Advertisement

Industrial-Scale Treatment of Biological Tissues with Pulsed Electric Fields

  • H. Bluhm
  • M. Sack
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

In this section we discuss the technical requirements and perspectives for industrial-scale electroporation of plant cell tissues. Energetically it seems more favorable to apply strong fields and short pulses than weak fields and long pulses. Different generator configurations for the production of strong pulsed electric fields and the durability of their main components are considered. Schemes for the process control and the verification of the achieved degree of electroporation are examined. In the second part of this contribution we describe the status of some emerging industrial applications like sugar beet treatment, extraction of aromas, and flavors from wine grapes, and the conditioning of green biomass for energetic utilization by electroporation-assisted dewatering.

Keywords

Sugar Beet Pulse Electric Field Treatment Trigger Pulse Sugar Factory Pulse Transformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Angersbach A, Heinz V, Knorr D (1997) Elektrische Leitfähigkeit als Maß des Zellaufschlussgrades von zellulären Materialen durch Verarbeitungsprozesse. LVT 42(4): 195–200.Google Scholar
  2. Angersbach A, Heinz V, Knorr D (1999) Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol. Programm. 15: 753–762.CrossRefGoogle Scholar
  3. Belkin GS (1971) Dependence of electrode erosion on heat flux and duration of current flow. Sov. Phys. Tech. Phys. 15(7): 1167–1170.Google Scholar
  4. Belkin GS and Kiselev VYa (1977) Effect of the medium on the electrical erosion of electrodes at high currents. Sov. Phys. Tech. Phys. 23(1): 24–27.Google Scholar
  5. Bluhm H (2006) Pulsed Power Systems. Springer, Berlin, Heidelberg, New York.Google Scholar
  6. Borda JC (1766) Sur l’écoulement des fluids par les orifices des vases. Mém. Acad. Roy. Sciences, Année 1766: 579–607.Google Scholar
  7. Bouzrara H, Vorobiev E (2000) Beet juice extraction by pressing and pulsed electric fields. Int. Sugar J. 102(1216): 194–200.Google Scholar
  8. Bouzrara H, Vorobiev E (2001) Nicht-thermisches Pressen und Auswaschen von frischen Zuckerrübenschnitzeln kombiniert mit der Anwendung eines pulsierenden elektrischen Feldes. Zuckerindustrie 126: 463–466.Google Scholar
  9. Doevenspeck H (1962) Über die Beeinflussung von Zellen und Zellverbänden durch elektrostatische Impulse. Archiv für Lebensmittelhygiene 13(3): 68–69.Google Scholar
  10. Donaldson AL (1990) Lifetime considerations. In: Gas discharge closing switches. G. Schaefer, M. Christiansen, and A. Guenther Eds., Plenum Press, New York: 325–344.Google Scholar
  11. Donaldson AL (1991) Electrode erosion in high-current, high-energy transient arcs. Thesis Texas Tech University, Lubbock, Texas USA.Google Scholar
  12. Eshtiaghi M, Knorr D (2000) Anwendung elektrischer Hochspannungsimpulse zum Zellaufschluss bei der Saftgewinnung am Beispiel von Weintrauben. LVT 45(1): 23–27.Google Scholar
  13. Eshtiaghi M, Knorr D (2002) High electric field pulse pretreatment: potential for sugar beet processing. J. Food Eng. 52: 265–272.CrossRefGoogle Scholar
  14. Flaumenbaum B (1967) Anwendung der Elektroplasmolyse bei der Herstellung von Fruchtsäften. Die Lebensmittel-Industrie 8: 19–22.Google Scholar
  15. Frenzel S, Michelberger T, Sack M, Bluhm H, Kern M (2005) Entwicklung und Bau einer Elektroimpuls-Pilotanlage. Abschlussbericht, Förderkennzeichen 0330434, TIB-Hannover, 2005.Google Scholar
  16. Greenham CG (1966) The Relative Electrical Resistances of the Plasmalemma and Tonoplast in Higher Plants. Planta (Berl.) 69: 150–157.CrossRefGoogle Scholar
  17. Haufe W, Reichel W, Schreiner H (1972) Losses of varying types of CuW sintered impregnation material in the air at high current levels. Zeitschrift für Metallkunde 63(10): 651–654.Google Scholar
  18. Jemai A, Vorobiev E (2003) Enhanced leaching from sugar beet cossettes by pulsed electric fields. J. Food Eng. 59: 405–412.CrossRefGoogle Scholar
  19. Kind D (1958) Die Aufbaufläche bei Stoßspannungsbeanspruchung technischer Elektrodenanordnungen in Luft. Elektrotechnische Zeitschrift 79(3): 65–69.Google Scholar
  20. Lebovka N, Bazhal M, Vorobiev E (2000) Simulation and experimental investigation of food material breakage using pulsed electric field treatment. J. Food Eng. 44: 213–223.CrossRefGoogle Scholar
  21. Lebovka N, Bazhal M, Vorobiev E (2001) Pulsed electric field breakage of cellular tissues: Visualisation of percolative properties. Innov. Food Sci. Emerging Technol. 2: 113–125.CrossRefGoogle Scholar
  22. Marx E (1923) Verfahren zur Schlagprüfung von Isolatoren und anderen elektrischen Vorrichtungen. German Patent 455933.Google Scholar
  23. Marx E (1924) Versuche über die Prüfung von Isolatoren mit Spannungsstößen. Elektrotechnische Zeitschrift 25: 652–654.Google Scholar
  24. Sack M, and Bluhm H (2005) Long-term Test of a Triggered Marx Generator, Proc. Pulsed Power Conference 2005, Monterey, DVD-ROM.Google Scholar
  25. Sack M and Bluhm H New Measurement Methods for an Industrial Scale Electroporation Faciltity for Sugar Beets, Proc. OPTIM 2006, Vol. 1 pp. 135–140, Brasov, Romania, May 18–19, 2006. Google Scholar
  26. Sack M , Eing C, Buth L, Berghöfer Th, Frey W, Bluhm H (2007) Electroporation as an optimizing step in the drying of green biomass, Proc. Pulsed Power and Plasma Science Conference, Albuquerque 2007, DVD-ROM.Google Scholar
  27. Sack M, Schultheiss C, Bluhm H (2003) Wear-less Trigger Method for Marx Generators in Repetitive Operation. 14th IEEE Pulsed Power Conf., Dallas, Tex., June 15–18, 2003.Google Scholar
  28. Sack M , Schultheiss C, and Bluhm H (2005) Triggered Marx Generators for the Industrial-Scale Electroporation of Sugar Beets. IEEE Trans. Industry Applications, 41(3): 707–714.Google Scholar
  29. Scheffer K (2003) Der Anbau von Energiepflanzen als Chance einer weitere Ökologisierung der Landnutzung, Mitt. Ges. Pflanzenbauwiss. 14: 114–119.Google Scholar
  30. Schiweck H, Clarke M (2001) In: Ullmann’s Encyclopedia of Industrial Chemistry, Sixth Edition, 2001 Electronic Release, Wiley-VCH, Weinheim, Germany.Google Scholar
  31. Schultheiss C, Bluhm H, Mayer H, Kern M, Michelberger T, Witte G (2002) Processing of sugar beets with pulsed electric fields. IEEE Trans. on Plasma Science 30(4): 1547–1551.CrossRefGoogle Scholar
  32. Schultheiss C, Bluhm H, Mayer H-G, Sack M, Kern M (2004) Die Wirkungsweise der Elektroporation und die Entwicklung industrieller Anlagen. Zuckerindustrie 129(1): 40–44.Google Scholar
  33. Sigler J, Schultheiss C, Kern M (2005) Maischeporation – ein neuer Weg der Weinbereitung. Schweiz. Z. Obst-Weinbau 16: 14–16.Google Scholar
  34. Tedjo W, Eshtiaghi M, Knorr D (2002) Einsatz nicht-thermischer Verfahren zur Zell-Permeabilisierung von Weintrauben und Gewinnung von Inhaltsstoffen. Flüssiges Obst 9: 578–583.Google Scholar
  35. Tsukamoto S, Maeda T, Ikeda M, and Akiyama H (2003) Application of pulsed power to mushroom culturing. Proc. 14th Pulsed Power Conference, pp. 1116–1119, Dallas 2003.Google Scholar
  36. Zingerman AG (1960) Thermal theory of the electrical erosion of metals. Electrom. 5(1): 1427–1485.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Forschungszentrum Karlsruhe GmbHInstitute for Pulsed Power and Microwave TechnologyPostfach 3640

Personalised recommendations