Immunology-Based Techniques for the Detection of Veterinary Drug Residues in Foods

  • Milagro Reig
  • Fidel Toldrá

Veterinary drugs are used in farm animals, via the feed or the drinking water, to prevent the outbreak of diseases or even for the treatment of diseases. However, the growth of animals may be promoted through the use of hormones and antibiotics. Depending on the type of residue and the application and washing conditions, these substances or its metabolites may remain in meat and other foods of animal origin and may cause adverse effects on consumers’ health. This is the main reason why its use is strictly regulated or even banned (case of the European Union) in different countries. Antibiotics typically used for growth promotion include chloramphenicol, nitrofurans, and enrofloxacin but others like sulphonamides, macrolides etc. may also be used (Reig & Toldrá, 2007).


Molecular Imprint Polymer Chicken Muscle Surface Plasmon Resonance Biosensor Veterinary Drug Residue Molecularly Imprint Solid Phase Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashwin, H. M., Stead, S. L., Taylor, J. C., Startin, J. R., Richmond, S. F., Homer, V., et al. (2005). Development and validation of screening and confirmatory methods for the detection of chloramphenicol and chloramphenicol glucuronide using SPR biosensor and liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 529, 103–108.CrossRefGoogle Scholar
  2. Baggiani, C., Anfossi, L., & Giovannoli, C. (2007). Solid phase extraction of food contaminants using molecular imprinted polymers. Analytica Chimica Acta, 591, 29–39.CrossRefGoogle Scholar
  3. Baxter, G. A., O’Connor, M. C., Haughey, S. A., Crooks, S. R. H., & Elliott, C. T. (1999). Evaluation of an immunobiosensor for the on-site testing of veterinary drug residues at an abattoir. Screening for sulfamethazine in pigs. Analyst, 124, 1315–1318.Google Scholar
  4. Berggren, C., Bayoudh, S., Sherrington, D., & Ensing, K. (2000). Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine. Journal of Chromatography A, 889, 105–110.CrossRefGoogle Scholar
  5. Bergweff, A. A. (2005). Rapid assays for detection of residues of veterinary drugs. In A. van Amerongen, D. Barug, & M. Lauwars (Eds.), Rapid methods for biological and chemical contaminants in food and feed (pp. 259–292). Wageningen: Academic Publishers.Google Scholar
  6. Bienemann-Ploum, M., Korpimaki, T., Haasnoot, W., & Kohen, F. (2005). Comparison of multi sulfonamide biosensor immunoassays. Analytica Chimica Acta, 529, 115–122.CrossRefGoogle Scholar
  7. Boyd, B., Bjork, H., Billing, J., Shimelis, O., Axelsson, S., Leonora, M., et al. (2007). Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers. Journal of Chromatography A, 1174, 63–71.CrossRefGoogle Scholar
  8. Campbell, H. M., & Armstrong, J. F. (2007). Determination of zearalenone in cereal grains, animal feed, and feed ingredients using immunoaffinity column chromatography and liquid chromatography: Interlaboratory study. Journal of AOAC International, 90, 1610–1622.Google Scholar
  9. Cerniglia, C. E., & Kotarski, S. (1999). Evaluation of veterinary drug residues in food for their potential to affect human intestinal microflora. Regulatory Toxicology and Pharmacology 29, 238–261.CrossRefGoogle Scholar
  10. Cerniglia, C. E., & Kotarski, S. (2005). Approaches in the safety evaluations of veterinary antimicrobial agents in food to determine the effects on the human intestinal microflora. Journal of Veterinary Pharmacology and Therapy, 28, 3–20.CrossRefGoogle Scholar
  11. Chadwick, R. W., George, S. E., & Claxton, L. D. (1992). Role of gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metabolism Reviews, 2, 425–492.CrossRefGoogle Scholar
  12. Chifang, P., Chuanlai, X., Zhengyu, J., Xiaogang, C., & Liying, W. (2006). Determination of anabolic steroid residues (medroxyprogesterone acetate) in pork by ELISA and comparison with liquid chromatography tandem mass spectrometry. Journal of Food Science, 71, C044–C050.Google Scholar
  13. Cinquina, A. L. Longo, F., Anastasi, G., Giannetti, L., & Cozzani, R. (2003). Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. Journal of Chromatography A, 987, 227–233.CrossRefGoogle Scholar
  14. Connolly, L., Thompson, C. S., Haughey, S. A., Traynor, I. M., Tittlemeier, S., & Elliot, C. T. (2007). The development of a multi.nitorimidazole residue analysis assay by optical biosensor via a proof of concept project to develop and assess a prototype test kit. Analytica Chimica Acta, 598, 155–161.CrossRefGoogle Scholar
  15. Cooper, J., Delahaut, P., Fodey, T. L., & Elliott, C. T. (2004). Development of a rapid screening test for veterinary sedatives and the beta-blocker carazolol in porcine kidney by ELISA. Analyst, 129, 169–174.CrossRefGoogle Scholar
  16. Cooper, K. M., Caddell, A., Elliott, C. T., & Kennedy, D. G. (2004). Production and characterisation of polyclonal antibodies to a derivative of 3-amino-2-oxazolidinone, a metabolite of the nitrofuran furazolidone. Analytica Chimica Acta, 520, 79–86.CrossRefGoogle Scholar
  17. Cooper, K. M., Ribeiro, L., Alves, P., Vozikis, V., Tsitsamis, S., Alfredssonk, G., et al. (2003). Interlaboratory ring test of time-resolved fluoroimmunoassays for zeranol and a-zearalenol and comparison with zeranol test kits. Food Additives and Contaminants, 20, 804–812.CrossRefGoogle Scholar
  18. Cooper, K. M., Samsonova, J. V., Plumpton, L., Elliott, C. T., & Kennedy, D. G. (2007a). Enzyme immunoassay for semicarbazide—The nitrofuran metabolite and food contaminant. Analytica Chimica Acta, 592, 64–71.CrossRefGoogle Scholar
  19. Cooper, K. M., Samsonova, J. V., Plumpton, L., Elliott, C. T., & Kennedy, D. G. (2007b). Enzyme immunoassay for semicarbazide—The nitrofuran metabolite and food contaminant. Analytica Chimica Acta, 592, 64–71.CrossRefGoogle Scholar
  20. Crooks, S. R. H., Baxter, G. A., O’Connor, M. C., & Elliot, C. T. (1998). Immunobiosensor – an alternative to enzyme immunoassay screening for residues of two sulfonamides in pigs. Analyst, 123, 2755–2757.CrossRefGoogle Scholar
  21. De Wasch, K., Okerman, L., Croubels, S., De Brabander, H., Van Hoof, J., & De Backer, P. (2001). Detection of residues of tetracycline antibiotics in pork and chicken meat: Correlation between results of screening and confirmatory tests. Analyst, 123, 2737–2741.CrossRefGoogle Scholar
  22. Draisci, R. delli Quadri, F., Achene, L., Volpe, G., Palleschi, L., & Palleschi, G. (2001). A new electrochemical enzyme’linked immunosorbent assay for the screening of macrolide antibiotic residues in bovine meat. Analyst, 126, 1942–1946.CrossRefGoogle Scholar
  23. Dumont, V., Huet, A. C., Traynor, I., Elliott, C., & Delahaut, P. (2006). A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Analytica Chimica Acta, 567, 179–183.CrossRefGoogle Scholar
  24. EC. (1996). Council Directive 96/23/EEC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products. Official Journal of the European Community L, 125, 10.Google Scholar
  25. Elliott, C. T., Baxter, G. A., Hewitt, S. A., Arts, C. J. M., van Baak, M., Hellenas, K. E., et al. (1998). Use of biosensors for rapid drug residue analysis without sample deconjugation or clean-up: a possible way forward. Analyst, 123, 2469–2473.CrossRefGoogle Scholar
  26. Ferguson, J., Baxter, A., Young, P., Kennedy, G., Elliott, C., Weigel, S., et al. (2005). Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex$ˆledR$ kit chloramphenicol. Analytica Chimica Acta, 529, 109–113.CrossRefGoogle Scholar
  27. Gaudin, V., Cadieu, N., & Maris, P. (2003). Inter-laboratory studies for the evaluation of ELISA kits for the detection of chloramphenicol residues in milk and muscle. Food and Agricultural Immunology, 15, 143–157.CrossRefGoogle Scholar
  28. Godfrey, M. A. J. (1998). Immunoafinity extraction in veterinary residue analysis-a regulatory viewpoint. Analyst, 123, 2501–2506.CrossRefGoogle Scholar
  29. Gründig, B., & Renneberg, R. (2002). Chemical and biochemical sensors. In A. Katerkamp, B. Gründig, & R. Renneberg (Eds.), Ullmann’s Encyclopedia of Industrial Chemistry (pp. 87–98). Verlag: Wiley-VCH.Google Scholar
  30. Guo, J. J., Chou, H. N., & Liao, I. C. (2003). Disposition of 3-(4-cyano-2-oxobutylidene amino)- 2-oxazolidone, a cyano-metabolite of furazolidone, in furazolidone-treated grouper. Food Additives and Contaminants, 20, 229–236.CrossRefGoogle Scholar
  31. Haasnoot, W., GerÇek, H., Cazemier, G., & Nielen, M. W. F. (2007). Biosensor immunoassay for flumequine in broiler serum and muscle. Analytica Chimica Acta, 586, 312–318.CrossRefGoogle Scholar
  32. Hahnau, S., & Jülicher, B. (1996). Evaluation of commercially available ELISA test kits for the detection of clenbuterol and other $\UPbeta $-agonists. Food Additives and Contaminants, 13, 259–274.Google Scholar
  33. Haughey, S. A., & Baxter, C. A. (2006). Biosensor screening for veterinary drug residues in foodstuffs. Journal of AOAC International, 89, 862–867.Google Scholar
  34. He, J. H., Hou, X. L., Jiang, H. Y., & Shen, J. Z. (2005). Multiresidue analysis of avermectins in bovine liver by immunoaffinity column cleanup procedure and liquid chromatography with fluorescence detector. Journal of AOAC International, 88, 1099–1103.Google Scholar
  35. Haughey, S. A., Baxter, G. A., Elliot, C. T., Persson, B., Jonson, C., & Bjurling, P. (2001). Determination of clenbuterol residues in bovine urine by optical immunobiosensor assay. Journal of AOAC International, 84, 1025–1030.Google Scholar
  36. Huet, A. C. Mortier, L., Daeseleire, E., Fodey, T., Elliott, C. T., & Delahaut, P. (2005). Development of an ELISA screening test for nitroimidazoles in egg and chicken muscle Analytica Chimica Acta, 534, 157–162.CrossRefGoogle Scholar
  37. Johansson, M. A., & Hellenas, K. E. (2001). Sensor chip preparation and assay construction for immunobiosensor determination of beta-agonists and hormones. Analyst, 126, 1721–1727.CrossRefGoogle Scholar
  38. Johansson, M. A., & Hellenas, K. E. (2004). Immunobiosensor determination of b-agonists in urine using integrated immunofiltration clean-up. International Journal of Food Science and Technology, 39, 891–898.CrossRefGoogle Scholar
  39. Kootstra, P. R. Kuijpers, C. J. P. F., Wubs, K. L., van Doorn, D., Sterk, S. S., van Ginkel, L. A., et al. (2005). The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening. Anaytica Chimica Acta, 529, 75–81.CrossRefGoogle Scholar
  40. Kumar, K., Thompson, A., Singh, A. K., Chander, Y., & Gupta, S. C. (2004). Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples. Journal of Environmental Quality, 33, 250–256.CrossRefGoogle Scholar
  41. Lee, H. J., Lee, M. H., Ryu, P. D., Lee, H., & Cho, M. H. (2001). Enzyme-linked immunosorbent assay for screening the plasma residues of tetracycline antibiotics in pigs. Jounal of Veterinary Medicine, 63, 553–556.Google Scholar
  42. Levieux, D. (2007). Immunodiagnosctic technology and its applications. In L. M. L. Nollet, & F. Toldrá (Eds.), Advances in Food Diagnostics (pp. 211–227). Ames, Iowa: Blackwell Publishing.Google Scholar
  43. Link, N., Weber, W., & Fussenegger, M. (2007). A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples. Journal of Biotechnology, 128, 668–680.CrossRefGoogle Scholar
  44. McGrath, T., Baxter, A., Ferguson, J., Haughey, S., & Bjurling, P. (2005). Multi sulfonamide screening in porcine muscle using a surface plasmon resonance biosensor. Analytica Chimica Acta, 529, 123–127.CrossRefGoogle Scholar
  45. Moore, W. E. C. & Moore, L. H. (1995). Intestinal floras of populations that have risk of colon cancer. Applied and Environmental Microbiology, 61, 3202–3207.Google Scholar
  46. Mottier, P., et al. (2003). Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 994, 75–84.CrossRefGoogle Scholar
  47. Paraf, A., & Sarradin, P. (1996). Immunochemistry in food control. Recent Research Developments in Nutrition, 1, 99–114.Google Scholar
  48. Pecorelli, I., Bibi, R., Fioroni, L., & Galarini, R. (2004). Validation of a confirmatory method for the determination of sulphonamides in muscle according to the European Union regulation 2002/657/EC. Journal of Chromatography A, 1032, 23–29.CrossRefGoogle Scholar
  49. Peng, Z., & Bang-Ce, Y. (2006). Small molecule microarrays for drug residue detection in foodstuffs. Journal of Agricultural and Food Chemistry, 54, 6978–6983.CrossRefGoogle Scholar
  50. Reig, M., & Toldrá, F. (2007). Chemical origin toxic compounds. In F. Toldrá, Y. H. Hui, I. Astiasarán, W. K. Nip, J. G. Sebranek, E. T. F. Silveira, et al. (Eds.), Handbook of fermented meat and poultry (pp. 469–475). Ames, Iowa: Blackwell Publishing.Google Scholar
  51. Reig, M., & Toldrá, F. (2008a). Veterinary drug residues in meat: Concerns and rapid methods for detection. Meat Science, 78, 60–67.CrossRefGoogle Scholar
  52. Reig, M., & Toldrá, F. (2008b). Growth promoters. In L. M. L. Nollet, & F. Toldrá (Eds.), Handbook of muscle foods analysis. Boca Raton, Fl: CRC Press (in press).Google Scholar
  53. Roda, A., Manetta, A. C., Portanti, O., Mirasoli, M., Guardigli, M., Pasini, P., et al. (2003). A rapid and sensitive 384-well microtitre format chemiluminiscent enzyme immunoassay for 19.nortestosterone. Luminescence, 18, 72–78.CrossRefGoogle Scholar
  54. Samarajeewa, U., Wei, C. I., Huang, T. S., & Marshall, M. R. (1991). Application of immunoassay in the food industry. Critical Reviews in Food Science and Nutrition, 29, 403–434.CrossRefGoogle Scholar
  55. Shi, W. M., He, J. H., Jiang, H. Y., Hou, X. L., Yang, J. H., & Shen, J. Z. (2006). Determination of multiresidue of avermectins in bovine liver by an indirect competitive ELISA. Journal of Agricultural and Food Chemsitry, 54, 6143–6146.CrossRefGoogle Scholar
  56. Situ, C., & Elliott, C. T. (2005). Simultaneous and rapid detection of five banned antibiotic growth promoters by immunoassay. Analytica Chimica Acta, 529, 89–96.CrossRefGoogle Scholar
  57. Situ, C., Grutters, E., van Wichen, P., & Elliott, C. T. (2006). A collaborative trial to evaluate the performance of a multi-antibiotic enzyme-linked immunosorbent assay for screening five banned antimicrobial growth promoters in animal feedingstuffs. Analytica Chimica Acta, 561, 62–68.Google Scholar
  58. Stolker, A. A. M., Zoonties, P. W., & Van Ginkel, L. A. (1998). The use of supercritical fluid extraction for the determination of steroids in animal tissues. Analyst, 123, 2671–2676.CrossRefGoogle Scholar
  59. Stubbings, G., Tarbin, J., Cooper, A., Sharman, M., Bigwood, T., & Robb, P. (2005). A multi-residue cation-exchange clean up procedure for basic drugs in produce of animal origin. Analyitica Chimica Acta, 547, 262–268.CrossRefGoogle Scholar
  60. Thompson, C. S., Haughey, S. A., Traynor, I. M., Fodey, T. L., Elliot, C. T., Antignac, J. P., et al. (2008). Effective monitoring of ractopamine residues in samples of animal origin by SPR biosensor and mass spectrometry. Analytica Chimica Acta, 608, 217–225.Google Scholar
  61. Toldrá, F., & Reig, M. (2006). Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Science and Technology, 17, 482–489.CrossRefGoogle Scholar
  62. Tuomola, M., Cooper, K. M., & Lahdenpera, S. (2002). A specificity-emhanced time-resolved fluoroimmunoassay for zeranol employing the dry reagent all-in-one-well principle. Analyst, 127, 83–86.CrossRefGoogle Scholar
  63. Vollard, E. J., & Clasener, H. A. L. (1994). Colonization resistance. Antimicrobial Agents and Chemotherapy, 38, 409–414.Google Scholar
  64. Wang, S., Wang, Z. L., Duan, Z. J., & Kennedy, I. (2006). Analysis of sulphonamide residues in edible animal products: A review. Food Additives and Contaminants, 23, 362–384.Google Scholar
  65. Wang, S., & Wang, X. H. (2007). Analytical methods for the determination of zeranol residues in animal products: A review. Food Additives and Contaminants, 24, 573–582.CrossRefGoogle Scholar
  66. Wang, X. L., Li, K., Shi, D. S., Xiong, N., Jin, X., Yi, J. D., et al. (2007). Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles. Journal of Agricultural and Food Chemistry, 55, 2072–2078.CrossRefGoogle Scholar
  67. Weber, C. C., Link, N., Fux, C., Zisch, A. H., Weber, W., & Fussenegger, M. (2005). Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnology and Bioengineering, 89, 9–17.CrossRefGoogle Scholar
  68. Widstrand, C. Larsson, F., Fiori, M., Civitareale, C., Mirante, S., & Brambilla, G. (2004). Evaluation of MISPE for the multi-residue extraction of $\UPbeta $-agonists from calves urine. Journal of Chromatography B, 804, 85–91.CrossRefGoogle Scholar
  69. Xu, C. L., Chu, X. G., Peng, C. F., Liu, L. Q., Wang, L. Y., & Jin, Z. (2006). Comparison of enzyme-linked immunosorbent assay with liquid chromatography-tandem mass spectrometry for the determination of diethylstilbesterol residues in chicken and liver tissues. Biomedical Chromatography, 20, 1956–1064.CrossRefGoogle Scholar
  70. Xu, C. L., Peng, C. F., Liu, L. Q., Wang, L. Y., Jin, Z. Y., & Chu, X. G. (2006). Determination of hexoestrol residues in animal tissues based on enzyme-linked immunosorbent assay and comparison with liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 41, 1029–1036.CrossRefGoogle Scholar
  71. Zhang, S. X., Zhang, Z., Shi, W. M., Eremin, S. A., & Shen, J. Z. (2006). Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. Journal of Agricultural and Food Chemistry, 54, 5718–5722.CrossRefGoogle Scholar
  72. Zhang, W., Wang, H. H., Wang, J. P., Li, X. W., Jiang, H. Y., & Shen, J. Z. (2006). Multiresidue determination of zeranol and related compounds in bovine muscle by gas chromatography/mass spectrometry with immunoaffinity cleanup. Journal of AOAC Internationa,l 89, 1677–1681.Google Scholar
  73. Zuo, P., & Ye, B. C. (2006). Small molecule microarrays for drug residue detection in foodstuffs. Journal of Agricultural and Food Chemistry, 54, 6978–6983.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Milagro Reig
    • 1
  • Fidel Toldrá
    • 1
  1. 1.Instituto de Agroquímica y Tecnología de Alimentos (CSIC)PO Box 73Spain

Personalised recommendations