Skip to main content

Transgenic Farm Animals

  • Chapter
Book cover Meat Biotechnology

Conventional science to improve muscle and meat parameters has involved breeding strategies, such as selection of dominant traits or selection of preferred traits by cross breeding, and the use of endogenous and exogenous hormones. Improvements in the quality of food products that enter the market have largely been the result of postharvest intervention strategies. Biotechnology is a more extreme scientific method that offers the potential to improve the quality, yield, and safety of food products by direct genetic manipulation. In the December 13, 2007 issue of the Southeast Farm Press, an article by Roy Roberson pointed out that biotechnology is driving most segments of U.S. farm growth. He indicated that nationwide, the agriculture industry is booming and much of that growth is the result of biotechnology advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, N. R., Briegel, J. R., Pethick, D. W., & Cake, M. A. (2006). Carcass and meat characteristics of sheep with an additional growth hormone gene. Australian Journal of Agricultural Research, 57, 1321–1325.

    Article  CAS  Google Scholar 

  • Adams, N. R., Briegel, J. R., & Ward, K. A. (2002). The impact of a transgene for ovine growth hormone on the performance of two breeds of sheep. Journal of Animal Science, 80,2325–2333.

    CAS  Google Scholar 

  • Archer, G. S., Friend, T. H., Piedrahita, J., Nevill, C. H., & Walker, S. (2003). Behavioral variation among cloned pigs. Applied Animal Behaviour Science, 82, 151–161.

    Article  Google Scholar 

  • Bee, G. (2001). Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs. Animal Research, 50, 383–399.

    Article  CAS  Google Scholar 

  • Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., et al. (2000). Production of cloned pigs from in vitro systems. Nature Biotechnology, 18, 1055–1059.

    Article  CAS  Google Scholar 

  • Bidwell, C. A., Kramer, L. N., Perkins, A. C., Hadfield, T. S., Moody, D. E., & Cockett, N. E. (2004). Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep. BMC Biology, 2, 17–27.

    Article  CAS  Google Scholar 

  • Brown, B. W., & Ward, K. A. (2000). 14th International Congress on Animal Reproduction, 14, 250 (Abstract No. 19:22).

    Google Scholar 

  • Busboom, J. R., Hendrix, W. F., Gaskins, C. T., Cronrath, J. D., Jeremiah, L. E., & Gibson, L. L. (1994). Cutability, fatty acid profiles and palatability of callipyge and normal lambs. Journal of Animal Science, 72 (Suppl. 1), 60.

    Google Scholar 

  • Carpenter, C. E., Rice, O. D., Cockett, N. E., & Snowder, G. D. (1996). Histology and composition of muscles from normal and callipyge lambs. Journal of Animal Science, 74, 388–393.

    CAS  Google Scholar 

  • Carroll, J. A., Carter, D. B., Korte, S., Dowd, S. E., & Prather, R. (2004). The acute-phase response of cloned pigs following an immune challenge. Retrieved from http://www.ars.usda. gov/research/publications/publications.htm?SEQ_NO_115=170690.

  • Carter, D. B., Lai, L., Park, K. W., Samuel, M., Lattimer, J. C., Jordan, K. R., et al. (2002). Phenotyping of transgenic cloned piglets. Cloning and Stem Cells, 4, 131–145.

    Article  CAS  Google Scholar 

  • Charlier, C., Segers, K., Karim, L., Shay, T., Gyapay, G., Cockett, N., et al. (2001). The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nature Genetics, 27, 367–369.

    Article  CAS  Google Scholar 

  • Ciobanu, D. C., Bastiaanseni, J. W. M., Lonergan, S. M., Thomsen, H., Dekkers, J. C. M., Plastow, G. S., et al. (2004). New alleles in calpastatin gene are associated with meat quality traits in pigs. Journal of Animal Science, 82, 2829–2839.

    CAS  Google Scholar 

  • Cockett, N. E., Jackson, S. P., Shay, T. L., Nielsen, D. M., Moore, S. S., Steele, M. R., et al. (1994). Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proceedings of the National Academy of Sciences of the United States of America, 91, 3019–3023.

    Article  CAS  Google Scholar 

  • Diles, J. J. B., Green, R. D., Shepard, H. H., Mathiews, G. L., Hughes, L. J., & Miller, M. F. (1996). Relationships between body measurements obtained on yearling brangus bulls and measures of carcass merit obtained from their steer clone-mates. The Professional Animal Scientist, 12, 244–249.

    Google Scholar 

  • Duckett, S. K., Klein, T. A., Dodson, M. V., & Snowder, G. D. (1998). Tenderness of normal and callipyge lamb aged fresh or after freezing. Meat Science, 49, 19–26.

    Article  Google Scholar 

  • Duckett, S. K., Snowder, G. D., & Cockett, N. E. (2000). Effect of the callipyge gene on muscle growth, calpastatin activity, and tenderness of three muscles across the growth curve. Journal of Animal Science, 78, 2836–2841.

    CAS  Google Scholar 

  • Eastridge, J. S., Solomon, M. B., Pursel, V. G., Mitchell, A. D., & Arguello, A. (2001). Dietary conjugated linoleic acid and IGF-I transgene effects on pork quality. Journal of Animal Science, 79 (Suppl. 1). Proceedings of the Reciprocal Meat Conference, 54 (Vol. II), 20 (AbstractNo. 85).

    Google Scholar 

  • FAO (2004). The state of agricultural commodity markets. Food and Agriculture Organization of the United Nations. ISBN: 925105133X.

    Google Scholar 

  • FDA (2003). Executive summary of the assessment of safety of animal cloning. Food and Drug Administration. Retrieved October 31, 2003, from http://www.fda.gov/bbs/topics/news/ 2003/new00968.html.

  • Freking, B. A., Keele, J. W., Shackelford, S. D., Wheeler, T. L., Koohmaraie, M., Nielsen, M. K., et al. (1999). Evaluation of the ovine callipyge locus: III. Genotypic effects on meat quality traits. Journal of Animal Science, 77, 2336–2344.

    CAS  Google Scholar 

  • Freking, B. A., Murphy, S. K., Wylie, A. A., Rhodes, S. J., Keele, J. W., Leymaster, K. A., et al. (2002). Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Research, 12, 1496–1506.

    Article  CAS  Google Scholar 

  • Freking, B. A., Smith, T. P. L., & Leymaster, K. A. (2004). The callipyge mutation for sheep muscular hypertrophy – genetics, physiology and meat quality. In M. F. W. te Pas, M. E. Everts, & H. P. Haagsman (Eds.), Muscle development of livestock animals: Physiology, genetics and meat quality (pp. 317–342). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Gerken, C. L., Tatum, J. D., Morgan, J. B., & Smith. G. C. (1995). Use of genetically identical (clone) steers to determine the effects of estrogenic and androgenic implants on beef quality and palatability characteristics. Journal of Animal Science, 73, 3317–3324.

    CAS  Google Scholar 

  • Goodson, K. J., Miller, R. K., & Savell, J. W. (2001). Carcass traits, muscle characteristics, and palatability attributes of lambs expressing the callipyge phenotype. Meat Science, 58, 381–387.

    Article  Google Scholar 

  • Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., & Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 77, 7380–7384.

    Article  CAS  Google Scholar 

  • Hammer, R. E., Pursel, V. G., Rexroad, Jr., C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., et al. (1985). Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315, 680–683.

    Article  CAS  Google Scholar 

  • Harris, J. J., Lunt, D. K., Smith, S. B., Mies, W. L., Hale, D. S., Koohmaraie, M., et al. (1997). Live animal performance, carcass traits, and meat palatability of calf- and yearling-fed cloned steers. Journal of Animal Science, 75, 986–992.

    CAS  Google Scholar 

  • Hedegaard, J., Horn, P., Lametsch, R., Møller, H. S., Roepstorff, P., Bendixen, C., et al. (2004). UDP-glucose pyrophosphorylase is upregulated in carriers of the porcine RN-mutation in the AMP-activated protein kinase. Proteomics, 4, 2448–2454.

    Article  CAS  Google Scholar 

  • Houba, P. H. J., & te Pas, M. F. W. (2004). The muscle regulatory factors gene family in relation to meat production. In M. F. W. te Pas & E. Haagsman (Eds.), Muscle development of livestock animals: Physiology, genetics and meat quality (pp. 201–224). Wallingford, Oxfordshire, UK: Cambridge, MA.

    Google Scholar 

  • Jackson, S. P., & Green, R. D. (1993). Muscle trait inheritance, growth performance and feed efficiency of sheep exhibiting a muscle hypertrophy phenotype. Journal of Animal Science 71 (Suppl. 1), 14–18.

    Google Scholar 

  • Kerth, C. R., Cain, T. L., Jackson, S. P., Ramsey, C. B., & Miller, M. F. (1999). Electrical stimulation effects on tenderness of five muscles from Hampshire $× $ Rambouillet crossbred lambs with the callipyge phenotype. Journal of Animal Science, 77, 2951–2955.

    CAS  Google Scholar 

  • Kittredge, C. (2005). A question of chimeras. The Scientist, 19, 54–55.

    Google Scholar 

  • Klosowska, D., Kury, J., Elminowska-Wenda, G., Kapelanski, W., Walasik, K., Pierzchaa, M., et al. (2005). An association between genotypes at the porcine loci MSTN (GDF8) and CAST and microstructural characteristics of m. longissimus lumborum: A preliminary study. Archiv für Tierzucht, 48, 50–59.

    Google Scholar 

  • Koohmaraie, M., Shackelford, S. D., & Wheeler, T. L. (1998). Effects of prerigor freezing and calcium chloride injection on the tenderness of callipyge longissimus. Journal of Animal Science, 76, 1427–1432.

    CAS  Google Scholar 

  • Koohmaraie, M., Shackelford, S. D., Wheeler, T. L., Lonergan, S. M., & Doumit, M. E. (1995). A muscle hypertrophy condition in lamb (callipyge): Characterization of effects on muscle growth and meat quality traits. Journal of Animal Science, 73, 3596–3607.

    CAS  Google Scholar 

  • Kortz, J., Rybarczyk, A., Pietruszka, A., Czarnecki, R., Jakubowska, M., & Karamucki, T. (2004). Effect of HAL genotype on normal and faulty meat frequency in hybrid fatteners. Polish Journal of Food & Nutrition Science, 13, 387–390.

    Google Scholar 

  • Krzecio, E., Kocwin-Podsiada, M., Kury, J., Antosik, K., Zybert, A., Sieczkowska, H., et al. (2004b). An association between genotype at the CAST locus (calpastatin) and meat quality traits in porkers free of RYR1 SUP T allele. Animal Science Papers Reports, 22,489–496.

    CAS  Google Scholar 

  • Krzecio, E., Kury, J., Kocwin-Podsiada, M., & Monin, G. (2004a). The influence of CAST/RsaI and RYR1 genotypes and their interactions on selected meat quality parameters in three groups of four-breed fatteners with different meat content of carcass. Animal Science Papers Report, 22, 469–478.

    Google Scholar 

  • Kuber, P. S., Duckett, S. K., Busboom, J. R., Snowder, G. D., Dodson, M. V., Vierck, J. L., et al. (2003). Measuring the effects of phenotype and mechanical restraint on proteolytic degradation and rigor shortening in callipyge lamb longissimus dorsi muscle during extended aging. Meat Science, 63, 325–331.

    Article  Google Scholar 

  • Kuryl, J., Krzecio, E., Kocwin-Podsiada, M., & Monin, G. (2004). The influence of CAST and RYR1 genes polymorphism and their interactions on selected quality parameters in four-breed fatteners. Animal Science Papers Report, 22, 479–488.

    CAS  Google Scholar 

  • van der Laan, L. J. W., Lockey, C., Griffeth, B. C., Frasler, F.S., Wilson, C.A., Onlons, D. E., et al. (2000). Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature, 407, 90–94.

    Article  CAS  Google Scholar 

  • Lee, S.J. (2007). Quadrupling muscle mass in mice by targeting TGF-$\UPbeta$ signaling pathways. PLoSONE, 2, 1–7.

    CAS  Google Scholar 

  • Lewis, C. (2001). A new kind of fish story: The coming of biotechnology animals. FDA Consumer January–February. Retrieved from http://www.cfsan.fda.gov/$∼ $dms/fdbiofish.html.

  • Loi, P., Ptak, G., Barboni, B., Fulka, Jr., J., Cappai, P., & Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using postmortem somatic cells. Nature Biotechnology, 19, 962–964.

    Article  CAS  Google Scholar 

  • Lorenzen, C. L., Fiorotto, M. L., Jahoor, F., Freetly, H. C., Shackelford, S. D., Wheeler, T. L., et al. (1997). Determination of the relative roles of muscle protein synthesis and protein degradation in callipyge-induced muscle hypertrophy. Proceedings 50th Reciprocal Meat Conference (p. 175) June 29–July 2, Ames, IA. Savoy, IL: American Meat Science Association.

    Google Scholar 

  • McPherron, A. C., Lawler, A. M., & Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-$\UPbeta $ super family member. Nature, 387, 83–90.

    Article  CAS  Google Scholar 

  • Milan, D., Jeon, J.-T., Looft, C., Amarger, V., Robic, A., Thelander, M., et al. (2000). A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 288, 1248–1251.

    Article  CAS  Google Scholar 

  • Mitchell, A. D., & Pursel, V. G. (2003). Efficiency of energy deposition and body composition of control and IGF-I transgenic pigs. In W. B. Souffrant & C. C. Metges (Eds.), Progress in research on energy and protein metabolism, EAAP scientific series (pp. 61–64), 109.

    Google Scholar 

  • Mitchell, A. D., & Wall, R. J. (2004). In vivo evaluation of changes in body composition of transgenic mice expressing the myostatin pro domain using dual energy x-ray absorptiometry FASEB Journal 18, A210.

    Google Scholar 

  • Murray, J. D., & Rexroad Jr., C. E. (1991). The development of sheep expressing growth promoting transgenes. NABC Report, 3, 251–263.

    Google Scholar 

  • Nancarrow, C. D., Marshall, J. T., Clarkson, J. L., Murray, J. D., Millard, R. M., Shanahan, C. M., et al. (1991). Expression and physiology of performance regulating genes in transgenic sheep. Journal of Reproduction and Fertility, 43 (Suppl.), 277–291.

    CAS  Google Scholar 

  • Niemann, H. (2004). Transgenic pigs expressing plant genes. Proceedings of the National Academy of Sciences of the United States of America, 101, 7211–7212.

    Article  CAS  Google Scholar 

  • NRC (2002). Animal biotechnology: Science-based concerns. National research council committee on defining science-based concerns associated with products of animal biotechnology, committee on agricultural biotechnology, health, and the environment, board on agriculture and natural resources, board life sciences, division on earth and life studies (p. 181). Washington, DC: National Academies Press.

    Google Scholar 

  • Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., et al. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science, 289, 1188–1190.

    Article  CAS  Google Scholar 

  • Otani, K., Han, D.-H., Ford, E. L., Garcia-Roves, P. M., Ye, H., Horikawa, Y., Bell, G. I., et al. (2004). Calpain system regulates muscle mass and glucose transporter GLUT4 turnover. Journal of Biological Chemistry, 278, 20915–20920.

    Article  CAS  Google Scholar 

  • Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Brinbert, N. C., et al. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 300, 611–615.

    Article  CAS  Google Scholar 

  • Piper, L. R., Bell, A. M., Ward, K. A., & Brown, B. W. (2001). Effect of ovine growth hormone transgenesis on performance of merino sheep at pasture. 1. Growth and wool traits to 12 months of age. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 14, 257–260.

    Google Scholar 

  • Polejaeva, I. A., Chen, S.-H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407, 86–90.

    Article  CAS  Google Scholar 

  • Prather, R. S., Hawley, R. J., Carter, D. B., Lai, L., & Greenstein, J. L. (2003). Transgenic swine for biomedicine and agriculture. Theriogen, 59, 115–123.

    Article  CAS  Google Scholar 

  • Pursel, V. G., Campbell, R. G., Miller, K. F., Behringer, R. R., Palmiter, R. D., & Brinster, R. L. (1988). Growth potential of transgenic pigs expressing a bovine growth hormone gene. Journal of Animal Science, 66 (Suppl. 1), 267.

    Google Scholar 

  • Pursel, V. G., Mitchell, A. D., Bee, G., Elsasser, T. H., McMurtry, J. P., Wall, R. J., et al. (2004). Growth and tissue accretion rates of swine expressing an insulin-like growth factor I transgene. Animal Biotechnology, 15, 33–45.

    Article  CAS  Google Scholar 

  • Pursel, V. G., Mitchell, A. D., Wall, R. J., Coleman, M. E., & Schwartz, R. J. (2001a) Effect of an IGF-I transgene on tissue accretion rates in pigs. Journal of Animal Science, 79 (Suppl. 1), 29 (Abstract No. 121).

    Google Scholar 

  • Pursel, V. G., Mitchell, A. D., Wall, R. J., Solomon, M. B., Coleman, M. E., & Schwartz, R. J. (2001b). Transgenic research to enhance growth and lean carcass composition in swine. In J. P. Toutant & E. Balazs (Eds.), Molecular farming proceedings OECD conference on molecular farming (pp. 77–86). Paris: INRA Editions.

    Google Scholar 

  • Pursel, V. G., & Rexroad, Jr., C. E. (1993). Status of research with transgenic farm animals. Journal of Animal Science, 71 (Suppl. 3), 10–19.

    Google Scholar 

  • Pursel, V. G., & Solomon, M. B. (1993). Alteration of carcass composition in transgenic swine. Food Reviews International, 9, 423–439.

    Article  CAS  Google Scholar 

  • Pursel, V. G., Wall, R. J., Solomon, M. B., Bolt, D. J., Murray, J. D., & Ward, K. A. (1997). Transfer of an ovine metallothionein-ovine growth hormone fusion gene into swine. Journal of Animal Science, 75, 2208–2214.

    CAS  Google Scholar 

  • Rexroad, Jr., C. E., Hammer, R. E., Boh, D. J., Mayo, K. E., Frohman, L. A., Palmiter, R. D., et al. (1989). Production of transgenic sheep with growth-regulating genes. Molecular and Reproductive Development, 1, 164–169.

    Article  CAS  Google Scholar 

  • Rexroad, Jr., C. E., Mayo, K., Bolt, D. J., Elsasser, T. H., Miller, K. F., Behringer, R. R., et al. (1991). Transferrin- and albumin-directed expression of growth-related peptides in transgenic sheep. Journal of Animal Science, 69, 2995–3004.

    CAS  Google Scholar 

  • Rule, D. C., Moss, G. E., Snowder, G. D., & Cockett, N. E. (2002). Adipose tissue lipogenic enzyme activity, serum IGF-I, and IGF-binding proteins in the callipyge lamb. Sheep Goat Research Journal, 17, 39–46.

    Google Scholar 

  • Ryder, O. A. (2002). Cloning advances and challenges for conservation. Trends in Biotechnology, 20, 231–232.

    Article  CAS  Google Scholar 

  • Saeki, K., Matsumoto, K., Kinoshita, M., Suzuki, I., Tasaka, Y., Kano, K., et al. (2004). Functional expression of a 12 fatty acid desaturase gene from spinach in transgenic pigs. Proceedings of the National Academy of Sciences of the United States of America, 101, 6361–6366.

    Article  CAS  Google Scholar 

  • Sillence, M. N. (2004). Technologies for the control of fat and lean deposition in livestock. Veterinary Journal, 167, 242–257.

    Article  CAS  Google Scholar 

  • Solomon, M. B. (1999). The callipyge phenomenon: Tenderness intervention methods. Journal of Animal Science, 77 (Suppl. 2), 238–242.

    Google Scholar 

  • Solomon, M. B., Pursel, V. G., & Mitchell, A. D. (2002). Biotechnology for meat quality enhancement. In F. Toldra (Ed.), Research advances in the quality of meat and meat products(pp. 17–31). Kerala, India: Research Signpost.

    Google Scholar 

  • Solomon, M. B., Pursel, V. G., Paroczay, E. W., & Bolt, D. J. (1994). Lipid composition of carcass tissue from transgenic pigs expressing a bovine growth hormone gene. Journal of Animal Science, 72, 1242–1246.

    CAS  Google Scholar 

  • Stratil, A., & Kopecny, M. (1999). Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8; MSTN) gene. Animal Genetics, 30, 468–469.

    CAS  Google Scholar 

  • Takahashi, S., & Ito, Y. (2004). Evaluation of meat products from cloned cattle: Biological and biochemical properties. Cloning and Stem Cells, 6, 165–171.

    Article  CAS  Google Scholar 

  • Tian, X. C., Kubota, C., Sakashita, K., Izaike, Y., Okano, R., Tabara, N., et al. (2005). Meat and milk compositions of bovine clones. Proceedings of the National Academy of Sciences of the United States of America, 102, 6261–6266.

    Article  CAS  Google Scholar 

  • Vize, P. D., Michalska, A. E., Ashman, R., Lloyd, B., Stone, B. A., Quinn, P., et al. (1998). Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. Journal of Cell Science, 90, 295–300.

    Google Scholar 

  • Wall, R. J., Powell, A. M., Paape, M. J., Kerr, D. E., Bannerman, D. D., Pursel, V. G., et al. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 23, 445–451.

    Article  CAS  Google Scholar 

  • Ward, K. A., & Brown, B. W. (1998). The production of transgenic domestic livestock: Successes, failures and the need for nuclear transfer. Reproductive and Fertility Development, 10, 659–665.

    Article  CAS  Google Scholar 

  • Ward, K. A., Nancarrow, C. D., Byrne, C. R., Shanahan, C. M., Murray, J. D., Leish, Z., et al. (1990). The potential of transgenic animals for improved agricultural productivity. OIE Revue Scientifique et Technique, 9, 847–864.

    CAS  Google Scholar 

  • Ward, K. A., Nancarrow, C. D., Murray, J. D., Wynn, P. C., Speck, P., & Hales, J. R. S. (1989). The physiological consequences of growth hormone fusion gene expression in transgenic sheep. Journal of Cellular Biochemistry, Suppl. 13b, 164, Abstract F006.

    Google Scholar 

  • Wells, K. D. (2000). Genome modification for meat science: Techniques and applications. Proceedings of 53rd Annual Reciprocal Meat Conference (pp. 87–93). Ohio State University.

    Google Scholar 

  • Wieghart, M., Hoover, J., Choe, S. H., McGrane, M. M., Rottman, F. M., Hanson, R. W., et al. (1988). Genetic engineering of livestock – transgenic pigs containing a chimeric bovine growth hormone (PEPCK/bGH) gene. Journal of Animal Science, 66 (Suppl. 1), 266.

    Google Scholar 

  • Wiegand, B. R., Parrish Jr., F. C., Morrical, D. G., & Huff-Lonergan, E. (2001). Feeding high levels of vitamin D3 does not improve tenderness of callipyge lamb loin chops. Journal of Animal Science, 79, 2086–2091.

    CAS  Google Scholar 

  • Wiegand, B. R., Parrish Jr., F. C., Swan, J. E., Larsen, S. T., & Baas, T. J. (2001). Conjugated linoleic acid improves feed efficiency, decreases subcutaneous fat, and improves certain aspects of meat quality in stress-genotype pigs. Journal of Animal Science, 79, 2187–2195.

    CAS  Google Scholar 

  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    Article  CAS  Google Scholar 

  • Yang, J., Ratovitski, T., Brady, J. P., Solomon, M. B., Wells, K. D., & Wall, R. J. (2001). Expression of myostatin pro domain results in muscular transgenic mice. Molecular and Reproductive Development, 60, 351–361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Solomon, M.B., Eastridge, J.S., Paroczay, E.W. (2008). Transgenic Farm Animals. In: Toldrá, F. (eds) Meat Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79382-5_1

Download citation

Publish with us

Policies and ethics