Advertisement

The Detection of Genetically Modified Organisms: An Overview

  • Jaroslava Ovesná
  • Kateřina Demnerová
  • Vladimíra Pouchová

Genetically modified organisms (GMOs) are those whose genetic material has been altered by the insertion of a new gene or by the deletion of an existing one(s). Modern biotechnology, in particular, the rise of genetic engineering, has supported the development of GMOs suitable for research purposes and practical applications (Gepts, 2002; Novoselova,Meuwissen, & Huirne, 2007; Sakakibara & Saito, 2006). For over 20 years GM bacteria and other GM organisms have been used in laboratories for the study of gene functions (Maliga & Small, 2007; Ratledge & Kristiansen, 2006). Agricultural plants were the first GMOs to be released into the environment and placed on the market. Farmers around the world use GMsoybeans, GMcorn and GM cotton that are herbicide tolerant, or insect resistant, or combine several traits that reduce the costs associated with crop production (Corinne, Fernandez-Cornejo, & Goodhue, 2004).

Keywords

Polymerase Chain Reaction World Trade Organization Multiplex Polymerase Chain Reaction European Food Safety Authority Accred Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applied Biosystems. (2001). Relative Quantification of Gene Expression. Applied Biosystems. User Bulletin 2.Google Scholar
  2. Berdal, K. G., & Holst-Jensen, A. (2001). Effect of food components and processing parameters on DNA degradation in food. European Food Research and Technology, 213, 432–438.CrossRefGoogle Scholar
  3. Berger, B., & von Holst C. (2001). Pesticides residues in products of plant origin in the European Union: Sampling strategy and results from the co-ordinated EU monitoring programme in 1996 and 1997. Environmental Science and Pollution Research International, 8, 109–112.CrossRefGoogle Scholar
  4. Bonfini, L., Heinze, P., Kay, S., & Van den Eede, G. L. M. (2002). Review of GMO Detection and Quantification Techniques. EUR 20384/EN.Google Scholar
  5. Bowyer, V. L. (2007). Real-time PCR. Forensic Science, Medicine, and Pathology, 3, 61–63.Google Scholar
  6. Burpo F. J. (2001). A critical review of PCR primer design algorithms and crosshybridizationcase study, Biochemistry 218 at Stanford University. Retrieved August 11, 2001, from http://cmgm.stanford.edu/biochem218/Projects%202001/Burpo.pdf.
  7. Byrne, D. (2002). Commission Recommendation of 25 January 2002 concerning a coordinated programme for the official control of foodstuffs for 2002. Official Journal of the European Communities 30.1.2002 L 26/8. Retrieved January 30, 2002, from http://www.sapidlife.org/ documenti_repository/scarica.php?file=en200612071039152002_66_CEEN.pdf.
  8. Cankar, K., Štebih, D., Dreo, T., Žel, J., & Gruden, K. (2006). Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnology, 6: 37.CrossRefGoogle Scholar
  9. Carrino, J. J. (1996). Multiplex ligations-dependent amplication. Patent aplication WO 96/15271.Google Scholar
  10. Chen, T. L., Sanjaya, V., Prasad, C. H., Lee, K. H., Lin, H. C., Chiueh,V., et al. (2006). Validation of cDNA microarray as a prototype for throughput detection of GMOs. Botanical Studies, 47, 1–11.Google Scholar
  11. Corinne, A., Fernandez-Cornejo, J., & Goodhue, R. E. (2004). Farmers’ Adoption of Genetically Modified Varieties with Input Traits. Giannini Foundation Research Report 347 (October 2003). University of California: Division of Natural Resources. Retrieved October, 2003, from http://giannini.ucop.edu/researchreports/347-goodhue.pdf.
  12. Deisingh, A. K., & Badrie, N. (2005). Detection approaches for genetically modified organisms in foods. Food Research International, 38, 639–649.CrossRefGoogle Scholar
  13. DMIF-GEN Final Report. (1999). Retrieved February 1, 2000, from http://www.dmif-gen.bats.ch/dmif-gen/.
  14. Ehlers, B., Strauch, E., Goltz, M., Kubsch, D., Wagner, H., Maidhof, H., et al. (1997). Nachweis gentechnischer Veränderungen in Mais mittels PCR. Bundesgesundhbl., 4, 118–121.Google Scholar
  15. Einspanier, R. (2006). DNA based methods for detection of genetic modification. In K. J. Heller (Ed.), Genetically engineered food: Methods and detection (pp. 163–185, 2nd ed.). Wiley-VCH Verlag, GmbH & Co. KGaA., Weinheim, GermanyGoogle Scholar
  16. Gepts, P. (2002). A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Science, 42, 1780–1790.Google Scholar
  17. Heller, K. J. (2006). Detection of Genetic Modifications-Some Basic Considerations Genetically engineered food methods and detection (pp. 155–162, 2nd ed.) Wiley-VCH Verlag GmbH., Weinheim, GermanyGoogle Scholar
  18. Holst-Jensen, A. (2004). Detecting genetically modified food. New Food, 7, 16, 18–20, 22.Google Scholar
  19. James, C. (2007). Global Status of Commercialized Biotech. ISAAA Briefs No. 35-2006: /GM Crops: 2006. Retrieved October 16, 2007, from http://www.isaaa.org/Resources/ Publications/briefs/35/executivesummary/default.html.
  20. Just, R. E., Alston J. M., & Zilberman. (2006). Regulating agricultural biotechnology: Economics and policy. Natural Resource Management and Policy, 30, 392–402.CrossRefGoogle Scholar
  21. Kay, S., & Van Den Eede, G. (2001). The limits of GMO detection. National Biotechnology, 19, 405.CrossRefGoogle Scholar
  22. Khan, et al. (1998). Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Research, 58, 5009–5013.Google Scholar
  23. Kok, E. J., Aarts, H. J., Van Hoef, A. M., & Kuiper, H. A. (2002). DNA methods: Critical review of innovative approaches. Journal of AOC International, 85, 797–800.Google Scholar
  24. Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., et al. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27, 95–125.CrossRefGoogle Scholar
  25. Lipp, M., Shillito, R., Giroux, R., Spiegelhalter, F., Charlton, S., Pinero, D., et al. (2005). Polymerase chain reaction technology as analytical tool in agricultural biotechnology. Journal of AOC International, 88, 136–155.Google Scholar
  26. Macarthur, R., Murray, A. W. A., Allnutt, T. R., Deppe, C., Hird, H. J., Kerins, G.M., et al. (2007). Model for tuning GMO detection in seed and grain. National Biotechnology, 25, 2, 169–170.CrossRefGoogle Scholar
  27. Maliga, P., & Small, I. (2007). Plant biotechnology: All three genomes make contributions to progress. Current Opinion in Biotechnology, 18, 97–99.CrossRefGoogle Scholar
  28. Mezzelani, A., Bordoni, R., Consolandi, C., Rossi Bernardi, L., Rosini, A., Castiglioni, B., et al. (2002). Ligation detection reaction and universal array for detection and identification of genetically modified organisms (GMOs). Minerva Biotechnology, 14, 269–271.Google Scholar
  29. Miraglia, M., Berdal, K. G., Brera, C., Corbisier, P., Holst-Jensen, A., Kok, E. J, et al. (2004). Detection and traceability of genetically modified organisms in the food production chain. Food Chemistry and Toxicology, 42, 1157–1180.CrossRefGoogle Scholar
  30. Mullis K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods in Enzymology, 155, 335–350.CrossRefGoogle Scholar
  31. Nesvold, H., Kristoffersen, A. B., Holst-Jensen, A., & Berdal, K. G. (2005). Design of a DNA chip for detection of unknown genetically modified organisms (GMOs). Bioinformatics, 21, 1917–1926.CrossRefGoogle Scholar
  32. Niemann, H., Kues, W. A., & Carnwath, J. W. (2005). Transgenic farm animals: Present and future. Revue scientifique et technique (International Office of Epizootics), 24, 285–298.Google Scholar
  33. Novoselova, T. A., Meuwissen, M. P. M., & Huirne, R. B. M. (2007). Adoption of GM technology in livestock production chains: An integrating framework. Trends in Food Science & Technology, 18, 175–188.CrossRefGoogle Scholar
  34. Paoletti, C., Heissenberger, A., Mazzara, M., Larcher, S., Grazioli, E., Corbisier P., et al. (2006). Kernel lot distribution assessment (KeLDA): A study on the distribution of GMO in large soybean shipments, European Food Research and Technology, 224, 129–139.CrossRefGoogle Scholar
  35. Powell, J., & Owen, L. (2002). Reliability of food measurements: The application of proficiency testing to GMO analysis. Accreditation and Quality Assurance, 10, 392–402.CrossRefGoogle Scholar
  36. Ratledge, C., & Kristiansen, B. (2006). Basic Biotechnology (3rd ed.) Cambridge: University.Google Scholar
  37. Roussel, S. A., Hardy, C. L., Hurburgh, C. R., & Rippke, G. R. (2001). Detection of Roundup Ready\texttrademark Soybeans by Near-Infrared Spectroscopy. Applied Spectroscopy, 55, 1425–1430.CrossRefGoogle Scholar
  38. Roy, S., & Sen, C. K. (2006). CDNA microarray screening in food safety. Toxicology, 221, 128–233.CrossRefGoogle Scholar
  39. Sakakibara, K., & Saito, K. (2006). Review: Genetically modified plants for the promotion of human health. Biotechnology Letters, 28, 1983–1991.CrossRefGoogle Scholar
  40. Sato, K., Hosokawa, K., & Maeda, M. (2007). Biosensors based on DNA-nanoparticle conjugates. Analytical Sciences, 23, 17–23.CrossRefGoogle Scholar
  41. Sauer, B. (2002). Chromosome manipulation by Cre-lox recombination. In N. L. Craig, R. Craigie, M. Gellert, & A. M. Lambowitz, MobileDNA (2nd ed., pp. 38–58), ASM Press, Washington.Google Scholar
  42. Schrijver, I., Külm, M., Gardner, P. I., Pergament, E. P., & Fiddler, M. B. (2007). Comprehensive arrayed primer extension array for the detection of 59 Sequence Variants in 15 Conditions. Journal of Molecular Diagnostics, 9, 228–236.CrossRefGoogle Scholar
  43. Somma, M. (2004). Extraction and purification of DNA. In M. Querci, M. Jermini, & G. Van den Eede (Ed.). The analysis of food samples for the presence of genetically, modified organisms. European commission, Joint research centre. Retrieved October 16, 2007, from http://gmotraining.jrc.it.
  44. Spoth, B., & Strauss, E. (1999). Screening for genetically modified organisms in food using Promega’s Wizard resin. Promega Notes Magazine, 73, 23–25.Google Scholar
  45. Terry, C. F., Harris N., & Parkes, H. C. (2002). Detection of genetically modified crops and their derivatives: Critical steps in sample preparation and extraction. Journal of AOAC International, 85(3), 768–774.Google Scholar
  46. US Patent 20060185029. Avians that produce eggs containing exogenous proteins. Retrieved August 17, 2006, from http://www.freepatentsonline.com/20060185029.html.
  47. Vaïtilingom M., Pijnenburg, H., Gendre, F., Brignon, P. (1999). Real-time quantitative PCR detection of genetically modified maximizer maize and roundup ready soybean in some representative foods. Journal of Agricultural and Food Chemistry, 47, 5261–5266.CrossRefGoogle Scholar
  48. Von Holst, Ch., Baeten, Ch. V., Berben, G., & Brambilla, G. (2004). Overview of methods for the detection of species specific proteins in feed intended for farmed animals. Retrieved September 30, 2004, from http://ec.europa.eu/food/food/biosafety/bse/bse52_en.pdf.
  49. Wenijn, S., Siyang, S., Minnan, L., & Guangming, L. (2003). Multiplex polymerase chain reaction/membrane hybridization assay for detection of genetically modified organisms. Journal of Biotechnology, 105, 227–223.CrossRefGoogle Scholar
  50. Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., & Kilian, A. (2004). Diversity Arrays Technology (DarT) for whole-genome profiling of barley Proc. Natl. Acad. Sci USA 101, 9915–9920.Google Scholar
  51. Wheeler, M. B. (2007). Agricultural application for transgeniclivestock. Trends in Biotechnology, 25, 204–210.CrossRefGoogle Scholar
  52. Yang, L., Guo, J., Pan, A., Zhang, H., Zhang, K., Wang, Z., et al. (2007). Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. Journal of Agricultural and Food Chemistry, 55, 15–24CrossRefGoogle Scholar
  53. Žel, J., Cankar, K., Ravnikar, M., Camloh, M., & Gruden, K. (2006). Accreditation of GMO detection laboratories: Improving the reliability of GMO detection. Accred Quality Assurance, 10, 531–536.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jaroslava Ovesná
    • 1
  • Kateřina Demnerová
  • Vladimíra Pouchová
  1. 1.Crop Research InstituteDrnovská 507Czech Republic

Personalised recommendations