Advertisement

Transgenic Farm Animals

  • Morse B. Solomon
  • Janet S. Eastridge
  • Ernest W. Paroczay

Conventional science to improve muscle and meat parameters has involved breeding strategies, such as selection of dominant traits or selection of preferred traits by cross breeding, and the use of endogenous and exogenous hormones. Improvements in the quality of food products that enter the market have largely been the result of postharvest intervention strategies. Biotechnology is a more extreme scientific method that offers the potential to improve the quality, yield, and safety of food products by direct genetic manipulation. In the December 13, 2007 issue of the Southeast Farm Press, an article by Roy Roberson pointed out that biotechnology is driving most segments of U.S. farm growth. He indicated that nationwide, the agriculture industry is booming and much of that growth is the result of biotechnology advancements.

Keywords

Conjugate Linolenic Acid Meat Quality Meat Quality Trait Dietary Conjugate Linolenic Acid Transgenic Sheep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N. R., Briegel, J. R., Pethick, D. W., & Cake, M. A. (2006). Carcass and meat characteristics of sheep with an additional growth hormone gene. Australian Journal of Agricultural Research, 57, 1321–1325.CrossRefGoogle Scholar
  2. Adams, N. R., Briegel, J. R., & Ward, K. A. (2002). The impact of a transgene for ovine growth hormone on the performance of two breeds of sheep. Journal of Animal Science, 80,2325–2333.Google Scholar
  3. Archer, G. S., Friend, T. H., Piedrahita, J., Nevill, C. H., & Walker, S. (2003). Behavioral variation among cloned pigs. Applied Animal Behaviour Science, 82, 151–161.CrossRefGoogle Scholar
  4. Bee, G. (2001). Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs. Animal Research, 50, 383–399.CrossRefGoogle Scholar
  5. Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., et al. (2000). Production of cloned pigs from in vitro systems. Nature Biotechnology, 18, 1055–1059.CrossRefGoogle Scholar
  6. Bidwell, C. A., Kramer, L. N., Perkins, A. C., Hadfield, T. S., Moody, D. E., & Cockett, N. E. (2004). Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep. BMC Biology, 2, 17–27.CrossRefGoogle Scholar
  7. Brown, B. W., & Ward, K. A. (2000). 14th International Congress on Animal Reproduction, 14, 250 (Abstract No. 19:22).Google Scholar
  8. Busboom, J. R., Hendrix, W. F., Gaskins, C. T., Cronrath, J. D., Jeremiah, L. E., & Gibson, L. L. (1994). Cutability, fatty acid profiles and palatability of callipyge and normal lambs. Journal of Animal Science, 72 (Suppl. 1), 60.Google Scholar
  9. Carpenter, C. E., Rice, O. D., Cockett, N. E., & Snowder, G. D. (1996). Histology and composition of muscles from normal and callipyge lambs. Journal of Animal Science, 74, 388–393.Google Scholar
  10. Carroll, J. A., Carter, D. B., Korte, S., Dowd, S. E., & Prather, R. (2004). The acute-phase response of cloned pigs following an immune challenge. Retrieved from http://www.ars.usda. gov/research/publications/publications.htm?SEQ_NO_115=170690.
  11. Carter, D. B., Lai, L., Park, K. W., Samuel, M., Lattimer, J. C., Jordan, K. R., et al. (2002). Phenotyping of transgenic cloned piglets. Cloning and Stem Cells, 4, 131–145.CrossRefGoogle Scholar
  12. Charlier, C., Segers, K., Karim, L., Shay, T., Gyapay, G., Cockett, N., et al. (2001). The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nature Genetics, 27, 367–369.CrossRefGoogle Scholar
  13. Ciobanu, D. C., Bastiaanseni, J. W. M., Lonergan, S. M., Thomsen, H., Dekkers, J. C. M., Plastow, G. S., et al. (2004). New alleles in calpastatin gene are associated with meat quality traits in pigs. Journal of Animal Science, 82, 2829–2839.Google Scholar
  14. Cockett, N. E., Jackson, S. P., Shay, T. L., Nielsen, D. M., Moore, S. S., Steele, M. R., et al. (1994). Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proceedings of the National Academy of Sciences of the United States of America, 91, 3019–3023.CrossRefGoogle Scholar
  15. Diles, J. J. B., Green, R. D., Shepard, H. H., Mathiews, G. L., Hughes, L. J., & Miller, M. F. (1996). Relationships between body measurements obtained on yearling brangus bulls and measures of carcass merit obtained from their steer clone-mates. The Professional Animal Scientist, 12, 244–249.Google Scholar
  16. Duckett, S. K., Klein, T. A., Dodson, M. V., & Snowder, G. D. (1998). Tenderness of normal and callipyge lamb aged fresh or after freezing. Meat Science, 49, 19–26.CrossRefGoogle Scholar
  17. Duckett, S. K., Snowder, G. D., & Cockett, N. E. (2000). Effect of the callipyge gene on muscle growth, calpastatin activity, and tenderness of three muscles across the growth curve. Journal of Animal Science, 78, 2836–2841.Google Scholar
  18. Eastridge, J. S., Solomon, M. B., Pursel, V. G., Mitchell, A. D., & Arguello, A. (2001). Dietary conjugated linoleic acid and IGF-I transgene effects on pork quality. Journal of Animal Science, 79 (Suppl. 1). Proceedings of the Reciprocal Meat Conference, 54 (Vol. II), 20 (AbstractNo. 85).Google Scholar
  19. FAO (2004). The state of agricultural commodity markets. Food and Agriculture Organization of the United Nations. ISBN: 925105133X.Google Scholar
  20. FDA (2003). Executive summary of the assessment of safety of animal cloning. Food and Drug Administration. Retrieved October 31, 2003, from http://www.fda.gov/bbs/topics/news/ 2003/new00968.html.
  21. Freking, B. A., Keele, J. W., Shackelford, S. D., Wheeler, T. L., Koohmaraie, M., Nielsen, M. K., et al. (1999). Evaluation of the ovine callipyge locus: III. Genotypic effects on meat quality traits. Journal of Animal Science, 77, 2336–2344.Google Scholar
  22. Freking, B. A., Murphy, S. K., Wylie, A. A., Rhodes, S. J., Keele, J. W., Leymaster, K. A., et al. (2002). Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Research, 12, 1496–1506.CrossRefGoogle Scholar
  23. Freking, B. A., Smith, T. P. L., & Leymaster, K. A. (2004). The callipyge mutation for sheep muscular hypertrophy – genetics, physiology and meat quality. In M. F. W. te Pas, M. E. Everts, & H. P. Haagsman (Eds.), Muscle development of livestock animals: Physiology, genetics and meat quality (pp. 317–342). Wallingford, UK: CABI Publishing.Google Scholar
  24. Gerken, C. L., Tatum, J. D., Morgan, J. B., & Smith. G. C. (1995). Use of genetically identical (clone) steers to determine the effects of estrogenic and androgenic implants on beef quality and palatability characteristics. Journal of Animal Science, 73, 3317–3324.Google Scholar
  25. Goodson, K. J., Miller, R. K., & Savell, J. W. (2001). Carcass traits, muscle characteristics, and palatability attributes of lambs expressing the callipyge phenotype. Meat Science, 58, 381–387.CrossRefGoogle Scholar
  26. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., & Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 77, 7380–7384.CrossRefGoogle Scholar
  27. Hammer, R. E., Pursel, V. G., Rexroad, Jr., C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., et al. (1985). Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315, 680–683.CrossRefGoogle Scholar
  28. Harris, J. J., Lunt, D. K., Smith, S. B., Mies, W. L., Hale, D. S., Koohmaraie, M., et al. (1997). Live animal performance, carcass traits, and meat palatability of calf- and yearling-fed cloned steers. Journal of Animal Science, 75, 986–992.Google Scholar
  29. Hedegaard, J., Horn, P., Lametsch, R., Møller, H. S., Roepstorff, P., Bendixen, C., et al. (2004). UDP-glucose pyrophosphorylase is upregulated in carriers of the porcine RN-mutation in the AMP-activated protein kinase. Proteomics, 4, 2448–2454.CrossRefGoogle Scholar
  30. Houba, P. H. J., & te Pas, M. F. W. (2004). The muscle regulatory factors gene family in relation to meat production. In M. F. W. te Pas & E. Haagsman (Eds.), Muscle development of livestock animals: Physiology, genetics and meat quality (pp. 201–224). Wallingford, Oxfordshire, UK: Cambridge, MA.Google Scholar
  31. Jackson, S. P., & Green, R. D. (1993). Muscle trait inheritance, growth performance and feed efficiency of sheep exhibiting a muscle hypertrophy phenotype. Journal of Animal Science 71 (Suppl. 1), 14–18.Google Scholar
  32. Kerth, C. R., Cain, T. L., Jackson, S. P., Ramsey, C. B., & Miller, M. F. (1999). Electrical stimulation effects on tenderness of five muscles from Hampshire $× $ Rambouillet crossbred lambs with the callipyge phenotype. Journal of Animal Science, 77, 2951–2955.Google Scholar
  33. Kittredge, C. (2005). A question of chimeras. The Scientist, 19, 54–55.Google Scholar
  34. Klosowska, D., Kury, J., Elminowska-Wenda, G., Kapelanski, W., Walasik, K., Pierzchaa, M., et al. (2005). An association between genotypes at the porcine loci MSTN (GDF8) and CAST and microstructural characteristics of m. longissimus lumborum: A preliminary study. Archiv für Tierzucht, 48, 50–59.Google Scholar
  35. Koohmaraie, M., Shackelford, S. D., & Wheeler, T. L. (1998). Effects of prerigor freezing and calcium chloride injection on the tenderness of callipyge longissimus. Journal of Animal Science, 76, 1427–1432.Google Scholar
  36. Koohmaraie, M., Shackelford, S. D., Wheeler, T. L., Lonergan, S. M., & Doumit, M. E. (1995). A muscle hypertrophy condition in lamb (callipyge): Characterization of effects on muscle growth and meat quality traits. Journal of Animal Science, 73, 3596–3607.Google Scholar
  37. Kortz, J., Rybarczyk, A., Pietruszka, A., Czarnecki, R., Jakubowska, M., & Karamucki, T. (2004). Effect of HAL genotype on normal and faulty meat frequency in hybrid fatteners. Polish Journal of Food & Nutrition Science, 13, 387–390.Google Scholar
  38. Krzecio, E., Kocwin-Podsiada, M., Kury, J., Antosik, K., Zybert, A., Sieczkowska, H., et al. (2004b). An association between genotype at the CAST locus (calpastatin) and meat quality traits in porkers free of RYR1 SUP T allele. Animal Science Papers Reports, 22,489–496.Google Scholar
  39. Krzecio, E., Kury, J., Kocwin-Podsiada, M., & Monin, G. (2004a). The influence of CAST/RsaI and RYR1 genotypes and their interactions on selected meat quality parameters in three groups of four-breed fatteners with different meat content of carcass. Animal Science Papers Report, 22, 469–478.Google Scholar
  40. Kuber, P. S., Duckett, S. K., Busboom, J. R., Snowder, G. D., Dodson, M. V., Vierck, J. L., et al. (2003). Measuring the effects of phenotype and mechanical restraint on proteolytic degradation and rigor shortening in callipyge lamb longissimus dorsi muscle during extended aging. Meat Science, 63, 325–331.CrossRefGoogle Scholar
  41. Kuryl, J., Krzecio, E., Kocwin-Podsiada, M., & Monin, G. (2004). The influence of CAST and RYR1 genes polymorphism and their interactions on selected quality parameters in four-breed fatteners. Animal Science Papers Report, 22, 479–488.Google Scholar
  42. van der Laan, L. J. W., Lockey, C., Griffeth, B. C., Frasler, F.S., Wilson, C.A., Onlons, D. E., et al. (2000). Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature, 407, 90–94.CrossRefGoogle Scholar
  43. Lee, S.J. (2007). Quadrupling muscle mass in mice by targeting TGF-$\UPbeta$ signaling pathways. PLoSONE, 2, 1–7.Google Scholar
  44. Lewis, C. (2001). A new kind of fish story: The coming of biotechnology animals. FDA Consumer January–February. Retrieved from http://www.cfsan.fda.gov/$∼ $dms/fdbiofish.html.
  45. Loi, P., Ptak, G., Barboni, B., Fulka, Jr., J., Cappai, P., & Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using postmortem somatic cells. Nature Biotechnology, 19, 962–964.CrossRefGoogle Scholar
  46. Lorenzen, C. L., Fiorotto, M. L., Jahoor, F., Freetly, H. C., Shackelford, S. D., Wheeler, T. L., et al. (1997). Determination of the relative roles of muscle protein synthesis and protein degradation in callipyge-induced muscle hypertrophy. Proceedings 50th Reciprocal Meat Conference (p. 175) June 29–July 2, Ames, IA. Savoy, IL: American Meat Science Association.Google Scholar
  47. McPherron, A. C., Lawler, A. M., & Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-$\UPbeta $ super family member. Nature, 387, 83–90.CrossRefGoogle Scholar
  48. Milan, D., Jeon, J.-T., Looft, C., Amarger, V., Robic, A., Thelander, M., et al. (2000). A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 288, 1248–1251.CrossRefGoogle Scholar
  49. Mitchell, A. D., & Pursel, V. G. (2003). Efficiency of energy deposition and body composition of control and IGF-I transgenic pigs. In W. B. Souffrant & C. C. Metges (Eds.), Progress in research on energy and protein metabolism, EAAP scientific series (pp. 61–64), 109.Google Scholar
  50. Mitchell, A. D., & Wall, R. J. (2004). In vivo evaluation of changes in body composition of transgenic mice expressing the myostatin pro domain using dual energy x-ray absorptiometry FASEB Journal 18, A210.Google Scholar
  51. Murray, J. D., & Rexroad Jr., C. E. (1991). The development of sheep expressing growth promoting transgenes. NABC Report, 3, 251–263.Google Scholar
  52. Nancarrow, C. D., Marshall, J. T., Clarkson, J. L., Murray, J. D., Millard, R. M., Shanahan, C. M., et al. (1991). Expression and physiology of performance regulating genes in transgenic sheep. Journal of Reproduction and Fertility, 43 (Suppl.), 277–291.Google Scholar
  53. Niemann, H. (2004). Transgenic pigs expressing plant genes. Proceedings of the National Academy of Sciences of the United States of America, 101, 7211–7212.CrossRefGoogle Scholar
  54. NRC (2002). Animal biotechnology: Science-based concerns. National research council committee on defining science-based concerns associated with products of animal biotechnology, committee on agricultural biotechnology, health, and the environment, board on agriculture and natural resources, board life sciences, division on earth and life studies (p. 181). Washington, DC: National Academies Press.Google Scholar
  55. Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., et al. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science, 289, 1188–1190.CrossRefGoogle Scholar
  56. Otani, K., Han, D.-H., Ford, E. L., Garcia-Roves, P. M., Ye, H., Horikawa, Y., Bell, G. I., et al. (2004). Calpain system regulates muscle mass and glucose transporter GLUT4 turnover. Journal of Biological Chemistry, 278, 20915–20920.CrossRefGoogle Scholar
  57. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Brinbert, N. C., et al. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 300, 611–615.CrossRefGoogle Scholar
  58. Piper, L. R., Bell, A. M., Ward, K. A., & Brown, B. W. (2001). Effect of ovine growth hormone transgenesis on performance of merino sheep at pasture. 1. Growth and wool traits to 12 months of age. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 14, 257–260.Google Scholar
  59. Polejaeva, I. A., Chen, S.-H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407, 86–90.CrossRefGoogle Scholar
  60. Prather, R. S., Hawley, R. J., Carter, D. B., Lai, L., & Greenstein, J. L. (2003). Transgenic swine for biomedicine and agriculture. Theriogen, 59, 115–123.CrossRefGoogle Scholar
  61. Pursel, V. G., Campbell, R. G., Miller, K. F., Behringer, R. R., Palmiter, R. D., & Brinster, R. L. (1988). Growth potential of transgenic pigs expressing a bovine growth hormone gene. Journal of Animal Science, 66 (Suppl. 1), 267.Google Scholar
  62. Pursel, V. G., Mitchell, A. D., Bee, G., Elsasser, T. H., McMurtry, J. P., Wall, R. J., et al. (2004). Growth and tissue accretion rates of swine expressing an insulin-like growth factor I transgene. Animal Biotechnology, 15, 33–45.CrossRefGoogle Scholar
  63. Pursel, V. G., Mitchell, A. D., Wall, R. J., Coleman, M. E., & Schwartz, R. J. (2001a) Effect of an IGF-I transgene on tissue accretion rates in pigs. Journal of Animal Science, 79 (Suppl. 1), 29 (Abstract No. 121).Google Scholar
  64. Pursel, V. G., Mitchell, A. D., Wall, R. J., Solomon, M. B., Coleman, M. E., & Schwartz, R. J. (2001b). Transgenic research to enhance growth and lean carcass composition in swine. In J. P. Toutant & E. Balazs (Eds.), Molecular farming proceedings OECD conference on molecular farming (pp. 77–86). Paris: INRA Editions.Google Scholar
  65. Pursel, V. G., & Rexroad, Jr., C. E. (1993). Status of research with transgenic farm animals. Journal of Animal Science, 71 (Suppl. 3), 10–19.Google Scholar
  66. Pursel, V. G., & Solomon, M. B. (1993). Alteration of carcass composition in transgenic swine. Food Reviews International, 9, 423–439.CrossRefGoogle Scholar
  67. Pursel, V. G., Wall, R. J., Solomon, M. B., Bolt, D. J., Murray, J. D., & Ward, K. A. (1997). Transfer of an ovine metallothionein-ovine growth hormone fusion gene into swine. Journal of Animal Science, 75, 2208–2214.Google Scholar
  68. Rexroad, Jr., C. E., Hammer, R. E., Boh, D. J., Mayo, K. E., Frohman, L. A., Palmiter, R. D., et al. (1989). Production of transgenic sheep with growth-regulating genes. Molecular and Reproductive Development, 1, 164–169.CrossRefGoogle Scholar
  69. Rexroad, Jr., C. E., Mayo, K., Bolt, D. J., Elsasser, T. H., Miller, K. F., Behringer, R. R., et al. (1991). Transferrin- and albumin-directed expression of growth-related peptides in transgenic sheep. Journal of Animal Science, 69, 2995–3004.Google Scholar
  70. Rule, D. C., Moss, G. E., Snowder, G. D., & Cockett, N. E. (2002). Adipose tissue lipogenic enzyme activity, serum IGF-I, and IGF-binding proteins in the callipyge lamb. Sheep Goat Research Journal, 17, 39–46.Google Scholar
  71. Ryder, O. A. (2002). Cloning advances and challenges for conservation. Trends in Biotechnology, 20, 231–232.CrossRefGoogle Scholar
  72. Saeki, K., Matsumoto, K., Kinoshita, M., Suzuki, I., Tasaka, Y., Kano, K., et al. (2004). Functional expression of a 12 fatty acid desaturase gene from spinach in transgenic pigs. Proceedings of the National Academy of Sciences of the United States of America, 101, 6361–6366.CrossRefGoogle Scholar
  73. Sillence, M. N. (2004). Technologies for the control of fat and lean deposition in livestock. Veterinary Journal, 167, 242–257.CrossRefGoogle Scholar
  74. Solomon, M. B. (1999). The callipyge phenomenon: Tenderness intervention methods. Journal of Animal Science, 77 (Suppl. 2), 238–242.Google Scholar
  75. Solomon, M. B., Pursel, V. G., & Mitchell, A. D. (2002). Biotechnology for meat quality enhancement. In F. Toldra (Ed.), Research advances in the quality of meat and meat products(pp. 17–31). Kerala, India: Research Signpost.Google Scholar
  76. Solomon, M. B., Pursel, V. G., Paroczay, E. W., & Bolt, D. J. (1994). Lipid composition of carcass tissue from transgenic pigs expressing a bovine growth hormone gene. Journal of Animal Science, 72, 1242–1246.Google Scholar
  77. Stratil, A., & Kopecny, M. (1999). Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8; MSTN) gene. Animal Genetics, 30, 468–469.Google Scholar
  78. Takahashi, S., & Ito, Y. (2004). Evaluation of meat products from cloned cattle: Biological and biochemical properties. Cloning and Stem Cells, 6, 165–171.CrossRefGoogle Scholar
  79. Tian, X. C., Kubota, C., Sakashita, K., Izaike, Y., Okano, R., Tabara, N., et al. (2005). Meat and milk compositions of bovine clones. Proceedings of the National Academy of Sciences of the United States of America, 102, 6261–6266.CrossRefGoogle Scholar
  80. Vize, P. D., Michalska, A. E., Ashman, R., Lloyd, B., Stone, B. A., Quinn, P., et al. (1998). Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. Journal of Cell Science, 90, 295–300.Google Scholar
  81. Wall, R. J., Powell, A. M., Paape, M. J., Kerr, D. E., Bannerman, D. D., Pursel, V. G., et al. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 23, 445–451.CrossRefGoogle Scholar
  82. Ward, K. A., & Brown, B. W. (1998). The production of transgenic domestic livestock: Successes, failures and the need for nuclear transfer. Reproductive and Fertility Development, 10, 659–665.CrossRefGoogle Scholar
  83. Ward, K. A., Nancarrow, C. D., Byrne, C. R., Shanahan, C. M., Murray, J. D., Leish, Z., et al. (1990). The potential of transgenic animals for improved agricultural productivity. OIE Revue Scientifique et Technique, 9, 847–864.Google Scholar
  84. Ward, K. A., Nancarrow, C. D., Murray, J. D., Wynn, P. C., Speck, P., & Hales, J. R. S. (1989). The physiological consequences of growth hormone fusion gene expression in transgenic sheep. Journal of Cellular Biochemistry, Suppl. 13b, 164, Abstract F006.Google Scholar
  85. Wells, K. D. (2000). Genome modification for meat science: Techniques and applications. Proceedings of 53rd Annual Reciprocal Meat Conference (pp. 87–93). Ohio State University.Google Scholar
  86. Wieghart, M., Hoover, J., Choe, S. H., McGrane, M. M., Rottman, F. M., Hanson, R. W., et al. (1988). Genetic engineering of livestock – transgenic pigs containing a chimeric bovine growth hormone (PEPCK/bGH) gene. Journal of Animal Science, 66 (Suppl. 1), 266.Google Scholar
  87. Wiegand, B. R., Parrish Jr., F. C., Morrical, D. G., & Huff-Lonergan, E. (2001). Feeding high levels of vitamin D3 does not improve tenderness of callipyge lamb loin chops. Journal of Animal Science, 79, 2086–2091.Google Scholar
  88. Wiegand, B. R., Parrish Jr., F. C., Swan, J. E., Larsen, S. T., & Baas, T. J. (2001). Conjugated linoleic acid improves feed efficiency, decreases subcutaneous fat, and improves certain aspects of meat quality in stress-genotype pigs. Journal of Animal Science, 79, 2187–2195.Google Scholar
  89. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.CrossRefGoogle Scholar
  90. Yang, J., Ratovitski, T., Brady, J. P., Solomon, M. B., Wells, K. D., & Wall, R. J. (2001). Expression of myostatin pro domain results in muscular transgenic mice. Molecular and Reproductive Development, 60, 351–361.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Morse B. Solomon
    • 1
  • Janet S. Eastridge
  • Ernest W. Paroczay
  1. 1.USDA, ARS, BARC-EastBeltsvilleUSA

Personalised recommendations