on growth of and curvacin A production by Lactobacillus curvatus LTH 1174. Applied and Environmental Microbiology, 70, 4807–4813.CrossRefGoogle Scholar
  119. Verluyten, J., Messens, W., & De Vuyst, L. (2003). The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions. Applied and Environmental Microbiology, 69, 3833–3839.CrossRefGoogle Scholar
  120. Verluyten, J., Messens, W., & De Vuyst, L. (2004). Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Applied and Environmental Microbiology, 70, 2271–2278.CrossRefGoogle Scholar
  121. Vermeiren, L., Devlieghere, F., Vandekinderen, I., & Debevere, J. (2006). The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiology, 23, 511–518.CrossRefGoogle Scholar
  122. Vignolo, G., Fadda, S., de Kairuz, M. N., Holgado, A. P., de, R., & Oliver, G. (1998). Effects of curing additives on the control of Listeria monocytogenes by lactocin 705 in meat slurry. Food Microbiology, 15, 259–264.CrossRefGoogle Scholar
  123. Villani, F., Sannino, L., Moschetti, G., Mauriello, G., Pepe, O., Amodio-Cocchieri R., & Coppola, S. (1997). Partial characterization of an antagonistic substance produced by Staphylococcus xylosus 1E and determination of the effectiveness of the producer strain to inhibit Listeria monocytogenes in Italian sausages. Food Microbiology, 14, 555–566.CrossRefGoogle Scholar
  124. Xie, L., & van der Donk, W. A. (2004). Post-translational modifications during lantibiotic biosynthesis. Current Opinion in Chemical Biology, 8, 498–507.CrossRefGoogle Scholar
  125. Xiraphi, N., Georgalaki, M., Van Driessche, G., Devreese, B., Van Beeumen, J., Tsakalidou, E., Metaxopoulos, J., & Drosinos, E. H. (2006). Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. [International Journal of General and Molecular Microbiology] Antonie van Leeuwenhoek, 89, 19–26.CrossRefGoogle Scholar
  126. Yand, R., & Ray, B. (1994). Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiology, 11, 281–291.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Eleftherios H. Drosinos
    • 1
  • Marios Mataragas
  • Spiros Paramithiotis
  1. 1.Laboratory of Food Quality Control and Hygiene, Department of FoodScience and TechnologyAgricultural University of AthensGreece

Personalised recommendations