Advertisement

Bioactive Compounds in Meat

  • Keizo Arihara
  • Motoko Ohata

Since health-conscious consumers have made functional foods the leading trends in the food industry, efforts have been taken in many countries to develop new functional foods and to establish regulations for functional foods (Arihara, 2004; Dentali, 2002; Eve, 2000; Hutt, 2000). For example, in 1991, the concept of foods for specified health use (FOSHU) was established by the Japanese Ministry of Health and Welfare (Arihara, 2004, 2006b). FOSHU are foods that, based on the knowledge of the relationship between foods or food components and health, are expected to have certain health benefits and have been licensed to bear the label claiming that a person using them may expect to obtain that health use through the consumption of these foods. As of June 2008, 786 FOSHU products have been approved in Japan.

Keywords

Conjugate Linoleic Acid Meat Product Functional Food Food Protein Bioactive Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Alonso, L., Cuesta, E. P., & Gilliland, S. E. (2003). Production of free linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. Journal of Dairy Science, 86, 1941–1946.Google Scholar
  2. Arihara, K. (2004). Functional foods. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 492–499). Oxford: Elsevier.Google Scholar
  3. Arihara, K. (2006a). Functional properties of bioactive peptides derived from meat proteins. In N. M. L. Nollet, & F. Toldrá (Eds.), Advanced technologies for meat processing (pp. 245–274). Boca Raton, FL: CRC Press.Google Scholar
  4. Arihara, K. (2006b). Strategies for designing novel functional meat products. Meat Science, 74, 219–229.Google Scholar
  5. Arihara, K., Ishikawa, S., & Itoh, M. (2006). Bifidobacterium growth promoting peptides derived from meat proteins. Japan patent (submitted to government).Google Scholar
  6. Arihara, K., Nakashima, Y., Mukai, T., Ishikawa, S., & Itoh, M. (2001). Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Science, 57, 319–324.Google Scholar
  7. Arihara, K., Nakashima, Y., Ishikawa, S., & Itoh, M. (2004). Antihypertensive activities generated from porcine skeletal muscle proteins by lactic acid bacteria. Abstracts of 50th International Congress of Meat Science and Technology (p. 236), 8–13 August 2004, Helsinki, Finland.Google Scholar
  8. Arihara, K., Tomita, K., Ishikawa, S., Itoh, M., Akimoto, M., & Sameshima, T. (2005). Anti-fatigue peptides derived from meat proteins. Japan patent (submitted to government).Google Scholar
  9. Azain, M. J. (2003). Conjugated linoleic acid and its effects on animal products and health in single-stomached animals. Proceedings of the Nutrition Society, 62, 319–328.Google Scholar
  10. Biesalski, H.-K. (2005). Meat as a component of a healthy diet – are there any risks or benefits if meat is avoided in the diet? Meat Science, 70, 509–524.Google Scholar
  11. Bouckenooghe, T., Remacle, C., & Reusens, B. (2006). Is taurine a functional nutrient? Current Opinion in Clinical Nutrition and Metabolic Care, 9, 728–733.Google Scholar
  12. Bougle, D., & Bouhallab, S. (2005). Mineral-binding proteins and peptides and bioavailability of trace elements. In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 29–40). Boca Raton, FL: CRC Press.Google Scholar
  13. Brown, C. E. (1981). Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. Journal of Theoretical Biology, 88, 245–256.Google Scholar
  14. Bruna, J. M., Fernandez, M., Hierro, E. M., Ordonez, J. A., & de la Hoz, L. (2000). Combined use of pronase E and a fungal extract (Penicillium aurantiogriseum) to potentiate the sensory characteristics of dry fermented sausages. Meat Science, 54, 135–145.Google Scholar
  15. Chan, J. C. K., & Li-Chan, E. C. Y. (2005). Antimicrobial peptides. In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 99–136). Boca Raton, FL: CRC Press.Google Scholar
  16. Chan, W. (2004). Macronutrients in meat. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 614–618). Oxford: Elsevier.Google Scholar
  17. Chandan, R. C. (2007). Functional properties of milk constituents. In Y. H. Hui (Ed.), Handbook of food products manufacturing – Principles, bakery, beverages, cereals, cheese, confectionary, fats, fruits, and functional foods (pp. 971–987). Hoboken, NJ: John Wiley & Sons.Google Scholar
  18. Chandan, R. C., & Shah, N. p. (2007). Functional foods based on dairy ingredients. In Y. H. Hui (Ed.), Handbook of food products manufacturing – Principles, bakery, beverages, cereals, cheese, confectionary, fats, fruits, and functional foods (pp. 957–970). Hoboken, NJ: John Wiley & Sons.Google Scholar
  19. Chiba, H., Tani, F., & Yoshikawa, M. (1989). Opioid antagonist peptides derived from κ-casein. Journal of Dairy Research, 56, 363–366.Google Scholar
  20. Coakley, M., Ross, R. P., Nordgren, M., Fitzerald, G., Devery, R., & Stanton, C. (2003). Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. Journal of Applied Microbiology, 94, 138–145.Google Scholar
  21. Cross, K. J., Huq, N. L., & Reynolds, E. C. (2005). In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 335–351). Boca Raton, FL: CRC Press.Google Scholar
  22. Dainty, R., & Blom, H. (1995). Flavor chemistry of fermented sausages. In G. Campbell-Plattand, & P. E. Cook (Eds.), Fermented meats (pp. 176–193). Glasgow, Scotland: Blackie Academic & Professional.Google Scholar
  23. Decker, E. A., Livisay, S. A., & Zhou, S. (2000). Mechanisms of endogenous skeletal muscle antioxidants: Chemical and physical aspects. In E. A. Decker, C. Faustman, & C. J. Lopez-Bote (Eds.), Antioxidants in muscle foods (pp. 25–60). New York: Wiley-Interscience.Google Scholar
  24. Dentali, S. (2002). Regulation of functional foods and dietary supplements. Food Technology, 56(6), 89–94.Google Scholar
  25. Dhiman, T. R., Nam, S. H., & Ure, A. L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical Reviews of Food Science and Nutrition, 45, 463–482.Google Scholar
  26. Dransfield, E., & Etherington, D. (1981). Enzymes in the tenderization of meat. In G. G. Birch, N. Blakebrough, & K. J. Parker (Eds.), Enzymes and food processing (pp. 177–194). London: Applied Science Publishers.Google Scholar
  27. Etherington, D. J. (1984). The contribution of proteolytic enzymes to postmortem changes in muscle. Journal of Animal Science, 59, 1644–1650.Google Scholar
  28. Eve, L. (2000). Regulatory issues: Europe and Japan. In M. K. Schmidl, & T. p. Labuza (Eds.), Essentials of functional foods (pp. 363–384). Gaithersburg, MD: Aspen Publication.Google Scholar
  29. Farnworth, E. R. (2003). Handbook of fermented functional foods. Boca Raton, FL: CRC Press.Google Scholar
  30. Fernández-Ginés, J. M., Fernández-López, J., Sayas-Barberá, E., & Pérez-Alvarez, J. A. (2005). Meat products as functional foods: A review. Journal of Food Science, 70, R37–R43.Google Scholar
  31. Fiat, A. M., Migliore-Samour, D., Jollès, P., Drouet, L., Collier, C., & Caen, J. (1993). Biologically active peptides from milk proteins with emphasis on two example concerning antithrombotic and immuno-modulating activities. Journal of Dairy Science, 76, 301–310.Google Scholar
  32. Fujita, H., Yokoyama, K., & Yoshikawa, M. (2000). Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. Journal of Food Science, 65, 564–569.Google Scholar
  33. Gagnaire, V., Pierre, A., Molle, D., & Leonil, J. (1996). Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles. Journal of Dairy Research, 63, 405–422.Google Scholar
  34. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125, 1401–1412.Google Scholar
  35. Gnadig, S., Xue, Y., Berdeaux, O., Chardigny, J. M., & Sebedio, J.-L. (2000). Conjugated linoleic acid (CLA) as a functional ingredient. In T. Mattila-Sandholm, & M. Saarela (Eds.), Functional dairy products (pp. 263–298). Boca Raton, FL: CRC Press.Google Scholar
  36. Gobbetti, M., Minervini, F., & Rizzello, C. G. (2007). Bioactive peptides in dairy products. In Y. H. Hui (Ed.), Handbook of food products manufacturing – Health, meat, milk, poultry, seafood, and vegetables (pp. 489–517). Hoboken, NJ: John Wiley & Sons.Google Scholar
  37. Guesdon, B., Pichon, L, & Tomé, D. (2005). Opioid peptides. In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 367–376). Boca Raton, FL: CRC Press.Google Scholar
  38. Hammes, W. P., Haller, D., & Gänzle, M. G. (2003). Fermented meat. In E. R. Farnworth (Ed.), Handbook of fermented functional foods (pp. 251–275). Boca Raton, FL: CRC Press.Google Scholar
  39. Hasler, C. M. (1988). Functional foods: Their role in disease prevention and health promotion. Food Technology, 52(10), 63–70.Google Scholar
  40. Heasman, M., & Mellentin, J. (2001). The functional foods revolution. London: Earthscan Publications.Google Scholar
  41. Hierro, E., de la Hoz, L., & Ordonez, J. A. (1999). Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages. Journal of Agricultural and Food Chemistry, 47, 1156–1161.Google Scholar
  42. Higgs, J. D. (2000). The changing nature of red meat: 20 years of improving nutritional quality. Trends in Food Science and Technology, 11, 85–95.Google Scholar
  43. Hutt, P. B. (2000). U.S. Government regulation of food with claims for special physiological value. In M. K. Schmidl, & T. P. Labuza (Eds.), Essentials of functional foods (pp. 339–352). Gaithersburg, MD: Aspen Publication.Google Scholar
  44. Jang, A., & Lee, M. (2005). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science, 69, 653–661.Google Scholar
  45. Jiménez-Colmenero, F. (2007a). Functional foods based on meat products. In Y. H. Hui (Ed.), Handbook of food products manufacturing – Principles, bakery, beverages, cereals, cheese, confectionary, fats, fruits, and functional foods (pp. 989–1015). Hoboken, NJ: John Wiley & Sons.Google Scholar
  46. Jiménez-Colmenero, F. (2007b). Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science and Technology, 18, 567–578.Google Scholar
  47. Jiménez-Colmenero, F., Carballo, J., & Cofrades, S. (2001). Healthier meat and meat products: Their role as functional foods. Meat Science, 59, 5–13.Google Scholar
  48. Jiménez-Colmenero, F., Reig, M., & Toldrá, F. (2006). New approaches for the development of functional meat products. In L. M. L. Nollet, & F. Toldrá (Eds.), Advanced technologies for meat processing (pp. 275–308). Boca Raton, FL: CRC Press.Google Scholar
  49. Jollès, p. S., Levy-Toledano, S., Fiat, A. M., Soria, C., Gillessen, D., Thomaidis, A., et al. (1986). Analogy between fibrinogen and casein. European Journal of Biochemistry, 158, 379–384.Google Scholar
  50. Jones, D. P., Coates, R. J., Flagg, E. W., Eley, J. W., Block, G., Greenberg, R. S., et al. (1992). Glutathione in foods listed in the National Cancer Institute’s Health Habits and History Food Frequency Questionnaire. Nutrition and Cancer, 17, 57–75.Google Scholar
  51. Katayama, K., Fuchu, H., Sakata, A., Kawahara, S., Yamauchi, K., Kawahara, Y., et al. (2003). Angiotensin I-converting enzyme inhibitory activities of porcine skeletal muscle proteins following enzyme digestion. Asian-Australian Journal of Animal Science, 16, 417–424.Google Scholar
  52. Katayama, K., Tomatsu, M., Fuchu, H., Sugiyama, M., Kawahara, S., Yamauchi, K., et al. (2003). Purification and characterization of an angiotensin I-converting enzyme inhibitory peptide derived from porcine troponin C. Animal Science Journal, 74, 53–58.Google Scholar
  53. Katayama, K., Tomatsu, M., Kawahara, S., Yamauchi, K., Fuchu, H., Kodama, Y., et al. (2004). Inhibitory profile of nonapeptide derived from porcine troponin C against angiotensin I-converting enzyme. Journal of Agricultural and Food Chemistry, 52, 771–775.Google Scholar
  54. Kato, T., Matsuda, T., Tahara, T., Sugimoto, M., Sato, Y., & Nakamura, R. (1994). Effects of meat conditioning and lactic fermentation on pork muscle protein degradation. Bioscience, Biotechnology and Biochemistry, 58, 408–410.Google Scholar
  55. Koohmaraie, M. (1994). Muscle proteinases and meat aging. Meat Science, 36, 93–104.Google Scholar
  56. Korhonen, H., & Pihlanto, A. (2003). Food-derived bioactive peptides: Opportunities for designing future foods. Current Pharmaceutical Design, 9, 1297–1308.Google Scholar
  57. Korhonen, H., & Pihlanto, A. (2007). Bioactive peptides from food proteins. In Y. H. Hui (Ed.), Handbook of food products manufacturing – Health, meat, milk, poultry, seafood, and vegetables (pp. 5–37). Hoboken, NJ: John Wiley & Sons.Google Scholar
  58. Krajcovicova-Kudlackova, M., Simoncic, R., Bederova, A., Babinska, K., & Beder, I. (2000). Correlation of carnitine levels to methionine and lysine intake. Physiological Research, 49, 399–402.Google Scholar
  59. Lachance, p. A., & Fisher, M. C. (2005). Reinvention of the food guide pyramid to promote health. Advances in Food and Nutrition Research, 49, 1–39.Google Scholar
  60. Langseth, L. (2000). Antioxidants and their effect on health. In M. K. Schmidl, & T. p. Labuza (Eds.), Essentials of functional foods (pp. 303–317). Gaithersburg, MD: Aspen Publication.Google Scholar
  61. Larsson, S. C., Bergkvist, L., & Wolk, A. (2005). High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. American Journal of Clinical Nutrition, 82, 894–900.Google Scholar
  62. Li, G. H., Le, G. W., Shi, Y. H., & Shrestha, S. (2004). Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24, 469–486.Google Scholar
  63. Lieple, C., Adermann, K., Raida, M., Magert, H.-J., Forssman, W.-G., & Zucht, H.-D. (2002). Human milk provides peptides highly stimulating the growth of bifidobacteria. European Journal of Biochemistry, 269, 712–718.Google Scholar
  64. Lindsay, D. G. (2000). Maximizing the functional benefits of plants foods. In G. R. Gibson, & C. M. Williams (Eds.), Functional foods (pp. 183–208). Boca Raton, FL: CRC Press.Google Scholar
  65. Mattila-Sandholm, T., & Saarela, M. (2000). Functional dairy products. Boca Raton, FL: CRC Press.Google Scholar
  66. Meisel, H. (1998). Overview on milk protein-derived peptides. International Dairy Journal, 8, 363–373.Google Scholar
  67. Meisel, H., Walsh, D. J., Murry, B., & FitzGerald, R. J. (2005). ACE inhibitory peptides. In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 269–315). Boca Raton, FL: CRC Press.Google Scholar
  68. Mellander, O. (1950). The physiological importance of the casein phosphopeptide calcium salts II: Peroral calcium dosage of infants. Acta Society Medicine Uppsala, 55, 247–255.Google Scholar
  69. Mikami, M., Nagao, M., Sekikawa, M., & Miura, H. (1995). Changes in peptide and free amino acid contents of different bovine muscle homogenate during storage. Animal Science and Technology (Japan), 66, 630–638.Google Scholar
  70. Mine, Y., & Shahidi, F. (2005). Nutraceutical proteins and peptides in health and disease. Boca Raton, FL: CRC PressGoogle Scholar
  71. Mir, P. S., McAllister, T. A., Scott, S., Aalhus, J., Baron, V., McCartney, D., et al. (2004). Conjugated linoleic acid-enriched beef production. American Journal of Clinical Nutrition, 79, 1207S–1211S.Google Scholar
  72. Mora, L., Sentandreu, M. A., & Toldrá, F. (2007). Hydrophilic chromatographic determination of carnosine, anserine, balenine, creatine, and creatinine. Journal of Agricultural Food Chemistry, 55, 4664–4669.Google Scholar
  73. Morimatsu, F., Ito, M., Budijanto, S., Watanabe, I., Furukawa, Y., & Kimura, S. (1996). Plasma cholesterol-suppressing effect of papain-hydrolyzed pork meat in rats fed hypercholesterolemic diet. Journal of Nutritional Science and Vitaminology, 42, 145–153.Google Scholar
  74. Mulvihill, B. (2004). Micronutrients in meat. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 618–623). Oxford: Elsevier.Google Scholar
  75. Nagao, K., & Yanagita, T. (2005). Conjugated fatty acids in food and their health benefits. Journal of Bioscience and Bioengineering, 100, 152–157.Google Scholar
  76. Nagaoka, S. (2005). Cholesterol-lowering proteins and peptides. In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 29–40). Boca Raton, FL: CRC Press.Google Scholar
  77. Nakamura, Y., Yamamoto, N., Sakai, K., & Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Journal of Dairy Science, 78, 1253–1257.Google Scholar
  78. Nakashima, Y., Arihara, K., Sasaki, A., Ishikawa, S., & Itoh, M. (2002). Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. Journal of Food Science, 67, 434–437.Google Scholar
  79. Nishimura, T., & Kato, H. (1988). Mechanisms involved in the improvement of meat taste during postmortem aging. Food Science and Technology International Tokyo, 4, 241–249.CrossRefGoogle Scholar
  80. Nishimura, T., Rhue, M. R., Okitani, A., & Kato, H. (1988). Components contributing to the improvement of meat taste during storage. Agricultural and Biological Chemistry, 52, 2323–2330.Google Scholar
  81. Nyberg, F., Sanderson, K., & Glämsta, E.-L. (1997). The hemorphins: A new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43, 147–156.Google Scholar
  82. Oshima, G., Shimabukuro, H., & Nagasawa, K. (1979). Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochimica et Biophysica Acta, 566, 128–137.Google Scholar
  83. Ovesen, L. (2004a). Cardiovascular and obesity health concerns. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 623–628). Oxford: Elsevier.Google Scholar
  84. Ovesen, L. (2004b). Cancer health concerns. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 628–633). Oxford: Elsevier.Google Scholar
  85. Park, Y. J., Volpe, S. L., & Decker, E. A. (2005). Quantitation of carnosine in humans plasma after dietary consumption of beef. Journal of Agricultural and Food Chemistry, 53, 4736–4739.Google Scholar
  86. Pihlanto-Leppälä, A. (2001). Bioactive peptides derived from bovine whey proteins: Opioid and ACE inhibitory peptides. Trends in Food Science and Technology, 11, 347–356.Google Scholar
  87. Pihlanto, A., & Korhonen, H. (2003). Bioactive peptides and proteins. Advances in Food and Nutrition Research, 47, 175–276,Google Scholar
  88. Playne, M. J., Bennett, L. E., & Smithers, G. W. (2003). Functional dairy foods and ingredients. Australian Journal of Dairy Technology, 58, 242–263.Google Scholar
  89. Purchas, R. W., Rutherfurd, S. M., Pearce, p. D., Vather, R., & Wilkinson, B. H. p. (2004). Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Science, 66, 629–637.Google Scholar
  90. Purchas, R. W., & Busboom, J. R. (2005). The effect of production system and age on levels of iron, taurine, carnosine, coenzyme Q10, and creatine in beef muscles and liver. Meat Science, 70, 589–596.Google Scholar
  91. Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D., & Zambonin, p. G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88, 2348–2360.CrossRefGoogle Scholar
  92. Saiga, A., Okumura, T., Makihara, T., Katsuta, S., Shimizu, T., Yamada, R., et al. (2003). Angiotensin I-converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. Journal of Agricultural and Food Chemistry, 51, 1741–1745.Google Scholar
  93. Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51, 3661–3667.Google Scholar
  94. Sentandreu, M. A., & Toldrá, F. (2007a). Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. European Food Research and Technology, 224, 785–790.Google Scholar
  95. Sentandreu, M. A., & Toldrá, F. (2007b). Evaluation of ACE inhibitory activity of dipeptides generated by the action of porcine muscle dipeptidyl peptidases. Food Chemistry, 102, 511–515.Google Scholar
  96. Sentandreu, M. A., Stoeva, S., Aristoy, M. C., Laib, K., Voelter, W., & Toldrá, F. (2003). Identification of small peptides generated in Spanish dry-cured ham. Journal of Food Science, 68, 64–69.Google Scholar
  97. Seppo, L., Jauhiaine, T., Poussa, T., & Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood-pressure lowering effect in hypertensive subjects. American Journal of Clinical Nutrition, 77, 326–330.Google Scholar
  98. Shimada, K., Sakura, Y., Fukushima, M., Sekikawa, M., Kuchida, K., Mikami, M., et al. (2005). Species and muscle differences in L-carnitine levels in skeletal muscles based on a new simple assay. Meat Science, 68, 357–362.Google Scholar
  99. Sieber, R., Collomb, M., Aeschlimann, A., Jelen, P., & Eyer, H. (2004). Impact of microbial cultures on conjugated linoleic acid in dairy products – a review. International Dairy Journal, 14, 1–15.Google Scholar
  100. Silva, S. V., & Malcata, F. X. (2005). Caseins as source of bioactive peptides. International Dairy Journal, 15, 1–15.Google Scholar
  101. Suetsuna, K., Ukeda, H., & Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. Journal of Nutritional Biochemistry, 11, 128–131.Google Scholar
  102. Tanabe, S., & Nishimura, T. (2005). Meat allergy. In Y. Mine, & F. Shahidi (Eds.), Nutraceutical proteins and peptides in health and disease (pp. 481–491). Boca Raton, FL: CRC Press.Google Scholar
  103. Toldrá, F. (2004). Dry. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 360–365). Oxford: Elsevier.Google Scholar
  104. Toldrá, F., & Flores, M. (1998). The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Critical Reviews of Food Science and Nutrition, 38, 331–352.Google Scholar
  105. Valsta, L. M., Tapanainen, H., & Mannisto, S. (2005). Meat fats in nutrition. Meat Science, 70, 525–530.Google Scholar
  106. Vercruysse, L., Van Camp, J., & Smagghe, G. (2005). ACE inhibitory peptides derived from enzymatic hydrolysates of animal protein: A review. Journal of Agricultural and Food Chemistry, 53, 8106-8115.Google Scholar
  107. Vermeirssen, V., Camp, J. V., & Verstraete, W. (2004). Bioavailability of angiotensin I converting enzyme inhibitory peptide (review article). British Journal of Nutrition, 92, 357–366.Google Scholar
  108. Vescovo, G., Ravara, B., Gobbo, V., Sandri, M., Angelini, A., Dalla Libera, L., et al. (2002). L-Carnitine: A potential treatment for blocking apotosis and preventing skeletal muscle myopathy in heart failure. American Journal of Physiology, 283, C802–C810.Google Scholar
  109. Watkins, B. A., & Yong, L. (2001). Conjugated linoleic acid: The present state of knowledge. In Wildman, R. E. C. (Ed.), Handbook of nutraceuticals and functional foods (pp. 445–476). Boca Raton, FL: CRC Press.Google Scholar
  110. Wildman, R. E. C. (2000a). Nutraceuticals: A brief review of historical and teleological aspects. In R. E. C. Wildman (Ed.), Handbook of nutraceuticals and functional foods (pp. 1–12). Boca Raton, FL: CRC Press.Google Scholar
  111. Wildman, R. E. C. (2000b). Classifying nutraceuticals. In R. E. C. Wildman (Ed.), Handbook of nutraceuticals and functional foods (pp. 13–30). Boca Raton, FL: CRC Press.Google Scholar
  112. Williams, P. G. (2007). Nutritional composition of red meat. Nutrition and Dietetics, 64(Suppl. 4), S113–S119.Google Scholar
  113. Xu, S., Boylston, T. D., & Glatz, B. A. (2005). Conjugated linoleic acid content and organoleptic attributes of fermented milk products produced with probiotic bacteria. Journal of Agricultural and Food Chemistry, 53, 9064–9072.Google Scholar
  114. Zhao, Q., Garreau, I., Sannier, F., & Piot, J. M. (1997). Opioid peptides derived from hemoglobin: Hemorphins. Biopolymers, 43, 75–98.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Keizo Arihara
    • 1
  • Motoko Ohata
  1. 1.Department of Animal ScienceKitasato UniversityTowada-shiJapan

Personalised recommendations