At-Line Methods for Controlling Microbial Growth and Spoilage in Meat Processing Abattoirs

  • Daniel Y.C. Fung
  • Jessica R. Edwards
  • Beth Ann Crozier-Dodson

Many decontamination strategies are available to the meat industry for the control of spoilage and disease causing microorganisms. Most of these strategies are spraywash methods, and a variety of other methods are becoming increasingly popular in the industry as new research and developments are made. Hide-on decontamination has been shown to be extremely effective for controlling pathogens and may become more commonly incorporated into the hazard analysis and critical control point (HACCP) plans. A comprehensive review of decontamination of Escherichia coli O157:H7 in meat processing was made by Edwards and Fung (2006). The current chapter is for at-line consideration of all types of microorganisms related to meat processing with E. coli O157:H7 as the main model. Another detailed analysis of the entire topic of meat safety was made by Fung et al.


Fumaric Acid Ground Beef Cetylpyridinium Chloride Chlorine Dioxide Food Protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Raouf, U. M., Beuchat, L. R., & Ammur, M. S. (1993). Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulant, and temperature. Applied and Environmental Microbiology, 59, 2364–2368.Google Scholar
  2. Aberle, E. D., Forrest, J. C., Gerrard, D. E., Mills, E. W., Hedrick, H. B., Judge, M. D., et al. (2001). Conversion of muscle to meat and development of meat quality. Principles of meat science (4th ed., pp. 83–108). Dubuque, IA: Kendall Hunt.Google Scholar
  3. Acuff, G. R., Castillo, A., & Savell, J. W. (1997). Hot water rinses. Proceedings Reciprocal. Meat Conference, 49, 125–128.Google Scholar
  4. Acuff, G. R., Vanderzant, C., Savell, J. W., Jones, D. K., Griffin, D. B., Ehlers, J. G., et al. (1987). Effect of acid decontamination of beef subprimal cuts on the microbiological and sensory characteristics of steaks. Meat Science, 19, 217–226.CrossRefGoogle Scholar
  5. Agricultural Marketing Service (AMS). (2000). Leather meal. AMS–USDA. http://www.ams. Accessed 27 Oct 2005.
  6. Al-Dagal, M., & Fung, D. Y. C. (1993). Aeromicrobiology: An assessment of a new meat research complex. J. Environmental Health, 56, 7–14.Google Scholar
  7. Anderson, M. E., Marshall, R. T., Stringer, W. C., & Naumann, H. D. (1977). Combined and individual effects of washing and sanitizing on bacterial counts of meat – A model system. Journal of Food Protection, 40, 373–376.Google Scholar
  8. Anderson, M. E., Sebaugh, J. L., Marshall, R. T., & Stringer, W. C. (1980). Amethod for decreasing sampling variance in bacteriological analyses of meat surfaces. Journal of Food Protection, 43, 21–22.Google Scholar
  9. Arthur, T. M., Wheeler, T. L., Shackelford, S. D., Bosilevac, J. M., Nou, X., & Koohmaraie, M. (2005). Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157:H7 and meat quality. Journal of Food Protection, 68, 666–672.Google Scholar
  10. Belk, K. E. (2001). Beef decontamination technologies. National Cattlemen’s Beef Association. Accessed 12 Feb 2005.
  11. Bell, R. G. (1997). Distribution and sources of microbial contamination on beef carcasses. Journal of Applied Microbiology, 82, 292–300.CrossRefGoogle Scholar
  12. Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology Immunology, 182, 97–105.Google Scholar
  13. Berg, J. D., Roberts, P. V., & Matin, A. (1986). Effect of chlorine dioxide on selected membrane functions of Escherichia coli. The Journal of Applied Bacteriology, 60, 213–220.Google Scholar
  14. Berry, E. D., & Cutter, C. N. (2000). Effects of acid adaptation of Escherichia coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Applied Environmental Microbiology, 66, 1493–1498.CrossRefGoogle Scholar
  15. Bosilevac, J. M., Arthur, T. M., Wheeler, T. L., Shackelford, S. D., Rossman, M., Reagan, J. O., et al. (2004). Prevalence of Escherichia coli O157 and levels of aerobic bacteria and Enterobacteriaceae are reduced when hides are washed and treated with cetylpyridinium chloride at a commercial beef processing plant. Journal of Food Protection, 67, 646–650.Google Scholar
  16. Bosilevac, J. M., Nou, X., Osborn, M. S., Allen, D. M., & Koohmaraie, M. (2005). Development and evaluation of an on-line hide decontamination procedure for use in a commercial beef processing plant. Journal of Food Protection, 68, 265–272.Google Scholar
  17. Bosilevac, J. M., Wheeler, T. L., Rivera-betancourt, M., Nou, X., Arthur, T. M., Shackelford, S. D., et al. (2004). Protocol for evaluating the efficacy of cetylpyridinium chloride as a beef hide intervention. Journal of Food Protection, 67, 303–309.Google Scholar
  18. Brackett, R. E., Hao, Y. Y., & Doyle, M. P. (1994). Ineffectiveness of hot acid sprays to decontaminate Escherichia coli O157:H7 on beef. Journal of Food Protection, 57, 198–203.Google Scholar
  19. Buchanan, R. L., & Doyle, M. P. (1997). Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E. coli. Food Technology, 51, 69–76.Google Scholar
  20. Castillo, A., Lucia, L. M., Kemp, G. K., & Acuff, G. R. (1999). Reduction of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces using acidified sodium chlorite. Journal of Food Protection, 62, 580–584.Google Scholar
  21. Centers for Disease Control and Prevention (CDC). (1999). Safer and healthier foods – 1900–1999. Morbidity and Mortality Weekly Report, 48, 905–913.Google Scholar
  22. Centers for Disease Control and Prevention (CDC). (2005). Food irradiation. CDC. Accessed 27 Oct 2005.
  23. Chad. (2004a). Hide-on carcass wash and sanitizing assembly. newproducts.html. Accessed 11 Oct 2005.
  24. Chad. (2004b). Hot water pasteurization system. Accessed 11 Oct 2005.
  25. Chad. (2004c). Lactic acid spray assembly. newproducts.html. Accessed 11 Oct 2005.
  26. Chad. (2004d). Preevisceration carcass wash assembly and organic acid washer. http://www. Accessed 11 Oct 2005.
  27. Clavero, M. R. S., Monk, J. D., Beuchat, L. R., Doyle, M. P., & Brackett, R. E. (1994). Inactivation of Escherichia coli O157:H7, salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Applied Environmental of Microbiology, 60, 2069–2075.Google Scholar
  28. Code of Federal Regulations (CFR). (2005a). Acidified sodium chlorite solutions. Code of Federal Regulations. 21 CFR 173, 325, 140–142.Google Scholar
  29. Code of Federal Regulations (CFR). (2005b). Cetylpyridinium chloride. Code of Federal Regulations. 21 CFR 173, 375, 148–149.Google Scholar
  30. Code of Federal Regulations (CFR). (2005c). Chlorine dioxide. Code of Federal Regulations. 21 CFR 173, 300, 135–136.Google Scholar
  31. Code of Federal Regulations (CFR). (2005d). Humane slaughter of livestock. Code of Federal Regulations. 9 CFR, 313, 145–151.Google Scholar
  32. Code of Federal Regulations (CFR). (2005e). Ionizing radiation for the treatment of food. Code of Federal Regulations. 21 CFR 179, 26, 451–453.Google Scholar
  33. Crouse, J. D., Anderson, M. D., & Naumann, H. D. (1988). Microbial decontamination and weight of carcass beef as affected by automated washing pressure and length of time of spray. Journal of Food Protection, 51, 471–474.Google Scholar
  34. Crozier-Dodson, B. (2000). Combined treatments of 2% lactic acid (80ˆC), and microwaves for the reduction of natural microflora and Escherichia coli O157:H7 on vacuum packaged beef subprimals. MS Thesis, Hale Library, Kansas State University, Manhattan, KS.Google Scholar
  35. Culkin, K. A., & Fung, D. Y. C. (1975). Destruction of Escherichia coli and Salmonella Typhimurium in microwave-cooked soups. Journal of Milk and Food Technology, 38, 8–15.Google Scholar
  36. Curry, R. D., Unklesbay, K., Unklesbay, N., Clevenger, T. E., Brazos, B. J., Mesyats, G., et al. (2000). The effect of high-dose-rate X-rays on E. coli O157:H7 in ground beef. IEEE Transactions on Plasma Science, 28, 122–127.CrossRefGoogle Scholar
  37. Cutter, C. N., & Dorsa, W. J. (1995). Chlorine dioxide spray washes for reducing fecal contamination on beef. Journal of Food Protection, 58, 1294–1296.Google Scholar
  38. Cutter, C. N., Dorsa, W. J., Handie, A., Rodriguez-morales, S., Zhou, X., Breen, P. J., et al. (2000). Antimicrobial activity of cetylpyridinium chloride washes against pathogenic bacteria on beef surfaces. Journal of Food Protection, 63, 593–600.Google Scholar
  39. Derfler, P. S. (2004). FSIS directive: Verification of procedures for controlling fecal material, ingesta, and milk in slaughter operations. USDA FSIS. FrameRedirect.asp?main=/oppde/rdad/fsisdirectives/6420.2.pdf. Accessed 7 May 2005.
  40. Dickson, J. S. (1991). Control of Salmonella Typhimurium, Listeria monocytogenes, and Escherichia coli O157:H7 on beef in a model spray chilling system. Journal of Food Science, 56, 191–193.CrossRefGoogle Scholar
  41. Dickson, J. S., & Anderson, M. E. (1992). Microbiological decontamination of food animal carcasses by washing and sanitizing systems: A review. Journal of Food Protection, 55,133–140.Google Scholar
  42. Dickson, J. S., Nettles Cutter, C. G., & Siragusa, G. R. (1994). Antimicrobial effects of tri-sodium phosphate against bacteria attached to beef tissue. Journal of Food Protection, 57, 952–955.Google Scholar
  43. Dorsa, W. J., Cutter, C. N., Siragusa, G. R., & Koohmaraie, M. (1996). Microbial decontamination of beef and sheep carcasses by steam, hot water spray washes and a steam vacuum sanitizer. Journal of Food Protection, 59, 127–135.Google Scholar
  44. Edwards, J. R., & Fung, D. Y. C. (2006). Prevention and decontamination of Escherichia coli O157:H7 on raw beef carcasses in commercial beef abattoirs. Journal of Rapid Methods and Automation in Microbiology, 14, 1–95.CrossRefGoogle Scholar
  45. Elder, R. O., Keen, J. E., Siragusa, G. R., Barkocy-Gallagher, G. A., Koohmaraie, M., & Laegreid, W. W. (2000). Correlation of enterohemorrhagic Escherichia coli O157:H7 prevalence in feces, hides, and carcasses of beef cattle during processing. PNSA 97, 2999–3003.CrossRefGoogle Scholar
  46. Fang, T. J., & Tsai, H. C. (2003). Growth patterns of Escherichia coli O157:H7 in ground beef treated with nisin, chelators, organic acids and their combinations immobilized in calcium alginate gels. Food Microbiology, 20, 243–253.CrossRefGoogle Scholar
  47. Food Safety and Inspection Service (FSIS). (1994). Post-mortem inspection. http://www.fsis. Accessed 27 Oct 2005.
  48. Food Safety and Inspection Service (FSIS). (1996a). Achieving the zero tolerance performance standard for beef carcasses by knife trimming and vacuuming with hot water and steam; use of acceptable carcass interventions for reducing carcass contamination without prior agency approval: Notice of policy change. Federal Register, 61, 15024–15027.Google Scholar
  49. Food Safety and Inspection Service (FSIS). (1996b). Pathogen reduction: Hazard analysis and critical control point (HACCP) systems; final rule. Federal Register, 61, 38805–38989.Google Scholar
  50. Food Safety and Inspection Service (FSIS). (2002). Backgrounder: New measures to address E. coli O157:H7 contamination. USDA FSIS. background/ec0902.pdf. Accessed 27 March 2005.
  51. Fu, A., Sarbanes, J. G., & Moreno, E. A. (1995). Survival of Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli O157:H7 and quality changes after irradiation of beefsteaks and ground beef. Journal of Food Science, 60, 972–977.CrossRefGoogle Scholar
  52. Fung, D. Y. C and Cunningham, F. E. (1980). Effects of microwave cooking on microorganisms in foods. Journal of Food Protection, 43, 641–650.Google Scholar
  53. Fung, D. Y. C., Hajmeer, M. N., Kastner, C. L., Kastner, J. J., Marsden, J. L., Penner, K. P., et al. (2001). Meat safety. In Y. H. Hui, W-K. Nip, R. W. Rogers, & O. W. Young (Eds.), Meat science applications (pp. 171–205). New York, NY: Marcel Dekker.Google Scholar
  54. Fung, D. Y. C., Kastner, C. L., Hunt, M. C., Dikeman, M. E., & Kropf, D. H. (1980). Mesophilic and psychrotrophic bacterial populations on hot-boned and conventionally processed beef. Journal of. Food Protection, 43, 547–550.Google Scholar
  55. Fung, D. Y. C., Phebus, R. K., Kang, D. H., and Kastner, C. L. (1995). Effect of alcohol flaming on meat cutting knives. Journal of Rapid Methods and Automation in Microbiology, 3,237–243.CrossRefGoogle Scholar
  56. Gill, C. O. (1991). Microbial principles in meat processing. In J. B. Woolcock (Ed.), Microbiology of animals and animal products (pp. 249–270). Amsterdam, The Netherlands: Elsevier.Google Scholar
  57. Gill, C. O., McGinnis, J. C., & Badoni, M. (1995). Assessment of the hygienic characteristics of a beef carcass dressing process. Journal of Food Protection, 59, 136–140.Google Scholar
  58. Gill, C. O., & Penney, N. (1979). Survival of bacteria in carcasses. Applied of Environmental Microbiology, 37, 667–669.Google Scholar
  59. Gorman, B. M., Morgan, J. B., Sofos, J. N., & Smith, G. C. (1995). Microbiological and visual effects of trimming and/or spray washing for removal of fecal material from beef. Journal of Food Protection, 58, 984–989.Google Scholar
  60. Gorman, B. M., Sofos, J. N., Morgan, J. B., Schmidt, G. R., & Smith, G. C. (1995). Evaluation of hand-trimming, various sanitizing agents, and hot water spray washing as decontamination interventions for beef brisket adipose tissue. Journal of Food Protection, 58, 899–907.Google Scholar
  61. Haas, N. C. (2001). Decontamination using chlorine dioxide: Hearings on the decontamination of anthrax and other biological agents. U.S. House of Representatives Committee on Science. Accessed 1 Sep 2005.
  62. Hamby, P. L., Savell, J. W., Acuff, G. R., Vanderzant, C., & Cross, H. R. (1987). Spray chilling and carcass decontamination systems using lactic and acetic acids. Meat Science, 21, 1–14.CrossRefGoogle Scholar
  63. Hardin, M. D., Acuff, G. R., Lucia, L. M., Oman, J. S., & Savell, J. W. (1995). Comparison of methods for decontamination from beef carcass surfaces. Journal Food Protection, 58,368–374.Google Scholar
  64. Hulebak, K. L., & Schlosser, W. S. (2001). HACCP history and conceptual overview. USDA FSIS. (accessed April 6, 2005).
  65. Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H., & Vogel, H. J. (1998). Three-dimensional solution structure of lactoferricin B, and antimicrobial peptide derived from bovine lactoferrin. Biochemistry, 37, 4288–4298.CrossRefGoogle Scholar
  66. International Meat and Poultry HACCP Alliance (IMPHA). (1996). Generic HACCP model for beef slaughter. USDA–FSIS. Accessed 10 Oct 2005.
  67. Johanson, L., Underdal, B., Grosland, K., Whelehan, O. P., & Roberts, T. A. (1983). A survey of the hygienic quality of beef and pork carcasses in Norway. Acta veterinaria Scandinavica, 25, 1–13.Google Scholar
  68. Kozempel, M., Goldberg, N., & Craig, J. J. C. (2003). The vacuum/steam/vacuum process. Food Technology, 57, 30–33.Google Scholar
  69. Lim, K., & Mustapha, A. (2004). Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. Journal of Food Protection, 67, 310–315.Google Scholar
  70. Masson, P. L., Heremans, J. F., & Dive, C. (1966). An iron-binding protein common to many external secretions. Clinica Chimica Acta, 14, 735–739.CrossRefGoogle Scholar
  71. McEvoy, J. M., Doherty, A. M., Sheridan, J. J., Thomsoncarter, F. M., Garvey, P., McGuire, L., et al. (2003). The prevalence and spread of Escherichia coli O157:H7 at a commercial beef abattoir. Journal of Applied Microbiology, 95, 256–266.CrossRefGoogle Scholar
  72. Milmech. (2004). Milmech Beef Downward Hide Puller. Accessed Oct 2005.
  73. Nottingham, P. M., Penney, N., & Harrison, J. C. L. (1974). Microbiology of beef processing. New Zealand Journal of Agricultural Research, 17, 79–83.Google Scholar
  74. Nou, X., Rivera-Betancourt, M., Bosilevac, J. M., Wheeler, T. L., Shackelford, S. D., Gwartney, B. L., et al. (2003). Effect of chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and Enterobacteriaceae on carcasses in a commercial beef processing plant. Journal of Food Protection, 66, 2005–2009.Google Scholar
  75. Olsen, D. (2004). Food Irradiation update. Presented at the Meat Industry Research Conference (pp. 1–28).Google Scholar
  76. Phebus, R. K., Nutsch, A. L., Schafer, D. E., Wilson, R. C., Riemann, M. J., Leising, J. D., et al. (1997). Comparisons of steam pasteurization and other methods for reduction of pathogens on surfaces of freshly slaughtered beef. Journal of Food Protection, 60, 476–484.Google Scholar
  77. Podolak, R. K., Zayas, J. F., Kastner, C. L., & Fung, D. Y. C. (1996). Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 on beef by application of organic acids. Journal of Food Protection, 59, 370–373.Google Scholar
  78. Prasai, R. K., Phebus, R. K., García Zepeda, C. M., Kastner, C. L., Boyle, A. E., & Fung, D. Y. C. (1995). Effectiveness of trimming and/or washing on microbiological quality of beef carcasses. Journal of Food Protection, 58, 1114–1117.Google Scholar
  79. Ransom, J. R., Belk, K. E., Sofos, J. N., Stopforth, J. D., Scanga, J. A., & Smith, G. C. (2003). Comparison of intervention technologies for reducing Escherichia coli O157:H7 on beef cuts and trimmings. Food Protection Trends, 23, 24–34.Google Scholar
  80. Reagan, J. O., Acuff, G. R., Buege, D. R., Buych, M. J., Dickson, J. S., Kastner, C. L., et al. (1996). Trimming and washing of beef carcasses as a method of improving the microbiological quality of meat. Journal of Food Protection, 59, 751–756.Google Scholar
  81. Retzlaff, D., Phebus, R., Nutsch, A., Riemann, J., Kastner, C., & Marsden, J. (2004). Effectiveness of a laboratory-scale vertical tower static chamber steam pasteurization unit against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua on prerigor beef tissue. Journal of Food Protection, 67, 1630–1633.Google Scholar
  82. Rice, E. W., Clark, R. M., & Johnson, C. H. (2003). Chlorine inactivation of Escherichia coli O157:H7. CDC Emerging Infectious Diseases. http://www. EID/vol5no3/rice.htm. Accessed 12 Sep 2005.
  83. Romans, J. R., Costello, W. J., Carlson, C. W., Greaser, M. L., & Jones, K. W. (2001). Cattle harvest. The Meat We Eat (14th ed., pp. 173–196). IL: Interstate Publishers.Google Scholar
  84. Samelis, J., Sofos, J. N., Kendall, P. A., & Smith, G. C. (2001). Fate of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes in fresh meat decontamination fluids at 4 and 10ˆC. Journal of. Food Protection, 64, 950–957.Google Scholar
  85. Samelis, J., Sofos, J. N., Kendall, P. A., & Smith, G. C. (2002). Effect of acid adaptation on survival of Escherichia coli O157:H7 in meat decontamination washing fluids and potential effects of organic acid interventions on the microbial ecology of the meat plant environment. Journal of Food Protection, 65, 33–40.Google Scholar
  86. Sawyer, C. A., Biglari, S. D., & Thompson, S. S. (1984). Internal end temperature and survival of bacteria on meats with and without a polyvinyl chloride wrap during microwave cooking. Journal of Food Science, 49, 972–974.CrossRefGoogle Scholar
  87. Sheridan, J. J. (1998). Sources of contamination during slaughter and measures for control. Journal of Food Safety, 18, 321–339.CrossRefGoogle Scholar
  88. Shin, J., Chang, S., & Kang, D. (2004). Application of antimicrobial ice for reduction of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes) on the surface of fish. Journal of Applied Microbiology, 97, 916–922.CrossRefGoogle Scholar
  89. Sofos, J. N. (1993). The HACCP system in meat processing and inspection in the United States. Meat Focus International, 2, 217–225.Google Scholar
  90. Sofos, J. N., Belk, K. E., & Smith, G. C. (1999). Processes to reduce contamination with pathogenic microorganisms in meat. Congress of Meat Science and Technology, 45, 596–605.Google Scholar
  91. Stanfos. (2004). Carcass pasteurizer. Stanfos, Inc. Accessed 8 Oct 2005.
  92. Stopforth, J. D., Yoon, Y., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., et al. (2004). Effect of simulated spray chilling with chemical solutions on acid habituated and non-acid habituated Escherichia coli O157:H7 cells attached to beef carcass tissue. Journal of Food Protection, 67, 2099–2106.Google Scholar
  93. United States Department of Agriculture (USDA). (1993). National advisory committee of microbiological criteria for foods, USDA – generic HACCP for raw beef. Food Microbiology, 10, 449–488.CrossRefGoogle Scholar
  94. Warriner, K., Eveleigh, K., Goodman, J., Betts, G., Gonzales, M., & Waites, W. M. (2001). Attachment of bacteria to beef from steam pasteurized carcasses. Journal of Food Protection, 64, 493–497.Google Scholar
  95. Weller, K. (2003). ARS photo library. USDA Agriculture Research Service. http://www.ars. Accessed 8 Oct 2005.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniel Y.C. Fung
    • 1
  • Jessica R. Edwards
  • Beth Ann Crozier-Dodson
  1. 1.Kansas State UniversityManhattanUSA

Personalised recommendations