Advertisement

Food Industry Applications for Pulsed Electric Fields

  • Henry Jaeger
  • Ana Balasa
  • Dietrich Knorr
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

In this chapter the potential of pulsed electric fields (PEF) to enhance or create alternatives to conventional methods in food processing will be summarized. After a brief introduction of the historical background, some applications for gentle food preservation will be presented. The enhancement of mass transfer processes like extraction or drying by PEF-pretreatment will be pointed out by showing examples ranging from fruit juice and plant oil recovery to the disintegration of animal tissue. The use of PEF for the softening of plant tissue, for the induction of stress reactions, as well as for wastewater treatment will be illustrated. The discussion of energy requirements and cost-effectiveness will complete the chapter.

Keywords

Energy Input Pulse Electric Field Pulse Electric Field Treatment Microbial Inactivation Specific Energy Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ade-Omowaye, B. I. O., Angersbach, A., Eshtiaghi, M. N., and Knorr, D. (2001a). “Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut pressing.”Innovative Food Science and Emerging Technologies, 1, 203–209.Google Scholar
  2. Ade-Omowaye, B. I. O., Rastogi, N. K., Angersbach, A., and Knorr, D. (2001b). “Effects of high hydrostatic pressure or high intensity electrical field pulse pre-treatment on dehydration characteristics of red paprika.”Innovative Food Science and Emerging Technologies, 2, 1–7.Google Scholar
  3. Allen, M., and Soike, K. (1967). “Disinfection by electrohydraulic treatment.”Science, 156, 524–525.Google Scholar
  4. Angersbach, A., Heinz, V., and Knorr, D. (2000). “Effects of pulsed electric fields on cell membranes in real food systems.”Innovative Food Science and Emerging Technologies, 1, 135–149.Google Scholar
  5. Angersbach, A., and Knorr, D. (1997). “Anwendung elektrischer Hochspannungsimpulse als Vorbehandlungsverfahren zur Beeinflussung der Trocknungscharakteristika und Rehydrationseigenschaften von Kartoffelwürfels.“Nahrung, 41, 194–200.Google Scholar
  6. Anonymous. (1987). “Methods and apparatus for extending the shelf-life of fluid food products.”Maxwell Laboratories, Inc., San Diego, U.S., U.S. patent 4695472.Google Scholar
  7. Ayhan, Z., Yeom, H. W., Zhang, Q. H., and Min, D. B. (2001). “Flavor, color and vitamin C retention of pulsed electric field processed orange juice in different packaging materials.”Journal of Agricultural Food Chemistry, 49, 669–674.Google Scholar
  8. Ayhan, Z., Zhang, Q. H., and Min, D. B. (2002). “Effects of pulsed electric field processing and storage on the quality and stability of single-strength orange juice.”Journal of Food Protection, 65(10), 1623–1627.Google Scholar
  9. Balasa, A., and Knorr, D. (2006). “Extraction of total phenolics from grapes in correlation with degree of membrane poration." COST meeting 928-300606, Reykjavik, Island.Google Scholar
  10. Balasa, A., Toepfl, S., and Knorr, D (2006). “Influence of pulsed electric field treatment on total polyphenolic content of grape products." Food factory of the future, Gothenburg, Sweden.Google Scholar
  11. Bansal, B., and Chen, X. D. (2006). “A critical review of milk fouling in heat exchangers." Comprehensive Reviews in Food Science and Food Safety, 5, 27–33.Google Scholar
  12. Barbosa-Cánovas, G. V., and Altunakar, B. (2007). “Pulsed electric fields processing of foods: an overview." Pulsed electric fields technology for the food industry, J. Raso and V. Heinz, eds., Springer Verlag.Google Scholar
  13. Barbosa-Cánovas, G. V., Pothakamury, U. R., Palou, E., and Swanson, B. G. (1998). Nonthermal preservation of foods, Marcel Dekker, New York.Google Scholar
  14. Barsotti, L., Dumay, E., Mu, T. H., Fernandez Diaz, M. D., and Cheftel, J. C. (2001). “Effects of high voltage electric pulses on protein-based food constituents and structures." Food Science & Technology, 12, 136–144.Google Scholar
  15. Bazhal, M., Lebovka, N. I., and Vorobiev, E. (2001). “Pulsed electric field treatment of apple tissue during compression for juice extraction." Journal of Food Engineering, 50, 129–139.Google Scholar
  16. Bazhal, M., and Vorobiev, E. (2000). “Electrical treatment of apple cossettes for intensifying juice pressing." Journal of the Science of Food and Agriculture, 80, 1668–1674.Google Scholar
  17. Beattie, J. M., and Lewis, F. C. (1925). “The electric current (Apart from the Heat Generated). A Bacteriological Agent in the Sterilization of Milk and other fluids." Journal of Hygiene, 24, 123–137.Google Scholar
  18. Bendicho, S., Barbosa-Cánovas, G. V., and Martin, O. (2002). “Milk processing by high intensity pulsed electric fields." Trends in Food Science & Technology, 13, 195–204.Google Scholar
  19. Bendicho, S., Barbosa-Cánovas, G. V., and Martín, O. (2003). “Reduction of protease activity in simulated milk ultrafiltrate by continuous flow high intensity pulsed electric field treatments." Journal of Food Science, 68(3), 952–957.Google Scholar
  20. Bouzrara, H., and Vorobiev, E. (2000). “Beet Juice Extraction by pressing and pulsed electric fields." International Sugar Journal, 102(1216), 194–200.Google Scholar
  21. Braakman , L. (2003). “Breakthrough in pasteurisation – pulsed electric fields." Food Engineering and Ingredients, 1, 34–38.Google Scholar
  22. Calderon-Miranda, M. L., Barbosa-Canovas, G. V., and Swanson, B. G. (1999). “Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin." International Journal of Food Microbiology, 51(1), 19–30.Google Scholar
  23. Castro, A. J., Swanson, B. G., Barbosa-Cánovas, G. V., and Zhang, Q. H. (2001). “Pulsed electric field modification of milk alkaline phosphatase activity." Electric fields in food processing, G. V. Barbosa-Cánovas and Q. H. Zhang, eds., Technomic, Lancaster, PA, 65–82.Google Scholar
  24. Clark, P. (2006). “Pulsed electric field processing." Food Technology, 60, 66–67.Google Scholar
  25. Cserhalmi, Z., Sass-Kiss, A., Toth-Markus, M., and Lechner, N. (2006). “Study of pulsed electric field treated citrus juices." Innovative Food Science & Emerging Technologies, 7(1–2), 49–54.Google Scholar
  26. Doenenburg, H., and Knorr, D. (1993). “Cellular permeabilisation of cultured plant tissue by high electric field pulses or ultra high pressure for the recovery of secondary metabolites." Food Biotechnology, 7(1), 35–48.Google Scholar
  27. Doevenspeck , H. (1960). “Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen." German Patent DE Germany, 1237–154.Google Scholar
  28. Doevenspeck, H. (1961). “Influencing cells and cell walls by electrostatic impulses." Fleischwirtschaft, 13(12), 968–987.Google Scholar
  29. Edebo, L., and Selin, I. (1968). “The effect of the pressure shock wave and some electrical quantities in the microbicidal effect of transient electric arcs in aqueous systems." Journal of General Microbiology, 50, 253–259.Google Scholar
  30. El-Belghiti, K., Rabhi, Z., and Vorobiev, E. (2005). “Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field." Journal of the Science of Food and Agriculture, 85, 213–218.Google Scholar
  31. Eshtiaghi , M. N., and Knorr, D. (1999). “Process for treatment of sugar beet." European Patent, WO99/6434.Google Scholar
  32. Eshtiaghi, M. N., and Knorr, D. (2000). “Anwendung elektrischer Hochspannungsimpulse zum Zellaufschluss bei der Saftgewinnung am Beispiel von Weintrauben." LVT, 45, 23–27.Google Scholar
  33. Evrendilek, G. A., Jin, Z. T., Ruhlman, K. T., Qiu, X., Zhang, Q. H., and Richter, E. R. (2000). “Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems." Innovative Food Science and Emerging Technologies, 1, 77–86.Google Scholar
  34. Evrendilek, G. A., and Zhang, Q. H. (2003). “Effects of pH, temperature, and pre-pulsed electric field treatment on pulsed electric field and heat inactivation of Escherichia coli O157:H7." Journal of Food Protection, 66(5), 755–759.Google Scholar
  35. Evrendilek, G. A., Zhang, Q. H., and Richter, E. R. (2004). “Application of pulsed electric fields to Skim Milk inoculated with Staphylococcus aureus." Biosystems Engineering, 87(2), 137–144.Google Scholar
  36. FDA. (2003). “Genesis warning letter." Bothell, USA.Google Scholar
  37. Fetterman, J. C. (1928). “The electrical conductivity method of processing milk." Agricultural Engineering, 9(4), 107–108.Google Scholar
  38. Fincan, M., and Dejmek, P. (2003). “Effect of osmotic pretreatment and pulsed electric field on the viscoleastic properties of potato tissue." Journal of Food Engineering, 59, 169–175.Google Scholar
  39. Fincan, M., DeVito, F., and Dejmek, P. (2004). “Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment." Journal of Food Engineering, 64, 381–388.Google Scholar
  40. Flaumenbaum, B. L. (1968). “Anwendung der Elektroplasmolyse bei der Herstellung von Fruchtsäften." Flüssiges Obst, 35, 19–22.Google Scholar
  41. Getchell, B. E. (1935). “Electric pasteurization of milk." Agricultural Engineering, 16(10), 408–410.Google Scholar
  42. Gilliland, S. E., and Speck, M. L. (1967a). “Inactivation of microorganisms by electrohydraulic shock." Applied Microbiology, 15(5), 1031–1037.Google Scholar
  43. Gilliland, S. E., and Speck, M. L. (1967b). “Mechanism of the bactericidal action produced by electrohydraulic shock." Applied Microbiology, 15(5), 1038–1044.Google Scholar
  44. Guderjan, M. (2006). “Untersuchungen zum Einfluss elektrischer Hochspannungsimpulse bei der Gewinnung pflanzlicher Öle," University of Technology, Berlin.Google Scholar
  45. Guderjan, M., Elez-Martínez, P., and Knorr, D. (2007). “Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil." Innovative Food Science & Emerging Technologies, 8, 55–68.Google Scholar
  46. Guderjan, M., and Knorr, D. (2005). “Application of pulsed electric fields for the development of a gentle processing concept for the recovery of oils of plant origin." DFG Projekttreffen Fette und Lipide in der Ernährung, Freudenstadt, Germany.Google Scholar
  47. Guderjan, M., Toepfl, S., Angersbach, A., and Knorr, D. (2005). “Impact of pulsed electric field treatment on the recovery and quality of plant oils." Journal of Food Engineering, 67(3), 281–287.Google Scholar
  48. Gudmundsson, M., and Hafsteinsson, H. (2001). “Effect of electric field pulses on microstructure of muscle foods and roes." Food Science & Technology, 12, 122–128.Google Scholar
  49. Hafsteinsson , H., Gudmundsson, M., Arnarson, G. Ö., Jónsson, Á., and Siguroardottir, M. S. (2000). “High electric field pulses: food saftey; quality; and critical parameters." Project report. European project FAIR CT97-3044.Google Scholar
  50. Heinz, V., Toepfl, S., and Knorr, D. (2003). “Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment." Innovative Food Science and Emerging Technologies, 4(2), 167–175.Google Scholar
  51. Hodgins, A. M., Mittal, G. S., and Griffiths, M. W. (2002). “Pasteurization of fresh orange juice using low-energy pulsed electrical field." Journal of Food Science, 67(6), 2294–2299.Google Scholar
  52. Jaeger, H. (2006). “Einfuss von gepulsten elektrischen Feldern auf die Aktivität von Enzymen und die Inaktivierung ausgewählter Mikroorganismen in Milch.," Diploma thesis, University of Technology, Berlin.Google Scholar
  53. Janositz, A. (2005). “Auswirkung von Hochspannungsimpulsen auf das Schnittverhalten von Kartoffeln.," Diploma thesis, University of Technology, Berlin.Google Scholar
  54. Jayaram, S., Castle, G. S. P., and Magaritis, A. (1992). “Kinetics of sterilization of L. brevis cells by the application of high voltage pulses." Biotechnology and Bioengineering, 40(11), 1412–1420.Google Scholar
  55. Jemai, A. B., and Vorobiev, E. (2002). “Effect of moderate electric field pulses on the diffusion coefficient of soluble substances from apple slices." International Journal of Food Science and Technology, 37, 73–86.Google Scholar
  56. Jemai, A. B., and Vorobiev, E. (2006). “Pulsed electric field assisted pressing of sugar beet slices: towards a novel process of cold juice extraction." Biosystems Engineering, 93(1), 57–68.Google Scholar
  57. Jeyamkondan, S., Jayas, D. S., and Holley, R. A. (1999). “Pulsed electric field processing of foods: a review." Journal of Food Protection, 62(9), 1088–1096.Google Scholar
  58. Knorr, D., and Angersbach, A. (1998). “Impact of high-intensity electric field pulses on plant membrane permeabilization." Trends in Food Science & Technology, 9, 185–191.Google Scholar
  59. Knorr, D., Geulen, M., Grahl, T., and Sitzmann, W. (1994). “Food application of high electric field pulses." Trends in Food Science and Technology, 5, 71–75.Google Scholar
  60. Koehler, E., Toepfl, S., Knorr, D., and Pulz, O. (2005). “Unconventional procedures for the production and stabilization of extracts with active agents." 6th European workshop microalgal biotechnology, Potsdam, Germany.Google Scholar
  61. Koners, U., Toepfl, S., Heinz, V., Camacho, P., Ginestet, P., and Knorr, D. (2004). “Application of Pulsed Electric Field Treatment for sludge reduction on waste water treatment plants." 2nd European pulsed power symposium, Hamburg, Germany, 68–72.Google Scholar
  62. Kopplow, O., Barjenbruch, M., and Heinz, V. (2004). “Sludge pre-treatment with pulsed electric fields." Water Science and Technology, 49(10), 123–129.Google Scholar
  63. Kraus, W. (2003). “The 2002 beet campaign – VDZ Zweigverein Süd." Zuckerindustrie, 128(5), 344–354.Google Scholar
  64. Kraus, W. (2004). “Reports on the 2003 campaign – VDZ Zweigverein Süd." Zuckerindustrie, 129(5), 349–363.Google Scholar
  65. Krupp Maschinentechnik . (1988). “Fish processing by the Elcrack process." Brochure Krupp Maschinentechnik GmbH, Hamburg, Germany.Google Scholar
  66. Lebovka, N. I., Praporscic, I., and Vorobiev, E. (2004a). “Combined treatment of apples by pulsed electric fields and by heating at moderate temperature." Journal of Food Engineering, 65, 211–217.Google Scholar
  67. Lebovka, N. I., Praporscic, I., and Vorobiev, E. (2004b). “Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples." Innovative Food Science and Emerging Technologies, 5(1), 9–16.Google Scholar
  68. Lechner, N., and Cserhalmi, Z. (2004). “Pulsed electric field (PEF) processing effects on physical and chemical properties of vegetable juices." Safe consortium seminar: novel preservation technologies in relation to food safety, Brussel, Belgium.Google Scholar
  69. Li, S.-Q., Bomser, J. A., and Zhang, Q. H. (2005). “Effects of pulsed electric fields and heat treatment on stability and secondary structure of bovine immunoglobulin G." Journal of Agriculture & Food Chemistry, 53(3), 663–670.Google Scholar
  70. Li, S.-Q., Zhang, Q. H., Lee, Y.-Z., and Pham, Z.-V. (2003). “Effects of pulsed electric fields and thermal processing on the stability of bovine Immunoglobulin G (IgG) in enriched soymilk." Food Chemistry and Toxicology, 68(4), 1201–1207.Google Scholar
  71. Li, S. Q., Zhang, Q. H., Tony, Z. J., Turek, E. J., and Lau, M. H. (2005). “Elimination of Lactobacillus plantarum and achievement of shelf stable model salad dressing by pilot scale pulsed electric fields combined with mild heat." Innovative Food Science & Emerging Technologies, 6, 125–133.Google Scholar
  72. Loeffler, M., Schmidt, W., Schuhmann, R., Röttering, A., Neumann, J., and Dreesen, C. (2001). “Treatment of sewage sludge with pulsed electric fields." International conference on pulsed power applications, Gelsenkirchen, Germany.Google Scholar
  73. Mastwijk, H. (2004). “Recent developments in pulsed electrical field treatment in relation to food safety." Safe consortium seminar: novel preservation technologies in relation to food safety, Brussels, Belgium.Google Scholar
  74. McDonald, C. J., Lloyd, S. W., Vitale, M. A., Petersson, K., and Innings, F. (2000). “Effect of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm." Journal of Food Science, 65(6), 984–989.Google Scholar
  75. McLellan, M. R., Kime, R. L., and Lind, K. R. (1991). “Electroplasmolysis and other treatments to improve apple juice yield." Journal of Science of Food and Agriculture, 57(2), 303–306.Google Scholar
  76. Min, S., and Zhang, Q. H. (2003). “Effects of commercial-scale pulsed electric field processing on flavor and color of tomato juice." Journal of Food Science, 65(5), 1600–1606.Google Scholar
  77. Mitchell, C. A. (1996). “Recent advances in plant response to mechanical stress: theory and application." Horticultural Science, 31(1), 31–35.Google Scholar
  78. Molinari, P., Pilosof, A. M. R., and Jagus, R. J. (2004). “Effect of growth phase and inoculum size on the inactivation of S. cerevisiae in fruit juices by pulsed electric fields." Food Research International, 37(8), 793–798.Google Scholar
  79. Morren, J., Roodenburg, B., and de Haan, S. W. H. (2003). “Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers." Innovative Food Science and Emerging Technologies, 4(3), 285–295.Google Scholar
  80. Moses, B. D. (1938). “Electric pasteurization of milk." Agricultural Engineering, 19(12), 525–526.Google Scholar
  81. Perez, O., and Pilosof, A. M. R. (2004). “Pulsed electric field effects on the molecular structure and gelation of ß-lactoglobulin concentrate and egg white." Food Research International, 37, 102–110.Google Scholar
  82. Picart, L., Dumay, E., and Cheftel, C. (2002). “Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: influence of electric parameters and food composition." Innovative Food Science & Emerging Technologies, 3, 357–369.Google Scholar
  83. Praporscic, I., Lebovka, N. I., Vorobiev, E., and Mietton-Peuchot, M. (2007). “Pulsed electric field enhanced expression and juice quality of white grapes." Separation and Purification Technology, 52, 520–526.Google Scholar
  84. Prochownick, L., and Spaeth, F. (1890). “Über die keimtötende Wirkung des galvanischen Stroms." Deutsche Medizinische Wochenschrift, 26, 564–565.Google Scholar
  85. Rastogi, N. K., Eshtiaghi, M. N., and Knorr, D. (1999). “Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots." Journal of Food Science, 64(6), 1020–1023.Google Scholar
  86. Reina, L. D., Jin, Z. T., Zhang, Q. H., and Yousef, A. E. (1998). “Inactivation of Listeria monocytogenes in milk by pulsed electric field." Journal of Food Protection, 61(1203–1206).Google Scholar
  87. Roodenburg, B., Morren, J., Berg, H. E. I., and de Haan, S. W. H. (2005a). “Metal release in a stainless steel Pulsed Electric Field (PEF) system: Part I. Effect of different pulse shapes; theory and experimental method." Innovative Food Science & Emerging Technologies, 6(3), 327–336.Google Scholar
  88. Roodenburg, B., Morren, J., Berg, H. E. I., and de Haan, S. W. H. (2005b). “Metal release in a stainless steel pulsed electric field (PEF) system: Part II. The treatment of orange juice; related to legislation and treatment chamber lifetime." Innovative Food Science & Emerging Technologies, 6(3), 337–345.Google Scholar
  89. Sale, A. J. H., and Hamilton, W. A. (1967). “Effect of high electric fields on micro-organisms. I. Killing of bacteria and yeast. II. Mechanism of action of the lethal effect." Biochimica Biophysica Acta, 148, 781–800.Google Scholar
  90. Sale, A. J. H., and Hamilton, W. A. (1968). “Effects of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts." Biochimica Biophysica Acta, 163, 37–43.Google Scholar
  91. Sampedro, F., Rodrigo, M., Martínez, A., Rodrigo, D., and Barbosa-Cánovas, G. V. (2005). “Quality and safety aspects of PEF application in milk and milk products." Critical Reviews in Food Science and Nutrition, 45, 25–47.Google Scholar
  92. Schilling, S., Alber, T., Toepfl, S., Neidhart, S., Knorr, D., Schieber, A., and Carle, R. (2007). “Effects of pulsed electric field treatment of apple mash on juice yield and quality attributes of apple juices." Innovative Food Science & Emerging Technologies, 8, 127–134.Google Scholar
  93. Schultheiss, C., Bluhm, H. J., Mayer, H. G., Kern, M., Michelberger, T., and Witte, G. (2002). “Processing of sugar beets with pulsed electric fields." IEEE Transactions on Plasma Science, 30(4), 1547–1551.Google Scholar
  94. Schultheiss, C., Bluhm, H. J., Sack, M., and Kern, M. (2004). “Principle of electroporation and development of industrial devices." Zuckerindustrie, 129(1), 40–44.Google Scholar
  95. Schuten, H., Gulfo-van Beusekom, K., Pol, I., Mastwijk, H., and Bartels, P. (2004). “Enzymatic stability of PEF processed orange juice." Safe consortium seminar: novel preservation technologies in relation to food safety, Brussels, Belgium.Google Scholar
  96. Sensoy, I., and Sastry, S. K. (2004). “Extraction using moderate electric fields." Journal of Food Science, 69(1), 7–13.Google Scholar
  97. Sepulveda, D. D., Góngora-Nieto, M. M., Guerrero, J. A., and Barbosa-Cánovas, G. V. (2005). “Production of extended shelf-life milk by processing pasteurized milk with pulsed electric fields." Journal of Food Engineering, 67, 81–86.Google Scholar
  98. Sitzmann, W., and Münch, E. W. (1988). “Das ELCRACK Verfahren: Ein neues Verfahren zur Verarbeitung tierischer Rohstoffe." Die Fleischmehlindustrie, 40(2), 22–28.Google Scholar
  99. Smith, K., Mittal, G. S., and Griffiths, M. W. (2002). “Pasteurization of milk using pulsed electrical field and antimicrobials." Journal of Food Science, 67(6).Google Scholar
  100. Stanley, D. W. (1991). “Biological membrane deterioration and associated quality losses in food tissues." Critical reviews in food science and nutrition, F. M. Clydesdale, ed., CRC Press, New York.Google Scholar
  101. Tedjo, W., Eshtiaghi, M. N., and Knorr, D. (2002). “Einsatz nicht thermischer Verfahren zur Zell-Permeabilisierung von Weintrauben und Gewinnung von Inhaltsstoffen." Flüssiges Obst, 9, 578–583.Google Scholar
  102. Thiele, H., and Wolf, K. (1899). “Über die Einwirkung des elektrischen Stroms auf Bakterien." Centralblatt Bakterien und Parasitenkunde., 25, 650–655.Google Scholar
  103. Toepfl, S. (2006). “Pulsed Electric Fields (PEF) for permeabilization of cell membranes in food- and bioprocessing – applications, process and equipment design and cost analysis," PhD., University of Technology, Berlin.Google Scholar
  104. Toepfl, S. (2007). “Design concepts for PEF-applications for the food industry." German Institute of Food Technology, Quakenbrück, Personal Communication.Google Scholar
  105. Toepfl, S., and Heinz, V. (2007). “Application of pulsed electric fields to improve mass transfer in dry cured meat products." Fleischwirtschaft International, 22(1/2007), 62–64.Google Scholar
  106. Toepfl, S., Heinz, V., and Knorr, D. (2005). “Anwendung gepulster elektrischer Felder als Zellaufschluss- und Konservierungsverfahren." GDL Kongress Lebensmitteltechnologie, Dresden.Google Scholar
  107. Toepfl, S., Heinz, V., and Knorr, D. (2007a). “High intensity pulsed electric fields applied for food preservation." Chemical Engineering and Processing, 46(6), 537–546.Google Scholar
  108. Toepfl, S., Heinz, V., and Knorr, D. (2007b). “History of pulsed electric field treatment." Food preservation by pulsed electric fields, H. L. M. Lelieveld, S. Notermans, and S. W. H. de Haan, eds., Woodhead Publishing Limited, Cambridge.Google Scholar
  109. Toepfl, S., Jaeger, H., Heinz, V., and Knorr, D. (2006). “Neues Verfahren zur Haltbarmachung von Milch." Deutsche Molkerei Zeitung, 2, 24–28.Google Scholar
  110. Tracy, R. L. (1932). “Lethal effect of alternating current on yeast cells." Journal of Bacteriology, 24(6), 423–438.Google Scholar
  111. Ulmer, H. M., Heinz, V., Gaenzle, M. G., Knorr, D., and Vogel, R. F. (2002). “Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer." Journal of Applied Microbiology, 93(2), 326–335.Google Scholar
  112. Van Loey, A., Verachtert, B., and Hendrickx, M. (2002). “Effects of high electric field pulses on enzymes." Trends in Food Science and Technology, 12, 94–102.Google Scholar
  113. Yang, R. J., Li, S. Q., and Zhang, Q. H. (2004). “Effects of pulsed electric fields on the activity of enzymes in aqueous solution." Journal of Food Science, 69(4), 241–248.Google Scholar
  114. Yeom, H. W., Streaker, C. B., Zhang, Q. H., and Min, D. B. (2000). “Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization." Journal of Agricultural Food Chemistry, 48, 4597–4605.Google Scholar
  115. Zárate-Rodriguez, E., and Ortega-Rivas, E. (2000). “Quality changes in apple juice as related to nonthermal processing." Journal of Food Quality, 23, 337–349.Google Scholar
  116. Zhang, Q., Monsalve-González, A., Qin, B. L., Barbosa-Cánovas, G. V., and Swanson, B. G. (1994). “Inactivation of Saccharomyces cerevisiae in apple juice by square-wave and exponential-decay pulsed electric fields." Journal of Food Process Engineering, 17, 469–478.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Henry Jaeger
    • 1
  • Ana Balasa
  • Dietrich Knorr
  1. 1.Department of Food Biotechnology and Food Process EngineeringBerlin University of Technology

Personalised recommendations