Biocontrol of Pathogens in the Meat Chain

  • Catherine M. Burgess
  • Lucia Rivas
  • Mary J. McDonnell
  • Geraldine Duffy

Bacterial foodborne zoonotic diseases are of major concern, impacting public health and causing economic losses for the agricultural-food sector and the wider society. In the United States (US) alone foodborne illness from pathogens is responsible for 76 million cases of illnesses each year (Mead et al., 1999). Salmonella, Campylobacter jejuni and Enterohaemorraghic Escherichia coli (EHEC; predominately serotype O157:H7) and Listeria monocytogenes are the most predominant foodborne bacterial pathogens reported in the developed world (United States Department of Agriculture, 2001). The importance of meat and meat products as a vehicle of foodborne zoonotic pathogens cannot be underestimated (Center for Disease Control, 2006; Gillespie, O’Brien, Adak, Cheasty, & Willshaw, 2005; Mazick, Ethelberg, Nielsen, Molbak, & Lisby, 2006; Mead et al., 2006).


Lactic Acid Bacterium Meat Product Listeria Monocytogenes Broiler Chicken Foodborne Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasen, I. M., Markussen, S., Moretro, T., Katla, T., Axelsson, L., & Naterstad, K. (2003). Interactions of the bacteriocins sakacin P and nisin with food constituents. International Journal of Food Microbiology, 87, 35–43.Google Scholar
  2. Abee, T., Krockel, L., & Hill, C. (1995). Bacteriocins: Modes of action and potentials in food preservation and control of food poisoning. International Journal of Food Microbiology, 28, 169–185.Google Scholar
  3. Albano, H., Todorov, S. D., van Reenen, C. A., Hogg, T., Dicks, T. M. T., & Teixeira, P. (2007). Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira", a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology, 116, 239–247.Google Scholar
  4. Alisky, J., Iczkowski, K., Rapoport, A., & Troitsky, N. (1998). Bacteriophages show promise as antimicrobial agents. The Journal of Infection, 36, 5–15.Google Scholar
  5. Alves, V. F., Martinez, R. C. R., Lavrador, M. A. S., & De Martinis, E. C. P. (2006). Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Science, 74, 623–627.Google Scholar
  6. Anang, D. M., Rusul, G., Bakar, J., & Ling, F. H. (2007). Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in chicken breast stored at 4C. Food Control, 18, 961–969.Google Scholar
  7. Ananou, S., Galvez, A., Martinez-Bueno, M., Maqueda, M., & Valdivia, E. (2005). Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing against Escherichia coli O157:H7. Journal Applied Microbiology, 99, 1364–1372.Google Scholar
  8. Ananou, S., Garriga, M., Hugas, M., Maqueda, M., Martinez-Bueno, M., Galvez, A., et al. (2005). Control of Listeria monocytogenes in model sausages by enterocin AS-48. International Journal of Food Microbiology, 103, 179–190.Google Scholar
  9. Ananou, S., Maqueda, M., Martinez-Bueno, M., Galvez, A., & Valdivia, E. (2005). Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Science, 71, 549–556.Google Scholar
  10. Anderson, R. C., & Yu, P.-L. (2005). Factors affecting the antimicrobial activity of ovine-derived cathelicidins against E. coli 0157:H7. International Journal of Antimicrobial Agents, 25, 205–210.Google Scholar
  11. Annamalai, T., Venkitanarayanan, K. S., Hoagland, T. A., & Khan, M. I. (2001). Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes by PR-26, a synthetic antibacterial peptide. Journal of Food Protection, 64, 1929–1934.Google Scholar
  12. Anzai, K., Hamasuna, M., Kadono, H., Lee, S., Aoyagi, H., & Kirino, Y. (1991). Formation of ion channels in planar lipid bilayer membranes by synthetic basic peptides. Biochimica et Biophysica Acta, 1064, 256–266.Google Scholar
  13. Appendini, P., & Hotchkiss, J. H. (1999). Antimicrobial activity of a 14-residue peptide against Escherichia coli O157:H7. Journal of Applied Microbiology, 87, 750–756.Google Scholar
  14. Ariyapitipun, T., Mustapha, A., & Clarke, A. D. (2000). Survival of Listeria monocytogenes Scott A on vacuum-packaged raw beef treated with polylactic acid, lactic acid and nisin. Journal of Food Protection, 63, 131–136.Google Scholar
  15. Arlindo, S., Calo, P., Franco, C., Prado, M., Cepeda, A., & Barros-Velazquez, J. (2006). Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faecium strains isolated from nonfermented animal foods. Molecular Nutrition and Food Research, 50, 1229–1238.Google Scholar
  16. Arques, J. L., Fernandez, J., Gaya, P., Nunez, M., Rodrigues, E., & Medina, M. (2004). Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. International Journal of Food Microbiology, 95, 225–229.Google Scholar
  17. Atterbury, R. J., Connerton, P. L., Dodd, C. E., Rees, C. E., & Connerton, I. F. (2003). Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Applied and Environmental Microbiology, 69, 6302–6306.Google Scholar
  18. Azuma, T., Bagenda, D. K., Yamamoto, T., Kawai, Y., & Yamazaki, K. (2006). Inhibition of Listeria monocytogenes by freeze-dried Piscicocin CS526 fermentate in food. Letters in Applied Microbiology, 44, 138–144.Google Scholar
  19. Bach, S. J., McAllister, T. A., Viera, D. M., Gannon, V. P. J., & Holley, R. A. (2002). Transmission and control of Escherichia coli O157:H7. A review. Canadian Journal of Animal Science, 82, 475–490.Google Scholar
  20. Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., King, P., et al. (2003). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease, 87, 949–954.Google Scholar
  21. Barakat, R. K., Griffiths, M. W., & Harris, L. J. (2000). Isolation and characterization of Carnobacterium, Lactococcus and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. International Journal of Food Microbiology, 62, 83–94.Google Scholar
  22. Barboza De Martinez, Y., Ferrer, K., & Marquez Salas, E. (2002). Combined effects of lactic acid and nisin solution in reducing levels of microbiological contamination in red meat carcasses. Journal of Food Protection, 65, 1780–1783.Google Scholar
  23. Barrow, P. A. (2007). Salmonella infections: Immune and non-immune protection with vaccines. Avian Pathology, 36, 1–13.Google Scholar
  24. Barrow, P. A., & Soothill, J. S. (1997). Bacteriophage therapy and prophylaxis: Rediscovery and renewed assessment of potential. Trends in Microbiology, 5, 268–271.Google Scholar
  25. Benkerroum, N., Daoudi, A., & Kamal, M. (2003). Behaviour of Listeria monocytogenes in raw sausages (merguez) in presence of a bacteriocin-producing lactococcal strain as a protective culture. Meat Science, 63, 479–484.Google Scholar
  26. Benkerroum, N., Daoudi, A., Thamraoui, T., Ghalfi, H., Thiry, G., Duroy, M., et al. (2005). Lyophilized preparation of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. Journal of Applied Microbiology, 98, 56–63.Google Scholar
  27. Berchieri, A., Jr., Lovell, M. A., & Barrow, P. A. (1991). The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Research in Microbiology, 142, 541–549.Google Scholar
  28. Bohez, L., Ducatelle, R., Pasmans, F., Haesebrouck, F., & Van Immerseel, F. (2007). Long-term colonisation-inhibition studies to protect broilers against colonisation with Salmonella Enteritidis, using Salmonella Pathogenicity Island 1 and 2 mutants. Vaccine, 25, 4235–4243.Google Scholar
  29. Brackett, R. E., Hao, Y. Y., & Doyle, M. P. (1994). Ineffectiveness of hot acid sprays to decontaminate Escherichia coli O157:H7 on beef. Journal of Food Protection, 57, 198–203.Google Scholar
  30. Brashears, M. M., Jaroni, D., & Trimble, J. (2003). Isolation, selection, and characterization of Lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. Journal of Food Protection, 66, 355–363.Google Scholar
  31. Brashears, M. M., Reilly, S. S., & Gilliland, S. E. (1998). Antagonistic action of cells of Lactobacillus lactis toward Escherchia coli O157:H7 on refrigerated raw chicken meat. Journal of Food Protection, 61, 166–170.Google Scholar
  32. Bredholt, S., Nesbakken, T., & Holck, A. (1999). Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum- and gas- packaged meat. International Journal of Food Microbiology, 53, 43–52.Google Scholar
  33. Bredholt, S., Nesbakken, T., & Holck, A. (2001). Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptibilty of cooked, sliced, vacuum-packaged meats. International Journal of Food Microbiology, 66, 191–196.Google Scholar
  34. Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification and meat application experiments. International Journal of Food Microbiology, 83, 171–184.Google Scholar
  35. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – A review. International Journal of Food Microbiology, 94, 223–253.Google Scholar
  36. Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162–167.Google Scholar
  37. Callaway, T. R., Anderson, R. C., Edrington, T. S., Genovese, K. J., Harvey, R. B., & Poole, T. L., et al. (2004). Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Animal Health Research Reviews, 5, 35–47.Google Scholar
  38. Carlton, R. M., Noordman, W. H., Biswas, B., de Meester, E. D., & Loessner, M. J. (2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology, 43, 301–312.Google Scholar
  39. Castellano, P. H., Holzapfel, W. H., & Vignolo, G. (2004). The control of Listeria innocua and Lactobacillus sakei in broth and meat slurry with the bacteriocinogenic strain Lactobacillus casei CRL705. Food Microbiology, 21, 291–298.Google Scholar
  40. Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-pakced meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43, 194–199.Google Scholar
  41. Castillo, A., Lucia, L. M., Mercado, I., & Acuff, G. R. (2001). In-plant evaluation of a lactic acid treatment for reduction of bacteria on chilled beef carcasses. Journal of Food Protection, 64, 738–740.Google Scholar
  42. Castillo, L. A., Meszaros, L., & Kiss, I. F. (2004). Effect of high hydrostatic pressure and nisin on microorganisms in minced meats. Acta Alimentaria, 33, 183–190.Google Scholar
  43. Cawthraw, S., Ayling, R., Nuijten, P., Wassenaar, T., & Newell, D. G. (1998). Prior infection, but not a killed vaccine, reduces colonization of chickens by Campylobacter jejuni. In A. J. Lastovica, D. G. Newell, and E. E. Lastovica (Eds.), Campylobacter, Helicobacter and related organisms (pp. 364–372). Cape Town: Institute of Child Health, University of Cape Town.Google Scholar
  44. Center for Disease Control and Prevention (2006). Multistate outbreak of Salmonella typhimurium infections associated with eating ground beef–United States, 2004. MMWR. Morbidity and Mortality Weekly Report, 55, 180–182.Google Scholar
  45. Cerquetti, M. C., & Gherardi, M. M. (2000). Orally administered attenuated Salmonella enteritidis reduces chicken cecal carriage of virulent Salmonella challenge organisms. Veterinary Microbiology, 76, 185–192.Google Scholar
  46. Chen, H.-C., & Stern, N. J. (2001). Competitive exclusion of heterologous Campylobacter spp. in chicks. Applied And Environmental Microbiology, 67, 848–851.Google Scholar
  47. Chen, H., & Hoover, D. G. (2003). Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2, 82–100.Google Scholar
  48. Chiasson, F., Borsa, J., Ouattara, B., & Lacroix, M. (2004). Radiosensitization of Escherichia coli and Salmonella Typhi in ground beef. Journal of Food Protection, 67, 1157–1162.Google Scholar
  49. Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1–20.Google Scholar
  50. Clifton-Hadley, F. A., Breslin, M., Venables, L. M., Sprigings, K. A., Cooles, S. W., Houghton, S., et al. (2002). A laboratory study of an inactivated bivalent iron restricted Salmonella enterica serovars Enteritidis and Typhimurium dual vaccine against Typhimurium challenge in chickens. Veterinary Microbiology, 89, 167–179.Google Scholar
  51. Cole, K., Farnell, M. B., Donoghue, A. M., Stern, N. J., Svetoch, E. A., Eruslanov, B. N., Volodina, L. I., Kovalev, N., Perelygin V. V., Mitsevich, E. V., Mitserich, P., Levchuk, V. P., Pokhilenkov, D., Borzenkov, V. N., Svetoch, O. E., Kudrgavtseva, T. Y., Reyes-Herreia, I., Blore, P. J., Solis De Los Santos, F., & Donoghue, D. J. (2006). Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poultry Science, 85, 1570–1575.Google Scholar
  52. Cooksey, K. (2005). Effectiveness of antimicrobial food packaging materials. Food Additives and Contaminants, 22, 980–987.Google Scholar
  53. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews. Microbiology, 3, 777–788.Google Scholar
  54. Davies, R. H., & Breslin, M. F. (2003). Observations on the distribution and persistence of Salmonella enterica serovar Enteritidis phage type 29 on a cage layer farm before and after the use of competitive exclusion treatment. British Poultry Science, 44, 551–557.Google Scholar
  55. De Martinis, E. C. P., Publio, M. R. P., Santarosa, P. R., & Freitas, F. Z. (2001). Antilisterial activity of lactic acid bacteria isolated from vacuum-packaged Brazilian meat and meat products. Brazilian Journal of Microbiology, 32, 32–37.Google Scholar
  56. de Vrese, M., & Schrezenmeir, J. (2002). Probiotics and non-intestinal infectious conditions. The British Journal of Nutrition, 88, S59–S66.Google Scholar
  57. de Zoete, M. R., van Putten, J. P. M., & Wagenaar, J. A. (2007). Vaccination of chickens against Campylobacter. Vaccine, 25, 5548–5557.Google Scholar
  58. Dean-Nystrom, E. A., Bosworth, B. T., Moon, H. W., & O’Brien, A. D. (1998). Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infection and Immunity, 66, 4560–4563.Google Scholar
  59. Dean-Nystrom, E. A., Gansheroff, L. J., Mills, M., Moon, H. W., & O’Brien, A. D. (2002). Vaccination of pregnant dams with intimin (O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infection and Immunity, 70, 2414–2418.Google Scholar
  60. Deegan, L. H., Cotter, P. D., Hill, C., & Ross, R. P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.Google Scholar
  61. Diez-Gonzalez, F. (2007). Applications of bacteriocins in livestock. Current Issues in Intestinal Microbiology, 8, 15–24.Google Scholar
  62. Dorsa, W. J. (1997). New and established carcass decontamination procedures commonly used in the beef-processing industry. Journal of Food Protection, 60, 1146–1151.Google Scholar
  63. Doyle, M. P., & Erickson, M. C. (2006). Reducing the carriage of foodborne pathogens in livestock and poultry. Poultry Science, 85, 960–973.Google Scholar
  64. Dueger, E. L., House, J. K., Heithoff, D. M., & Mahan, M. J. (2001). Salmonella DNA adenine methylase mutants elicit protective immune responses to homologous and heterologous serovars in chickens. Infection and Immunity, 69, 7950–7954.Google Scholar
  65. Dueger, E. L., House, J. K., Heithoff, D. M., & Mahan, M. J. (2003a). Salmonella DNA adenine methylase mutants elicit early and late onset protective immune responses in calves. Vaccine, 21, 3249–3258.Google Scholar
  66. Dueger, E. L., House, J. K., Heithoff, D. M., & Mahan, M. J. (2003b). Salmonella DNA adenine methylase mutants prevent colonization of newly hatched chickens by homologous and heterologous serovars. International Journal of Food Microbiology, 80, 153–159.Google Scholar
  67. Dykes, G. A., & Moorhead, S. M. (2002). Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. International Journal of Food Microbiology, 73, 71–81.Google Scholar
  68. Dziva, F., Vlisidou, I., Crepin, V. F., Wallis, T. S., Frankel, G., & Stevens, M. P. (2007). Vaccination of calves with EspA, a key colonisation factor of Escherichia coli O157:H7, induces antigen-specific humoral responses but does not confer protection against intestinal colonisation. Veterinary Microbiology, 123, 254–261.Google Scholar
  69. Elder, R. O., Keen, J. E., Siragusa, G. R., Brarkocy-Gallagher, G. A., Koohmaraie, M., & Lagreid, W. W. (2000). Correlation of enterohemorrhagic Escherichia coli O157 prevalance in feces, hides and carcasses of beef cattle during processing. Proceedings of the National Academy of Sciences of the United States of America, 97, 2999–3003.Google Scholar
  70. Enan, G. (2006a). Inhibition of Clostridium perfringens LMG 11264 in meat samples of chicken, turkey and beef by the bacteriocin Plantarcin UG1. International Journal OF Poultry Science, 5, 195–200.Google Scholar
  71. Enan, G. (2006b). Behaviour of Listeria monocytogenes LMG 10470 in poultry meat and its control by the bacteriocin Plantaricin UG 1. International Journal of Poultry Science,5, 355–359.Google Scholar
  72. Etcheverria, A. I., Arroyo, G., Perdigon, G., & Parma, A. E. (2005). Escherichia coli with anti-O157:H7 activity isolated from bovine colon. Journal of Applied Microbiology, 100, 384–389.Google Scholar
  73. Federal Register (2006). Food additives Permitted for Direct Addition to Food for Human Consumption; Bacteriophage Preparation. Federal Register, 71, 47729–47732.Google Scholar
  74. Figueroa-Bossi, N., & Bossi, L. (1999). Inducible prophages contribute to Salmonella virulence in mice. Molecular Microbiology, 33, 167–176.Google Scholar
  75. Fratamico, P. M., Schultz, F. J., Benedict, R. C., & Buchanan, R. L. (1996). Factors influencing attachment of Escherichia coli O157:H7 to beef tissues and removal using selected sanitizing rinses. Journal of Food Protection, 59, 453–459.Google Scholar
  76. Gaeng, S., Scherer, S., Neve, H., & Loessner, M. J. (2000). Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Applied Environmental Microbiology, 66, 2951–2958.Google Scholar
  77. Galvez, A., Abriouel, H., Lopez, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, In press.Google Scholar
  78. Gantois, I., Ducatelle, R., Timbermont, L., Boyen, F., Bohez, L., Haesebrouck, F., et al. (2006). Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis. Vaccine, 24, 6250–6255.Google Scholar
  79. Ganzle, M. G., Hertel, C., van der Vossen, J. M. B. M., & Hammes, W. P. (1999). Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. . International Journal of Food Microbiology, 48, 21–35.Google Scholar
  80. Ganzle, M. G., Weber, S., & Hammes, W. P. (1999). Effect of ecological factors on the inhibtory spectrum and activity of bacteriocins. International Journal of Food Microbiology, 46, 207–217.Google Scholar
  81. Genovese, K. J., Anderson, R. C., Harvey, R. B., Callaway, T. R., Poole, T. L., Edrington, T. S., et al. (2003). Competitive exclusion of Salmonella from the cut of neonatal and weaned pigs. Journal of Food Protection, 66, 1353–1359.Google Scholar
  82. Ghalfi, H., Benkerroum, N., Doguiet, D. D. K., Bensaid, M., & Thonart, P. (2007). Effectiveness of cell-adsorbed bacteriocin produced by Lactobacillus curvatus CWBI-B28 and selected essential oils to control Listeria monocytogenes in pork meat during cold storage. Letters in Applied Microbiology, 44, 268–273.Google Scholar
  83. Gill, A. O., Delaquis, P. J., Russo, P., & Holley, R. A. (2002). Evaluation of antilisterial action of cilantro oil on vacuum packed ham. International Journal of Food Microbiology, 73, 83–92.Google Scholar
  84. Gillespie, I. A., O’Brien, S. J., Adak, G. K., Cheasty, T., & Willshaw, G. (2005). Foodborne general outbreaks of Shiga toxin-producing Escherichia coli O157 in England and Wales 1992–2002: where are the risks? Epidemiology and Infection, 133, 803–808.Google Scholar
  85. Goode, D., Allen, V. M., & Barrow, P. A. (2003). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Applied Environmental Microbiology, 69, 5032–5036.Google Scholar
  86. Goodridge, L., Chen, J., & Griffiths, M. (1999). The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157:H7 in inoculated ground beef and raw milk. International Journal of Food Microbiology, 47, 43–50.Google Scholar
  87. Greer, G. G., & Dilts, B. D. (1992). Factors affecting the susceptibilitiy of meatborne pathogens and spoilage bacteria to organic acids. Food Research International, 25, 355–364.Google Scholar
  88. Greer, G. G., & Dilts, B. D. (2002). Control of Brochothrix thermosphacta spoilage of pork adipose tissue using bacteriophages. Journal of Food Protection, 65, 861–863.Google Scholar
  89. Greer, G. G., & Dilts, B. D. (2006). Control of meatborne Listeria monocytogenes and Brochothrix thermosphacta by a bacteriocinogenic Brochothrix campestris ATCC 43754. Food Microbiol, 23, 785–790.Google Scholar
  90. Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86, 985–990.Google Scholar
  91. Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24, 1551–1557.Google Scholar
  92. Hanlon, G. W. (2007). Bacteriophages: An appraisal of their role in the treatment of bacterial infections. International Journal of Antimicrobial Agents, 30, 118–128.Google Scholar
  93. Hao, Y. Y., Brackett, R. E., & Doyle, M. P. (1998a). Efficacy of plants extracts in inhibiting Aeromonas hydrophilia and Listeria monocytogenes in refrigerated cooked poultry. Food Microbiol, 15, 367–378.Google Scholar
  94. Hao, Y. Y., Brackett, R. E., & Doyle, M. P. (1998b). Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. Journal of Food Protection, 61, 307–312.Google Scholar
  95. Hardin, M. D., Acuff, G. R., Lucia, L. M., Oman, J. S., & Savell, J. W. (1995). Comparison of methods for decontamination from beef carcass surfaces. Journal of Food Protection, 58, 368–374.Google Scholar
  96. Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology, 72, 2260–2264.Google Scholar
  97. Haynie, S. L., Crum, G. A., & Doele, B. A. (1995). Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrobial Agents and Chemotherapy, 39, 301–307.Google Scholar
  98. Heller, C. E., Scanga, J. A., Sofos, J. N., Belk, K. E., Warren-Serna, W., Bellinger, G. R., et al. (2007). Decontamination of beef subprimal cuts intended for blade tenderization or moisture enhancement. . Journal of Food Protection, 70, 1174–1180.Google Scholar
  99. Higgins, J. P., Higgins, S. E., Guenther, K. L., Huff, W., Donoghue, A. M., Donoghue, D. J., et al. (2005). Use of specific bacteriophage treatment to reduce Salmonella in poultry products. Poultry Science, 84, 1141–1145.Google Scholar
  100. Higgs, R., Lynn, D., Cahalane, S., Alaña, I., Hewage, C., James, T., et al. (2007). Modification of chicken avian β-defensin-8 at positively selected amino acid sites enhances specific antimicrobial activity. Immunogenetics, 59, 573–580.Google Scholar
  101. Holzapfel, W. H., Geisen, R., & Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. International Journal of Food Microbiology, 24, 343–362.Google Scholar
  102. Hoszowski, A., & Truszczynski, M. (1997). Prevention of Salmonella typhimurium caecal colonisation by different preparations for competitive exclusion. Comparative Immunology, Microbiology and Infectious Diseases, 20, 111–117.Google Scholar
  103. Hsu, F. C., Shieh, Y. S., & Sobsey, M. D. (2002). Enteric bacteriophages as potential fecal indicators in ground beef and poultry meat. Journal of Food Protection, 65, 93–99.Google Scholar
  104. Huffman, R. D. (2002). Current and future technologies for the decontamination of carcasses and fresh meat. Meat Science, 62, 285–294.Google Scholar
  105. Hugas, M., Pages, F., Garriga, M., & Monfort, J. M. (1998). Application of the bacteriocinogenic Lactobacillus sakei CTC494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiology, 15, 639–650.Google Scholar
  106. Jacobsen, T., Budde, B. B., & Koch, A. G. (2003). Application of Leuconostoc carnosum for biopreservation of cooked meat products. Journal of Applied Microbiology, 95, 242–249.Google Scholar
  107. Joerger, R. D. (2003). Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science, 82, 640–647.Google Scholar
  108. Katla, T., Moretro, T., Sveen, I., Assen, I. M., Axelsson, L., Rorvik, L. M., & Naterstad, K. (2002). Inhibition of Listeria monocytogenes by addition of Sakacin P and Sakacin P-producing Lactobacillus sakei. Journal of Applied Microbiology, 83, 191–196.Google Scholar
  109. Khan, M. I., Fadl, A. A., & Venkitanarayanan, K. S. (2003). Reducing colonization of Salmonella Enteritidis in chicken by targeting outer membrane proteins. Journal of Applied Microbiology, 95, 142–145.Google Scholar
  110. Khoury, C. A., & Meinersmann, R. J. (1995). A genetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian Diseases, 39, 812–820.Google Scholar
  111. Koohmaraie, M., Arthur, T. M., Bosilevac, J. M., Guerini, M., Shackelford, S. D., & Wheeler, T. L. (2005). Post-harvest interventins to reduce/eliminate pathogens in beef. Meat Science, 71, 79–91.Google Scholar
  112. Kostrzynska, M., & Bachand, A. (2006). Use of microbial antagonism to reduce pathogen levels on produce and meat products: A review. Canadian Journal of Microbiology, 52, 1017–1026.Google Scholar
  113. Kudva, I. T., Jelacic, S., Tarr, P. I., Youderian, P., & Hovde, C. J. (1999). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Applied Environmental Microbiology, 65, 3767–3773.Google Scholar
  114. Kuleasan, H., & Cakmakci, M. L. (2002). Effect of reuterin produced by Lactobacillus reuteri on the surface of sausages to inhibit the growth of Listeria monocytogenes and Salmonella spp. Nahrung/Food, 46, 408–410.Google Scholar
  115. La Ragione, R. M., & Woodward, M. J. (2003). Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary Microbiology, 94, 245–256.Google Scholar
  116. Lambert, R. J. W., Skandamis, P., Coote, P. J., & Nychas, G.-J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91, 453–462.Google Scholar
  117. LeJeune, J. T., & Wetzel, A. N. (2007). Preharvest control of Escherichia coli O157 in cattle. Journal of Animal Science, 85, E73–80.Google Scholar
  118. Lemay, M. J., Choquette, J., Delaquis, P. J., Claude, G., Rodrigue, N., & Saucier, L. (2002). Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. International Journal of Food Microbiology, 78, 217–226.Google Scholar
  119. Lenski, R. E. (1988). Dynamics of interactions between bacteria and virulent bacteriophage Advances in Microbial Ecology, 10, 1–44.Google Scholar
  120. Leroy, F., & De Vuyst, L. (2005). Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. International Journal of Food Microbiology, 100, 141–152.Google Scholar
  121. Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., et al. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied Environmental Microbiolgy, 69, 4519–4526.Google Scholar
  122. Linde, K., Beer, J., & Bondarenko, V. (1990). Stable Salmonella live vaccine strains with two or more attenuating mutations and any desired level of attenuation. Vaccine, 8, 278–282.Google Scholar
  123. Linde, K., Hahn, I., & Vielitz, E. (1996). Entwicklung von optimal fur das Huhn attenuierten Salmonella-Lebendimpfstoffen. Tierärztliche Umschau, 51, 23–31.Google Scholar
  124. Liu, W., Yang, Y., Chung, N., & Kwang, J. (2001). Induction of humoral immune response and protective immunity in chickens against Salmonella Enteritidis after a single dose of killed bacterium-loaded microspheres. Avian Diseases, 45, 797–806.Google Scholar
  125. Loc Carrillo, C., Atterbury, R. J., El-Shibiny, A., Connerton, P. L., Dillon, E., Scott, A., et al. (2005). Bacteriophage Therapy To Reduce Campylobacter jejuni Colonization of Broiler Chickens. Applied Environmental Microbiology, 66: 220–225.Google Scholar
  126. Loessner, M. J. (2005). Bacteriophage endolysins – current state of research and applications. Current Opinion in Microbiology, 8, 480–487.Google Scholar
  127. Lopez-Exposito, I., Minervini, F., Amigo, L., & Recio, I. (2006). Identification of antibacterial peptides from bovine kappa-casein. Journal of Food Protection, 69, 2992–2997.Google Scholar
  128. Lucke, F. K. (2000). Utilization of microbes to process and preserve meat. Meat Science, 56, 105–115.Google Scholar
  129. Maciorowski, K. G., Pillai, S. D., & Ricke, S. C. (2001). Presence of bacteriophages in animal feed as indicators of fecal contamination. Journal of Environmental Science and Health, 36, 699–708.Google Scholar
  130. Marcos, B., Aymerich, T., Monfort, J. M., & Garriga, M. (2007). Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. International Journal of Food Microbiology, In press.Google Scholar
  131. Mattila, K., Saris, P., & Tyopponen, S. (2003). Survival of Listeria monocytogenes on sliced cooked sausage after treatment with pediocin AcH. International Journal of Food Microbiology, 89, 281–286.Google Scholar
  132. Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., & Villani, F. (2004). Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. Journal of Applied Microbiology, 97, 314–322.Google Scholar
  133. Mazick, A., Ethelberg, S., Nielsen, E. M., Molbak, K., & Lisby, M. (2006). An outbreak of Campylobacter jejuni associated with consumption of chicken, Copenhagen, 2005. Euro Surveillance, 11, 137–139.Google Scholar
  134. McCormick, J. K., Klaenhammer, T. R., & Stiles, M. E. (1999). Colicin V can be produced by lactic acid bacteria. Letters in Applied Microbiology, 29, 37–41.Google Scholar
  135. Mead, P. S., Dunne, E. F., Graves, L., Wiedmann, M., Patrick, M., Hunter, S., et al. (2006). Nationwide outbreak of listeriosis due to contaminated meat. Epidemiology and Infection, 134, 744–751.Google Scholar
  136. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.CrossRefGoogle Scholar
  137. Meenakshi, M., Bakshi, C. S., Butchaiah, G., Bansal, M. P., Siddiqui, M. Z., & Singh, V. P. (1999). Adjuvanted outer membrane protein vaccine protects poultry against infection with Salmonella Enteritidis. Veterinary Research Communications, 23, 81–90.Google Scholar
  138. Milona, P., Townes, C. L., Bevan, R. M., & Hall, J. (2007). The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochemical and Biophysical Research Communications, 356, 169–174.Google Scholar
  139. Ming, X., Weber, G. H., Ayres, J. W., & Sandine, W. E. (1997). Bacteriocins applied to food packaging material to inhibit Listeria monocytogenes on meats. Journal of Food Science, 62, 413–415.Google Scholar
  140. Mirold, S., Rabsch, W., Tschape, H., & Hardt, W. D. (2001). Transfer of the Salmonella type III effector sopE between unrelated phage families. Journal of Molecular Biology, 312, 7–16.Google Scholar
  141. Morency, H., Mota-Meira, M., LaPointe, G., Lacroix, C., & Lavoie, M. C. (2001). Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Canadian Journal of Microbiology, 47, 322–331.Google Scholar
  142. Muthukumarasamy, P., Han, J. H., & Holley, R. A. (2003). Bactericidal effects of Lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. Journal of Food Protection, 66, 2038–2044.Google Scholar
  143. Naghmouchi, K., Kheadr, E., Lacroix, C., & Fliss, I. (2007). Class I/IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiology, 24, 718–727.Google Scholar
  144. Nava, G. M., Bielke, L. R., Callaway, T. R., & Castaneda, M. P. (2005). Probiotic alternatives to reduce gastrointestinal infections: The poultry experience. Animal Health Research Reviews, 6, 105–118.Google Scholar
  145. Nieto-Lozano, J. C., Reguera-Useros, J. I., Pelaez-Martinez, M. C., & Hardisson de la Torre, A. (2006). Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringenes on Spanish raw meat. Meat Science, 72, 57–61.Google Scholar
  146. Noonpakdee, W., Santivarangkna, C., Jumriangrit, P., Sonomoto, K., & Panyim, S. (2003). Isolation of nisin-producing Lactococcus lactis WNC20 strain from nham, a traditional Thai fermented sausage. International Journal of Food Microbiology, 81, 137–145.Google Scholar
  147. O’Flynn, G., R. P. Ross, Fitzgerald, G. F., & Coffey, A. (2004). Evaluation of a Cocktail of Three Bacteriophages for Biocontrol of Escherichia coli O157:H7. Applied Environmental Microbiology, 70, 3417–3424.Google Scholar
  148. O’Sullivan, L., Ross, R. P., & Hill, C. (2002). Potential of bacteriocin-producing lactic acid bacteria form improvements in food safety and quality. Biochimie, 84, 593–604.Google Scholar
  149. O’Sullivan, L., Ryan, M. P., Ross, R. P., & Hill, C. (2003). Generation of food-grade Lactococcal starters which produce the Lantibiotics Lacticin 3147 and Lacticin 481. Applied Environmental Microbiology, 68, 3681–3685.Google Scholar
  150. Ovchinnikova, T. V., Balandin, S. V., Aleshina, G. M., Tagaev, A. A., Leonova, Y. F., Krasnodembsky, E. D., et al. (2006). Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochemical and Biophysical Research Communications, 348, 514–523.Google Scholar
  151. Pao, S., Randolph, S. P., Westbrook, W., & Shen, H. (2004). Use of bacteriophages to control Salmonella in experimentally contaminated sprout seeds. Journal of Food Science, 69, 127–130.Google Scholar
  152. Patel, J. R., Sanglay, G. C., Sharma, M., & Solomon, M. B. (2007). Combining antimicrobials and hydrodynamic pressure processing for control of Listeria monocytogenes in frankfurters. Journal of Muscle Foods, 18, 1—18.Google Scholar
  153. Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R., et al. (2006). Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochimica Et Biophysica Acta, 1760, 1732–1740.Google Scholar
  154. Podolak, R. K., Zayas, J. F., Kastner, C. L., & Fung, D. Y. C. (1996). Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 on beef by application of organic acids. Journal of Food Protection, 59, 370–373.Google Scholar
  155. Potter, A. A., Klashinsky, S., Li, Y., Frey, E., Townsend, H., Rogan, D., et al. (2004). Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine, 22, 362–369.Google Scholar
  156. Prema, P., Bharathy, S., Palavesam, A., Sivasubramanian, M., & Immanuel, G. (2006). Detection, purification and efficacy of warnerin produced by Staphylococcus warneri. World Journal of Microbiology & Biotechnology, 22, 865–872.Google Scholar
  157. Quiberoni, A., Suarez, V. B., & Reinheimer, J. A. (1999). Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. Journal of Food Protection, 62, 894–898.Google Scholar
  158. Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380.Google Scholar
  159. Raya, R. R., Varey, P., Oot, R. A., Dyen, M. R., Callaway, T. R., Edrington, T. S., et al. (2006). Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Applied Environmental Microbiology, 72, 6405–6410.Google Scholar
  160. Rice, B. E., Rollins, D. M., Mallinson, E. T., Carr, L., & Joseph, S. W. (1997). Campylobacter jejuni in broiler chickens: Colonization and humoral immunity following oral vaccination and experimental infection. Vaccine, 15, 1922–1932.Google Scholar
  161. Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology and application. Annual Review of Microbiology, 56, 117–137.Google Scholar
  162. Rodriguez, E. J. L. A., Nunez, M., Gaya, P., & Medina, M. (2005). Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Applied And Environmental Microbiology, 71, 3399–3404.Google Scholar
  163. Roesler, U., Marg, H., Schroder, I., Mauer, S., Arnold, T., Lehmann, J., et al. (2004). Oral vaccination of pigs with an invasive gyrA-cpxA-rpoB Salmonella Typhimurium mutant. Vaccine, 23, 595–603.Google Scholar
  164. Russell, J. B., and Mantovan, H. C. (2002). The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. Journal of Molecular Microbiology and Biotechnology, 4, 347–355.Google Scholar
  165. Samelis, J., Sofos, J. N., Kendall, P. A., 7 Smith, G. C. (2002). Effect of acid adaptation on survival of Escherichia coli O157:H7 in meat decontamination washing fluids and potential effects of organic acid interventions on the microbial ecology of the meat plant environment. Journal of food protection, 65, 33–40.Google Scholar
  166. Sang, Y., Teresa Ortega, M., Rune, K., Xiau, W., Zhang, G., Soulages, J. L., et al. (2007). Canine cathelicidin (K9CATH): Gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide. Developmental And Comparative Immunology, In Press, Corrected Proof.Google Scholar
  167. Scannell, A. G. M., Hill, C., Ross, R. P., Marx, S., Hartmeier, W., & Arendt, E. K. (2000). Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin. International journal of food microbiology, 60, 241–249.Google Scholar
  168. Schamberger, G. P., Phillips, R. L., Jacobs, J. L., & Diez-Gonzalez, F. (2004). Reduction of Escherichia coli O157:H7 populations in cattle by feeding colicin E7-producing E. coli. Applied and Environmental Microbiology, i, 6053–6060.Google Scholar
  169. Schmieger, H., & Schicklmaier, P. (1999). Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiology Letters, 170, 251–256.Google Scholar
  170. Schneider, R., Fernandez, F. J., Aguilar, M. B., Guerrero-Legerreta, I., Alpuche-Solis, A., & Ponce-Alquicira, E. (2006). Partial characterization of a class IIa pediocin produced by Pediococcus parvulus 133 strain isolated from meat (Mexican ’chorizo’). Food Control, 17, 909–915.Google Scholar
  171. Schneitz, C., & Hakkinen, M. (1998). Comparison of two different types of competitive exclusion products. Letters in Applied Microbiology, 26, 338–341.Google Scholar
  172. Schoeni, J. L., & Wong, A. C. L. (1994). Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Applied And Environmental Microbiology, 60, 1191–1197.Google Scholar
  173. Schoenis, J. L., & Doyle, M. P. (1992). Reduction of Campylobacter jejuni colonization of chicks by cecum-colonizing bacteria producing anti-C. jejuni metabolites. Applied And Environmental Microbiology, 58, 664–670.Google Scholar
  174. Senne, M. M., & Gilliland, S. E. (2003). Antagonistic action of cells of Lactobacillus delbrueckii subsp. lactis against pathogenic and spoilage microorganisms in fresh meat systems. Journal of food protection,: 418–425.Google Scholar
  175. Sheng, H., Knecht, H. J., Kudva, I. T., & Hovde, C. J. (2006). Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Applied And Environmental Microbiology,: 5359–5366.Google Scholar
  176. Shin, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M., Otsuka, Y., et al. (1998). Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7. Letters in Applied Microbiology, 407–411.Google Scholar
  177. Si, W., Gong, J., Tsao, R., Zhou, E., Yu, H., Poppe, C., et al. (2006). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. Journal of Applied Microbiology, 296–305.Google Scholar
  178. Siragusa, G. R., Cutter, C. N., & Willett, J. L. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 16, 229–235.Google Scholar
  179. Skandamis, P. N., & Nychas, G.-J. E. (2001). Effect of oregano essential oil on the microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. . Journal of Applied Microbiology, 91, 1011.Google Scholar
  180. Skandamis, P., Tsigarida, E., & Nychas, G.-J. E. (2002). The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5C under aerobic, VP/MAP conditions. Food Microbiology, 19, 97–103.Google Scholar
  181. Sklar, I. B., & Joerger, R. D. (2001). Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J Food Safety, 21, 15–29.Google Scholar
  182. Smith, H. W., Huggins, M. B., & Shaw, K. M. (1987). Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Journal of General Microbiology, 133, 1127–1135.Google Scholar
  183. Smulders, F. J., & Greer, G. G. (1998). Integrating microbial decontamination with organic acids in HACCP programmes for muscle foods: Prospects and controversies. International Journal of Food Microbiology, 44, 149–169.Google Scholar
  184. Stergiou, V. A., Thomas, L. V., & Adams, M. R. (2006). Interactions of nisin with glutathione in a model protein system and meat. Journal of Food Protection, 69, 951–956.Google Scholar
  185. Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., et al. (2005). Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. Journal of Food Protection, 68, 1450–1453.Google Scholar
  186. Svetoch, E. A., Stern, N. J., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., et al. (2005). Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. Journal of Food Protection, 68, 11–17.Google Scholar
  187. Tanji, Y., Shimada, T., Yoichi, M., Miyanaga, K., Hori, K., & Unno, H. (2004). Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Applied Microbiology and Biotechnology, 64, 270–274.Google Scholar
  188. Tassou, C. C., Drosinos, E. H., & Nychas, G. J. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 degrees and 10 degrees C. The Journal of Applied Bacteriology, 78, 593–600.Google Scholar
  189. Tsigarida, E., Skandamis, P., & Nychas, G.-J. E. (2000). Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5C. Journal of Applied Microbiology, 89, 901–909.Google Scholar
  190. United States Department of Agriculture, Economic Resource Service (2001). Economics of foodborne disease: Estimating the benefits of reducing foodborne disease. United States Department of Agriculture, E.R.S. (ed.) Washington DC.Google Scholar
  191. United States Department of Agriculture-Food Safety and Inspection Service (1996). Notice of policy change; achieving the zero tolerance performances stard for beef carcasses by knife trimming and vacuuming with hot water or steam; use of acceptable carcass interventions for reducing carcass contamination without prior agency approval. In Fed. Reg. 61:15024–15027. United States Department of Agriculture, F.S.a.I.S. (ed.).Google Scholar
  192. van Diemen, P. M., Dziva, F., Abu-Median, A., Wallis, T. S., van den Bosch, H., Dougan, G., et al. (2007). Subunit vaccines based on intimin and Efa-1 polypeptides induce humoral immunity in cattle but do not protect against intestinal colonisation by enterohaemorrhagic Escherichia coli O157:H7 or O26:H. Veterinary Immunology and Immunopathology, 116, 47–58.Google Scholar
  193. Van Donkersgoed, J., Hancock, D., Rogan, D., & Potter, A. A. (2005). Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. The Canadian Veterinary Journal, 46, 724–728.Google Scholar
  194. Vignolo, G., Palacios, J., Farias, M. E., Sesma, F., Schillinger, U., Holzapfel, W. H., et al. (2000). Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Current Microbiology, 41, 410–416.Google Scholar
  195. Vrinda Menon, K., & Garg, S. R. (2001). Inhibitory effect of clove oil on Listeria monocytogenes in meat and cheese. Food Microbiology, 18, 647–650.Google Scholar
  196. Waddell, T., Mazzocco, A., Johnson, R. P., Pacan, J., Campbell, S., Perets, A., et al. (2000). Control of Escherichia coli O157:H7 infection in calves by bacteriophages. Presentation, 4th International Symposium and Workshop on Shiga toxin (Verocytotoxin)- Producing Escherichia coli Infections, Kyoto, Japan.Google Scholar
  197. Wagenaar, J. A., Mevius, D. J., & Havelaar, A. H. (2006). Campylobacter in primary animal production and control strategies to reduce the burden of human campylobacteriosis. Revue Science et Technique, 25, 581–594.Google Scholar
  198. Wagenaar, J. A., Van Bergen, M. A., Mueller, M. A., Wassenaar, T. M., & Carlton, R. M. (2005). Phage therapy reduces Campylobacter jejuni colonization in broilers. Veterinary Microbiology, 109, 275–283.Google Scholar
  199. Wagner, P. L., and Waldor, M. K. (2002). Bacteriophage control of bacterial virulence. Infection and Immunity, 70, 3985–3993.Google Scholar
  200. Wagner, R. D. (2006). Efficacy and food safety consideration of poultry competitive exclusion products. Molecular Nutrition & Food Research, 50, 1061–1071.Google Scholar
  201. Whichard, J. M., Sriranganathan, N., & Pierson, F. W. (2003). Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. Journal of Food Protection, 220–225.Google Scholar
  202. Widders, P. R., Thomas, L. M., Long, K. A., Tokhi, M. A., Panaccio, M., & Apos, E. (1998). The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Veterinary Microbiology, 64, 39–50.Google Scholar
  203. Woodward, M. J., Gettinby, G., Breslin, M. F., Corkish, J. D., & Houghton, S. (2002). The efficacy of Salenvac, a Salmonella enterica subsp. Enterica serotype Enteritidis iron-restricted bacterin vaccine, in laying chickens. Avian Pathology, 31, 383–392.Google Scholar
  204. Yaron, S., Rydlo, T., Shachar, D., & Mor, A. (2003). Activity of dermaseptin K4-S4 against foodborne pathogens. Peptides, 24, 1815–1821.Google Scholar
  205. Yin, L. J., Wu, C. W., & Jiang, S. T. (2003). Bacteriocins from Pediococcus pentosaceus L and S from pork meat. Journal of Agricultural and Food Chemistry, 51, 1071–7076.Google Scholar
  206. Yuste, J., Pla, R., Capellas, M., & Mor-Mur, M. (2002). Application of high-pressure processing and nisin to mechanically recovered poultry meat for microbial decontamination. Food Control, 13, 451–455.Google Scholar
  207. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.Google Scholar
  208. Zhang, G., & Mustapha, A. (1999). Reduction of Listeria monocytogenes and Escherichia coli O157:H7 numbers on vacuum-packaged fresh beef treated with nisin or nisin combined with EDTA. Journal of Food Protection, 62, 1123–1127.Google Scholar
  209. Zhang, G., Ma, L., & Doyle, M. P. (2007a). Salmonellae reduction in poultry by competitive exclusion bacteria Lactobacillus salivarius and Streptococcus cristatus. Journal of Food Protection, 70, 874–878.Google Scholar
  210. Zhang, G., Ma, L., & Doyle, M. P. (2007b). Potential competitive exclusion bacteria from poultry inhibitory to Campylobacter jejuni and Salmonella. Journal of Food Protection, 70, 867–873.Google Scholar
  211. Zhao, T., Doyle, M. P., Harmon, B. G., Brown, C. A., Mueller, P. O. E., & Parks, A. H. (1998). Reduction of carriage of Enterohemorrhagic Escherichia coli O157:H7 in cattle in inoculation with probiotic bacteria. Journal of Clinical Microbiology, 36: 641–647.Google Scholar
  212. Zhao, T., Tkalcic, S., Doyle, M. P., Harmon, B. G., Brown, C. A., & Zhao, P. (2003). Pathogenicity of Enterohaemorrhagic Escherichia coli in neonatal calves and evaluation of fecal shedding by treatment with probiotic Escherichia coli. Journal of Food Protection, 66, 924–30.Google Scholar
  213. Ziprin, R. L., Hume, M. E., Young, C. R., & Harvey, R. B. (2002). Inoculation of chicks with viable non-colonizing strains of Campylobacter jejuni: Evaluation of protection against a colonizing strain. Current microbiology. 44, 221–223.Google Scholar
  214. Zuckerman, H., & Abraham, R. B. (2002). Quality improvement of kosher chilled poultry. Poultry science, 81, 1751–1757.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Catherine M. Burgess
  • Lucia Rivas
  • Mary J. McDonnell
  • Geraldine Duffy
    • 1
  1. 1.Ashtown Food Research CentreTeagasc AshtownIreland

Personalised recommendations