Skip to main content

Electroporation in Biological Cell and Tissue: An Overview

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

In this chapter, basics and mechanisms of electroporation are presented. Most important electric pulse parameters for electroporation efficiency for different applications that involve introduction of small molecules and macromolecules into the cell or cell membrane electrofusion are described. In all these applications, cell viability has to be preserved. However, in some biotechnological applications, such as liquid food sterilization or water treatment, electroporation is used as a method for efficient cell killing. For all the applications mentioned above, besides electric pulse parameters, other factors, such as electroporation medium composition and osmotic pressure, play significant roles in electroporation effectiveness. For controlled use of the method in all applications, the basic mechanisms of electroporation need to be known. The phenomenon was studied from the single-cell level and dense cell suspension that represents a simplified homogenous tissue model, to complex biological tissues. In the latter, different cell types and electric conductivity that change during the course of electric pulse application can significantly affect the effectiveness of the treatment. For such a complex situation, the design and use of suitable electrodes and theoretical modeling of electric field distribution within the tissue are essential. Electroporation as a universal method applicable to different cell types is used for different purposes. In medicine it is used for electrochemotherapy and genetherapy. In biotechnology it is used for water and liquid food sterilization and for transfection of bacteria, yeast, plant protoplast, and intact plant tissue. Understanding the phenomenon of electroporation, its mechanisms and optimization of all the parameters that affect electroporation is a prerequisite for successful treatment. In addition to the parameters mentioned above, different biological characteristics of treated cell affect the outcome of the treatment. Electroporation, gene electrotransfer and electrofusion are affected by cell membrane fluidity, cytoskeleton, and the presence of the cell wall in bacteria yeast and plant cells. Thus, electroporation parameters need to be specifically optimized for different cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abidor, I.G., Arakelyan, V.B., Chernomordik, L.V., Chizmadzev, Y.A., Pastusenko, V.F. and Tarasevich, M.R. (1979) Electric breakdown of lipid membranes. I. The main experimental facts and their quantitative discussion. Bioelectrochemistry and Bioenergetics 6, 37–52.

    CAS  Google Scholar 

  • Abidor, I.G., Li, L.H. and Hui, S.W. (1994) Studies of cell pellets: II Osmotic properties, electroporation, and related phenomena: membrane interaction. Biophysical Journal 67, 427–435.

    CAS  Google Scholar 

  • Ade-Omowaye, B.I.O., Angersbach, A., Taiwo, K.A. and Knorr, D. (2001) Use of pulsed electric field pretreatment to improve dehydration characteristics of plant based foods. Trends in food Science and Technology 12, 285–295.

    Google Scholar 

  • Aouida, M., Tounekti, O., Belhadj, O. and Mir, L.M. (2003) Comparative roles of the cell wall and cell membrane in limiting uptake of xenobiotic molecules by Saccharomyces crevisiae. Antimicrobial Agents and Chemotherapy 47, 2012–2014.

    CAS  Google Scholar 

  • Angersbach, A., Heinz, V. and Knorr, D. (2000) Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Sciences and Emerging Technologies 1, 135–149.

    CAS  Google Scholar 

  • Andre, F. and Mir, L.M. (2004) DNA electro transfer: its principles and an updated review of its therapeutic applications. Gene Therapy 11, S33–S42.

    CAS  Google Scholar 

  • Andreson, G.L. and Evans, G.A. (1989) Optimization of electroporation for transfection of mammalian cell lines. Analytical Biochemistry 180, 269–275.

    Google Scholar 

  • Barrau, C., Teissié, J. and Gabriel, B. (2004) Osmotically induced membrane fusion facilitates the triggering of living cell electroporation. Bioelectrochemistry 63, 327–332.

    CAS  Google Scholar 

  • Beveridge, T.J. and Graham L.L. (1991) Surface layers of Bacteria. Microbiological Reviews 55, 684–705.

    CAS  Google Scholar 

  • Beveridge, J.R., MacGregor S.J., Marsili, L., Anderson J.G., Rowan, N.J. and Farish, O. (2002) Comparison of the effectiveness of biphase and monophase rectangular pulses for the inactivation of micro-organisms using pulsed electric fields. IEEE Transactions on plasma Science 30, 1525–1531.

    Google Scholar 

  • Biedinger, U., Youngman, R.J. and Schnabl, H. (1990) Differential effects of electrofusion and electropermeabilization parameters on the membrane integrity of plant protoplasts. Planta 180, 598–602.

    CAS  Google Scholar 

  • Bilska, A., DeBruin, K.A. and Krassowska, W. (2000) Theoretical modeling of the effects of shock duration, frequency and strength on the degree of electroporation. Bioelectrochemistry 51, 133–143.

    CAS  Google Scholar 

  • Blangero, C., Rols, M.P. and Teissié, J. (1989) Cytoskeletal reorganization during electric field induced fusion of Chinese hamster ovary cells grown in monolayers. Biochimica et Biophysica Acta 981, 295–302.

    CAS  Google Scholar 

  • Brandinsky, K. and Daskalov, I. (1999) Electrical field and current distributions in electrochemotherapy. Bioelectrochemistry and Bioenergetics 48, 201–208.

    Google Scholar 

  • Bureau, M.F., Ghel, J., Deleuze, V., Mir, L.M. and Scherman, D. (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electro transfer. Biochimica et Biophysicqa Acta 1474, 353–359.

    CAS  Google Scholar 

  • Canatella, P.J., Karr, J.F., Petros, J.A. and Prausnitz, M. (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophysical Journal 80, 755–764.

    CAS  Google Scholar 

  • Canatella, P.J., Black, M.M., Bonnichsen, D.M., McKenna, C. and Prausnitz, M.R. (2004) Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments. Biophysical Journal 86, 3260–3268.

    CAS  Google Scholar 

  • Carpita, N., Sabularse, D., Montezinos, D. and Delmer, D.P. (1979) Determination of the pore size of cell walls of living plant cells. Science 205, 1144–1147.

    CAS  Google Scholar 

  • Chang, D.C. and Reese, T.S. (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal 58, 1–12.

    CAS  Google Scholar 

  • Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E. (1992) Guide to electroporation and electrofusion, Academic Press, San Diego.

    Google Scholar 

  • Chand, P.K., Ochatt, S.J., Rech, E.L, Power, J.B. and Davey M.R. (1988) Electroporation stimulates plant regeneration from protoplasts of the woody medical species Solanum dulcamara L. Journal of Experimental Botany 39, 1267–1274.

    Google Scholar 

  • Chassy, B.M., Mercenier, A. and Flickinger J. (1988) Transformation of bacteria by electroporation. Trends in Biotechnology 6, 303–309.

    CAS  Google Scholar 

  • Chernomordik, L., Kozlov, M.M. and Zimmerberg (1995). Lipids in biological membrane fusion. The Journal of Membrane Biology 146, 1–14.

    CAS  Google Scholar 

  • Christou, P., Murphy, J.E. and Swain, W.F. (1987). Stable transformation of soyabean by electroporation and root formation from transformed callus. Proceedings of the National Academy of Sciences USA 84, 3962–3966.

    CAS  Google Scholar 

  • Coster, H.G.L. and Zimmermann, U. (1975) The mechanism of electrical breakdown in the membranes of Valonia utricularis. Journal of Membrane Biology 22, 73–90.

    CAS  Google Scholar 

  • Cukjati D., Batiuskaite D., André F., Miklavčič D. and Mir L.M. (2007) Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70, 501–507.

    CAS  Google Scholar 

  • Čegovnik, U. and Novaković, S. (2004) Setting optimal parameters for in vivo electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochemistry 62, 73–82.

    Google Scholar 

  • Čemaar, M., Jarm, T., Miklavčič, D., Maček-Lebar, A., Ihan, A., Kopitar, N.A., Serša, G. (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro and Magnetobiology 17, 263–272.

    Google Scholar 

  • Čemaar, M., Parkins, C.S., Holder, A.L., Chaplin, D.J., Tozer, G.M. and Serša G. (2001) Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy. British Journal of Cancer 84, 565–570.

    Google Scholar 

  • Danfelter, M., Engstrom, P., Persson, B.R.R. and Salford, L.G. (1998) Effect of high voltage pulses on survival of Chinese hamster V79 lung fibroblast cells. Bioelectrochemistry and Bioenergetics 47, 97–101.

    CAS  Google Scholar 

  • Davalos, R.V., Mir, L.M. and Rubinsky, B. (2005) Tissue ablation with irreversible electroporation. Annals of Biomedical Engineering 33, 223–231.

    CAS  Google Scholar 

  • D’Halluin, K., Bonne E., Bossut M., De Beuckeleer M. and Leemans J. (1992) Transgenic maize plants by tissue electroporation. The Plant Cell 4, 1495–1505.

    Google Scholar 

  • Dimitrov, D.S. and Sowers A.E. (1990) A delay in membrane fusion: lag times observed by fluorescence microscopy of individual fusion events induced by an electric field pulse. Biochemistry 29, 8337–8344.

    CAS  Google Scholar 

  • Djuzenova, C.S., Zimmermann, U., Frank, H., Sukhorukov V.L., Richter, E. and Fuhr, G. (1996) Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochimica et Biophysica Acta 1284, 143–152.

    Google Scholar 

  • Dower, W.J., Miller, J.F. and Rasdale C.W. (1988) High efficiency transformation of E, coli by high voltage electroporation. Nucleic Acids Research 16, 6127–6145.

    CAS  Google Scholar 

  • Dower, W.J., Chassy, B.M., Trevors, J.T. and Blaschek, H.P. (1992) Protocols for the transformation of bacteria by electroporation. In: D.C. Chang, B.M. Chassy, J.A., Saunders and A.E. Sowers (Eds.), Guide to Electroporation and Electrofusion. Academic Press, San Diego, pp. 265–290.

    Google Scholar 

  • Edd, J.F., Horowitz, L., Davalos, R.V., Mir, L.M. and Rubinsky, B. (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Transactions on Biomedical Engineering 53, 1409–1415.

    Google Scholar 

  • Escande-Geraud, M.L., Rols, M.P, Dupont, M.A., Gas, N. and Teissié J. (1988) Reversible plasma membrane ultrastructural changes correlated with electropermeabilization in Chinese hamster ovary cells. Biochimica et Biophysica Acta 939, 247–259.

    CAS  Google Scholar 

  • Eynard, N., Rols, MP, Ganeva, V., Galutzov, B., Sabri, N. and Teissié J. (1997) Electrotransformation pathways of prokaryotic and eukaryotic cells: recent developments. Bioelectrochemistry and Bioenergetics 44, 103–110.

    CAS  Google Scholar 

  • Eynard, N., Rodriguez, F., Trotard, J. and Teissié J. (1998) Electrooptics studies of Escherichia coli electropulsation: orientation, permeabilization and gene transfer. Biophysical Journal 75, 2567–2596.

    Google Scholar 

  • Faurie, C., Phez, E., Golzio, M., Vossen, C., Lesbordes, J.C. Delteil, C., Teissié, J. and Rols M.P. (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochimica et Biophysica Acta 1665, 92–100.

    CAS  Google Scholar 

  • Faurie, C., Golzio, M., Phez E., Teissié, J. and Rols M.P. (2005) Electric field induced cell membrane permeabilization and gene transfer: theory and experiments. Eng ineering in Life Science 5, 1–7.

    Google Scholar 

  • Fear, E.C. and Stuchly, M.A. (1998a) Biological cells with gap junctions in low-frequency electric fields. IEEE Transactions on Biomedical Engineering 45, 856–866.

    CAS  Google Scholar 

  • Fear, E.C. and Stuchly, M.A. (1998b) Modeling assemblies of biological cells exposed to electric fields. IEEE Transactions on Biomedical Engineering 45, 1259–1271.

    CAS  Google Scholar 

  • Ferber, D. (2001) Gene therapy: safer and virus free? Science 294, 1638–1642.

    CAS  Google Scholar 

  • Fiedler, S. and Wirth, R. (1988) Transformation of bacteria with plasmid DNA by electroporation. Analytical Biochemistry 170, 38–44.

    CAS  Google Scholar 

  • Fromm, M.E., Taylor, L.P. and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proceedings of the National Academy of Sciences of the United States of America 82, 5824–5828.

    CAS  Google Scholar 

  • Fromm, M.E., Taylor, L.P. and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.

    CAS  Google Scholar 

  • Gabriel, B and Teissié, J. (1995a) Spatial compartmentation and time resolution of photooxidation of a cell membrane probe in electropermeabilized Chinese hamster ovary cells. European Journal of Biochemistry 228, 710–718.

    CAS  Google Scholar 

  • Gabriel, B. and Teissié, J. (1995b) Control by electrical parameters of short and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochimica et Biophysica Acta 1266, 171–178.

    CAS  Google Scholar 

  • Gabriel, B. and Teissié, J. (1997) Direct observation in the millisecond time range of fluorescent molecule asymetrical interaction with the electropermeabilised cell membrane. Biophysical Journal 73, 2630–2637.

    CAS  Google Scholar 

  • Gabriel, B. and Teissié, J. (1999) Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse Biophysical Journal 76, 2158–2165.

    CAS  Google Scholar 

  • Gallo, S.A., Sen, A., Hensen, M.L. and Hui, S.W. (2002) Temperature dependant electrical and ultrastructural characterizations of porcine skin upon electroporation. Biophysical Journal 82, 109–119.

    CAS  Google Scholar 

  • Ganeva, V., Galutzov, B. and Teissié J. (1995) Electric field mediated loading of macromolecules in intact yeast cells is critically controlled at the wall level. Biochimica et Biophysica Acta 1240, 229–236.

    Google Scholar 

  • Ganeva, V., Galutzov, B. and Teissié J. (2003) High yield electroextraction of proteins from yeast by flow process. Analytical Biochemistry 315, 77–84.

    CAS  Google Scholar 

  • Ganeva, V., Galutzov, B. and Teissié J. (2004) Flow process for electroextraction of intracellular enzymes from the fission yeast, Schizosacchromyces pombe. Biotechnology Letters 26, 933–937.

    CAS  Google Scholar 

  • Gehl, J., Skovsgaard, T. and Mir, L.M. (2002) Vascular reactions in vivo electroporation: characterization and consequences for drug and gene delivery. Biochimica et Biophysica Acta 1569, 51–58.

    CAS  Google Scholar 

  • Golzio, M., Mora, M.P., Raynaud, C., Delteil, C., Teissié, J. and Rols M.P. (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophysical Journal 74, 3015–3022.

    CAS  Google Scholar 

  • Golzio, M., Teissié, J. and Rols M.P. (2002) Direct visualization at the single cell level of electrically mediated gene delivery. Proceedings of the National Academy of Sciences of the United States of America 99, 1292–1297.

    CAS  Google Scholar 

  • Gould, S.W. (1995) Biodeterioration of foods and overview of preservation in the food and dairy industries. International Biodeterioration and Biodegradation 37, 267–277.

    Google Scholar 

  • Graškova, D., Sigler, K., Jonderova, B. and Plašek, J. (1996) Effect of high-voltage pulses on yeast cells: factors influencing the killing efficiency. Bioelectrochemistry and bioenergetics 39, 195–202.

    Google Scholar 

  • Grobner, U., Velizarov and S. and Berg, H. (1996) Polylysine supports electrofusion. Bioelectrochemistry and Bioenergetics 39, 181–184.

    Google Scholar 

  • Gross, D., Loew, L.M. and Webb, W.W. (1986) Optical imaging of cell membrane potential changes induced by applied electric fields. Biophysical Journal 50, 339–348.

    CAS  Google Scholar 

  • Grosse, C. and Schwan, H.P. (1992) Cellular membrane potentials induced by altering fields. Biophysical Journal 63, 1632–1642.

    CAS  Google Scholar 

  • Gurel, F. and Gozukirmizi, N. (2000) Optimization of gene transfer into barley (Hordeum vulgare L.) mature embryos by tissue electroporation. Plant Cell Reports 19, 787–791.

    CAS  Google Scholar 

  • Haas, C.N. and Atrualiye, D.N. (1999) Kinetics of electroporation – assisted chlorination of Giardia muris. Water Research 33, 1761–1766.

    CAS  Google Scholar 

  • Harkin, D.G. and Hay, E.D. (1996) Effects of electroporation on the tubulin cytoskeleton and direct migration of corneal fibroblasts cultured within collagen matrices. Cell Motility and the Cytoskeleton 35, 345–357.

    CAS  Google Scholar 

  • Hamilton, W.A. and Sale, A.J.H. (1967) Effects of high electric fields on microorganisms: II. Mechanisms and action of the lethal effect. Biochimica et Biophysica Acta 148, 789–800.

    CAS  Google Scholar 

  • He, G.Y. and Lazzeri P.A. (1998) Analysis and optimization of DNA delivery into wheat scutellum and Tritodeum inflorescence explants by tissue electroporation. Plant Cell 18, 64–70.

    CAS  Google Scholar 

  • He, G.Y., Lazzeri P.A. and Cannell M.E. (2001) Fertile transgenic plants obtained from tritordeum inflorescences by tissue electroporation. Plant Cell Reports 20, 67–72.

    CAS  Google Scholar 

  • Heller, R., Gibert, R. and Jaroszeski, M. (1999) Clinical application of electrochemotherapy. Advanced Drug Delivery Reviews 35, 119–129.

    CAS  Google Scholar 

  • Hibino, M., Shigemori, M., Itoh, H., Nagayama, K. and Kinosita, K., (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophysical Journal 59, 209–220.

    CAS  Google Scholar 

  • Hibino, M., Itoh H. and Kinosita, K. (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophysical Journal 64, 1789–1800.

    CAS  Google Scholar 

  • Jaroszeski, M.J., Gilbert, R., Fallon, P.G. and Heller, R. (1994) Mechanically facilitated cell-cell electrofusion. Biophysical Journal 67, 1574–1581.

    CAS  Google Scholar 

  • Janmey, P. (1995) Cell membranes and the cytoskeleton. In: R. Lipowsky and E. Sackmann (Eds.), Structure and Dynamics of Membranes, Handbook of Biological Physics. Elsevier, pp. 805–849.

    Google Scholar 

  • Joersbo, M. and Brunstedt, J. (1991) Electroporation: mechanism and transient expression, stable transformation and biological effects in plant protoplasts. Physiologia Plantarum 81, 256–264.

    Google Scholar 

  • Kandušer, M., entjurc, M., Miklavčič, D. (2006) Cell membrane fluidity related to electroporation and resealing. European Biophysics Journal 35, 196–204.

    Google Scholar 

  • Kanduer, M., entjurc, M., Miklavi D. (2008) The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemisty in press.

    Google Scholar 

  • Kanthou, C., Kranjc, S., Serša, G., Tozer, G., upanič, A. and Čemažar, M. (2006) The endothelial cytoskeleton as a target of electroporation-based therapies. Molecular Cancer Therapeutics 5, 3145–3152.

    CAS  Google Scholar 

  • Kim, Y.H., Han, K.S., Oh, S., You, S. and Kim S.H. (2005) Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation. Journal of Applied Microbiology 99, 167–174.

    CAS  Google Scholar 

  • Kinosita, K. and Tsong, T.Y. (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature 268, 438–441.

    Google Scholar 

  • Kinosita, K. and Tsong, T.Y. (1979) Voltage induced conductance in human erythrocyte membranes. Biochimica et Biophysica Acta 554, 479–497.

    CAS  Google Scholar 

  • Kinosita K., Ashikawa, I., Saita, N., Yoshimura, H., Itoh, H., Nagayama, K. and Ikegami, A. (1988) Electroporation of cell membrane visualized under pulsed-laser fluorescence microscope. Biophysical Journal 53, 1015–1019.

    Google Scholar 

  • Klenchin, V.A., Sukharev, S.I., Serov, S.M., Chernomordik, L.V. and Chizmadzhev, Y.A. (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophysical Journal 60, 804–811.

    CAS  Google Scholar 

  • Kotnik, T., Bobanovič, F. and Miklavčič D. (1997) Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochemistry Bioenergetics 43, 285–291.

    CAS  Google Scholar 

  • Kotnik, T. and Miklavčič, D. (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophysical Journal 79, 670–679.

    CAS  Google Scholar 

  • Kotnik, T., Mir, L.M., Flisar, K., Puc, M. and Miklavčič, D. (2001a) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permeabilization. Bioelectrochemistry 54, 83–90.

    CAS  Google Scholar 

  • Kotnik, T., Miklavčič, D. and Mir, L.M. (2001b) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. Bioelectrochemistry 54, 91–95.

    CAS  Google Scholar 

  • Kutney, J.P. (1982) Studies in plant tissue culture: potential source of clinically important antitumor agents. Pure and Applied Chemistry 54, 2523–2536.

    CAS  Google Scholar 

  • Ladygin, V.G. (2004) Efficient transformation of mutant cells of Chlamydomonas reinhardtii by electroporation. Process Biochemistry 39, 1685–1691.

    CAS  Google Scholar 

  • Lebovka, N.I., Bazhal, M.I. and Vorobiev, E. (2000) Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering 44, 213–223.

    Google Scholar 

  • Lebovka, N.I., Bazhal, M.I. and Vorobiev, E. (2002) Estimation of characteristics damage time of food materials in pulsed-electric fields. Journal of Food Engineering 54, 337–346.

    Google Scholar 

  • Lebovka, N.I. and Vorobiev, E. (2004) On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields. International Journal of Food Microbiology 91, 83–89.

    CAS  Google Scholar 

  • Lee, R.C., River P., Pan, F.S., Ji, L. and Wollmann, R.L. (1992) Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proceedings of the National Academy of Sciences of the United States of America 89, 4524–4528.

    CAS  Google Scholar 

  • Lee, R.C. and Dougherty, W. (2003) Electrical injury: mechanisms, manifestations and therapy. IEEE Transactions on Dielectrics and Electrical Insulation 10, 810–819.

    CAS  Google Scholar 

  • Lee, T.M.O., Turgeon, R. and Wu, R. (1986) Expression of a foreign gene linked to either a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proceedings of National Academy Sciences of the United States of America 83, 6815–6819.

    Google Scholar 

  • Leontiadou, H., Mark, A.E. and Marrink, S.J. (2004) Molecular dynamics simulation of hydrophilic pores in lipid bilayers. Biophysical Journal 86, 2156–2164.

    CAS  Google Scholar 

  • Li, L.H., Shivakumar, R., Feller, S., Allen, C., Weiss, J.M., Dzekunov, S., Singh, V., Holaday, J., Fratantoni, J. and Liu, L.N. (2002) High efficient, large volume flow electroporation. Technology in Cancer Research and Treatment 1, 341–349.

    CAS  Google Scholar 

  • Liu, M., Gothe G. and Berg, H. (2000) Electroporation and fusion of human cancer cells modified by amino acids and polypeptides. Electro and Magnetobiology 19, 331–338.

    CAS  Google Scholar 

  • Liu, F., Heston, S., Shollenberger, L.M., Sun, B., Mickle, M., Lovell, M. and Huang L. (2006) Mechanisms of in vivo DNA transport into cells by electroporation: electrophoresis across the plasma membrane may not be involved. The Journal of Gene Medicine 8, 353–361.

    Google Scholar 

  • Loew, L.M. (1992) Voltage-sensitive dyes: Measurements of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics Supplement 1, 179–189.

    Google Scholar 

  • Lucas, M.L. and Heller R. (2001) Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Molecular Therapy 3, 47–53.

    CAS  Google Scholar 

  • Lundqvist, J.A., Sahlin, F., Aberg, M., A.I., Stromberg, A. and Erikson, P.S. (1998) Alterning the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. Proceedings of the National Academy of Sciences of the United States of America 95, 10356–10360.

    CAS  Google Scholar 

  • Maček-Lebar, A., Kopitar, N.A., Ihan, A., Serša, G. and Miklavčič, D. (1998) Significance of treatment energy in cell electropermeabilization. Electro. Magnetobiol. 17, 253–260.

    Google Scholar 

  • Maček-Lebar, A. and Miklavčič, D. (2001) Cell electropermeabilization to small molecules in vitro: control by pulse parameters. Radiologica Oncology 35, 193–202.

    Google Scholar 

  • Maccarrone, M., Bladergroen, M..R., Rosato, N. and Agro F. (1995) Role of peroxidation in electroporation induced cell permeability. Biochemical and Biophysical Research Communications 209, 417–425.

    CAS  Google Scholar 

  • Marszalek, P., Liu, D.S. and Tsong, T.Y. (1990) Schwan equation and transmembrane potential induced by altering electric field. Biophysical Journal 58, 1053–1058.

    CAS  Google Scholar 

  • Mason, C.K., Collins, M.A. and Thompson K. (2005) Modified electroporation protocol for Lactobacilli isolated from the chicken crop facilitates transformation and the use of a genetic tool. Journal of Microbial Methods 60, 353–363.

    CAS  Google Scholar 

  • Mazan, M., Mazanova, K. and Farkas, V. (2006) Bukova stena hub – Vyzva pre vyskum novych antimykotik, Chem. Listy 100, 433–439.

    CAS  Google Scholar 

  • Meaking, W.S., Edgerton, J., Wharton, C.W. and Meldrum, R.A. (1995) Electroporation-induced damage in mammalian cell DNA. Biochimica et Biophysica Acta 1264, 357–362.

    Google Scholar 

  • Mehrle, W., Zimmermann, U. and Hampp, R. (1985) Evidence for asymetrical uptake of fluorescence dyes through electro- permeabilized membranes of Avena mesophyll protoplasts. FEBS Letters 185, 89–94.

    CAS  Google Scholar 

  • Meilhoc, E., Masson, J.M. and Teissie, J. (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N.Y.) 8, 223–227.

    CAS  Google Scholar 

  • Miklavčič, D., Beravs, K., emrov, D., Čemažar, M., Demšar, F. and Serša, G. (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophysical Journal 74, 2152–2158.

    Google Scholar 

  • Miklavčič, D., emrov, D., Mekid, H. and Mir, L.M. (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electro transfer for gene therapy. Biochimica et Biophysica Acta 1519, 73–83.

    Google Scholar 

  • Miklavčič, D., Pucihar, G., Pavlovec, M., Ribarič, S., Mali, M., Maček-Lebar, A., Petkovšek, M., Nastran, J., Kranjc, S., Čemažar, M. and Serša, G. (2005) The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65, 121–128.

    Google Scholar 

  • Miklavčič, D., Čorović S, Pucihar, G. and Pavšelj, N. (2006a) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. European Journal of Cancer Supplement 4, 45–51.

    Google Scholar 

  • Miklavčič, D. and Puc, M. (2006b) Electroporation. In: Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, New York,. pp. 1–11.

    Google Scholar 

  • Miller, L., Leor, J. and Rubinsky, B. (2005) Cancer cell ablation with irreversible electroporation. Technology in Cancer Research and Treatment 4, 1–7.

    Google Scholar 

  • Mir, L.M. and Orlovski, S. (1999) Mechanisms of electrochemotherapy. Advanced Drug Delivery 35, 107–118.

    CAS  Google Scholar 

  • Mir, L.M. (2000) Therapeutical perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53, 1–10.

    Google Scholar 

  • Mordhorst, A.P. and Lorz, H. (1992) Electrostimulated regeneration of platelets from protoplasts derived from cell suspensions of barley (Hordeum vulgaris). Physiologia Plantarum 85, 289–294.

    CAS  Google Scholar 

  • Neumann, E. and Rosenheck K. (1972) Permeability changes induced by electric impulses in vesicular membranes. Journal of Membrane Biology. 10, 279–290.

    CAS  Google Scholar 

  • Neumann, E., Schafer-Ridder, M., Wang, Y. and Holschneider, P.H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO Journal 1, 841–845.

    CAS  Google Scholar 

  • Neumann, E., Sowers, A.E. and Jordan, C.A. (1989) Electroporation and electrofusion in cell biology, Plenium press, New York.

    Google Scholar 

  • Neumann, E. (1992) Membrane electroporation and direct gene transfer. Bioelectrochemistry and Bioenergetics 28, 247–267.

    CAS  Google Scholar 

  • Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B. and Tomov, T. (1996) Calcium mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. Biophysical Journal 71, 868–877.

    CAS  Google Scholar 

  • Neumann, E., Kakorin, S. and Toensing, K. (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochemistry and Bioenergetics 48, 3–16.

    CAS  Google Scholar 

  • Oblak, J., Križaj, D., Amon, S., Maček-Lebar, A., Miklavčič, D. (2007) Feasibility study for cell electroporation detection and separation by means of dielectrophoresis. Bioelectrochemistry 71, 164–171.

    CAS  Google Scholar 

  • O'Hare, M.J., Ormerod M.G., Imrie P.R., Peacock J.H. and Asche W. (1989) Electropermeabilization and electrosensitivity of different types of mammalian cells. In: E. Neumann, A.E. Sowers and C.A. Jordan (Eds.), Electroporation and Electrofusion in Cell biology, Plenium Press, New York, pp. 319–330.

    Google Scholar 

  • Ohno-Shosaku, T. and Okada Y., J. (1985) Electric pulse-induced fusion of mouse lymphoma cells: roles of divalent cations and membrane lipid domains. The Journal of Membrane Biology 85, 269–280.

    CAS  Google Scholar 

  • Ochatt, S.J., Rech, E.L., Davey, M.R. and Power, J.B. (1988) Long-term effect of electroporation on enhancement of growth and plant regeneration of colt cherry (Prunus aviun x pseudocerasus) protoplasts. Plant Cell Reports 7, 393–395.

    Google Scholar 

  • Olofsson, J., Nolkantz, K., Rytsen, F., Lambie, B.A., Weber, S.G., Owar, O. (2003) Single cell electroporation. Current Opinion in Biotechnology 14, 29–34.

    CAS  Google Scholar 

  • Orrenius, S., McConkey, D.J., Bellomo, G. and Nicotera, P. (1989) Role of Ca2+ in toxic cell killing, TiPS 10, 281–285.

    CAS  Google Scholar 

  • Pavlin, M., Pavšelj, N. and Miklavčič, D. (2002) Dependance of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Transaction ob biomedical engineering 49, 605–612.

    Google Scholar 

  • Pavlin, M., Kandušer, M., Reberšek, M., Pucihar, G., Hart, F.X., Madjarević, R. and Miklavčič, D. (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal 88, 4378–4390.

    CAS  Google Scholar 

  • Pavlin, M., Leben, V. and Miklavčič, D. (2007) Electroporation in dense cell suspension – Theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochimica et Biophysica Acta 1770, 12–23.

    CAS  Google Scholar 

  • Pavšelj, N. and Preat, V. (2005a) DNA electro transfer into skin using a combination of one high and one low-voltage pulse. Journal of Controlled Release 106, 407–415.

    Google Scholar 

  • Pavšelj, N., Bregar, Z., Cukjati, D., Batiuskaite, D., Mir, L.M. and Miklavčič, D. (2005b) The course of tissue permeabilization studied on a mathematical model of subcutaneous tumor in small animals. IEEE Transactions on Biomedical Engineering 52, 1373–1381.

    Google Scholar 

  • Pitt, R.E., Parks, J.E., Huber, C.S. and Sangree, J.A. (1997) Glycerol permeability of rye protoplasts as affected by temperature and electroporation. Plant, Cell Tissue and Organ Culture 50, 215–219.

    CAS  Google Scholar 

  • Pliquett, U., Gift, E.A. and Weaver, J.C. (1996) Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes in electroporation experiments. Bioelectrochemistry and Bioenergetics 39, 39–53.

    CAS  Google Scholar 

  • Prausnitz, M.R., Lau, B.S., Milano, C.D., Conner, S., Langer, R. and Weaver, J.C. (1993) A quantitative study of electroporation showing a plateau in net molecular transport. Biophysica Journal 65, 414–422.

    CAS  Google Scholar 

  • Prausnitz, M.R., Corbett, J.D., Gimm, J.A., Golan, D.E., Langer, R. and Weaver, J.C. (1995) Millisecond measurement of transport during and after an electroporation pulse. Biophysica Journal 68, 1864–1879.

    CAS  Google Scholar 

  • Prud’homme, G.J., Glinka, Y., Khan, A.S. and Draghia-Akli, R. (2006) Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Current Gene Therapy 6, 243–273.

    Google Scholar 

  • Puc, M., Kotnik, T., Mir, L.M. and Miklavčič, D. (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60, 1–10.

    CAS  Google Scholar 

  • Puc, M., Čorović, S., Flisar, K., Petkovšek, M., Nastran, J., Miklavčič, D. (2004) Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 64, 113–124,

    CAS  Google Scholar 

  • Pucihar, G., Kotnik, T., Kandušer M. and Miklavčič, D. (2001) The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54,107–115.

    CAS  Google Scholar 

  • Pucihar, G., Mir, L.M., Miklavčič, D. (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57, 167–172.

    CAS  Google Scholar 

  • Pucihar, G., Kotnik, T., Valič, B. and Miklavčič, D. (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells, Annals of Biomedical Engineering 34, 642–652.

    CAS  Google Scholar 

  • Pucihar, G., Kotnik, T., Teissié, J. and Miklavčič, D. (2007). Electropermeabilization of dense cell suspensions. European Biophysics Journal 36, 173–185.

    Google Scholar 

  • Quecini, Y.M., de Oliveira, A.C., Alves, A.C. and Vieira, M.L.C. (2002) Factors influencing electroporation mediated gene transfer to Stylosantehes guianensis (Abul.) SW. protoplasts. Genetics and Molecular Biology 25, 73–80.

    CAS  Google Scholar 

  • Rakoczy-Trojanowska, M. (2002) Aletrnative methods of plant transformation – A short review. Cellular and Molecular Biology Letters 7, 849–858.

    Google Scholar 

  • Ramos, C. and Teissié, J. (2000a) Electrofusion: a biophysical modification of cell membrane and a mechanism in exocytosis. Biochimie 82, 511–518.

    CAS  Google Scholar 

  • Ramos, C. and Teissié, J. (2000b) Tension-voltage relationship in membrane fusion and its implication in exocytosis. FEBS Letters 465, 141–144.

    CAS  Google Scholar 

  • Reberšek, M., Faurie, C., Kandušer, M., Čorović, S., Teissie, J., Rols M.P., Miklavčič, D. (2007) Electroporator with automatic change of electric field direction improves gene electrotransfer in vitro. Biomedical Engineering OnLine 6, 25

    Google Scholar 

  • Rech, E.L., Ochatt, S.J., Chand, P.K., Davey, M.R. , Mulligan, B.J. and Power, J.B. (1988) Electroporation induces DNA synthesis in cultured plant protoplasts. Biotechnology 6, 1091–1093.

    CAS  Google Scholar 

  • Rech, E.L., Ochatt, S.J., Chand, P.K., Power, J.B. and Davey M.E. (1987) Electro-enhancement of division of plant protoplast derived cells. Protoplasma 141, 169–176.

    Google Scholar 

  • Rols, M.P. and Teissié, J. (1989) Ionic strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. European Journal of Biochemistry 179, 109–115.

    CAS  Google Scholar 

  • Rols, M.P. and Teissié, J. (1990a) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal 58, 1089–1098.

    CAS  Google Scholar 

  • Rols, M.P. and Teissié, J. (1990b) Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry 29, 4561–4567.

    CAS  Google Scholar 

  • Rols, M.P., Dahhou, F., Mishra, K.P. and Teissié, J. (1990c) Control of electric field induced cell membrane permeabilization by membrane order. Biochemistry 29, 2960–2966.

    CAS  Google Scholar 

  • Rols, M.P. and Teissié, J. (1992a) Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta 1111, 45–50.

    CAS  Google Scholar 

  • Rols, M.P., Coulet D. and Teissié J. (1992b) Highly efficient transfection of mammalian-cells by electric-field pulses – application to large volumes of cell-culture by using a flow system European Journal of Biochemistry 206, 115–121.

    CAS  Google Scholar 

  • Rols, M.P. (2006) Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochimica et Biophysica Acta 1758, 423–428.

    CAS  Google Scholar 

  • Rouan, D., Montane, M.H., Alibert, G. and Teissié J. (1991) Relationship between protoplast size and critical field strength in protoplast electropulsing and application to reliable DNA uptake in Brassica. Plant Cell Reports 10, 139–143.

    CAS  Google Scholar 

  • Rubinsky, B., Onik, G. and Mikus, P. (2007) Irreversible electroporation: a new ablation modality-clinical implications. Technology in Cancer Research and Treatment 6, 37–48.

    Google Scholar 

  • Ryttsen, F., Farre, C., Brennan, C., Weber, S.G., Nolkrantz, K., Jardemark, K., Chiu, D. and Orwar, O. (2000) Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. Biophysical Journal 79, 1993–2001.

    CAS  Google Scholar 

  • Sabri, N., Pelissier, B. and Teissié J. (1996a) Transient and stable electrotransformation of intact black Mexican sweet maize cells are obtained after preplasmolysis. Plant Cell Reports 15, 924–928.

    CAS  Google Scholar 

  • Sabri, N., Pelissier, B. and Teissié, J. (1996b) Electropermeabilization of intact maize cells induces an oxidative stress. European Journal of Biochemistry 238, 737–743.

    CAS  Google Scholar 

  • Sabri, N., Pelissier, B. and Teissié, J. (1998) Ascorbate increases electrotransformation efficiency of intact maize plants. Analytical Biochemistry 264, 284–286.

    CAS  Google Scholar 

  • Sale, A.J.H., and Hamilton W.A. (1967) Effects of high electric fields on microorganisms. I Killing of bacteria and yeast. Biochimica et Biophysica Acta 148, 781–788.

    Google Scholar 

  • Saunders, J.A., Roskos, L.A., Mischke, S., Aly, M.A.M. and Owens L.D. (1986) Behaviour and viability of tobacco protoplasts in response to electrofusion parameters. Plant Physiology. 80, 117–121.

    Google Scholar 

  • Saunders, J.A., Matthewas, B.F. and Miller, P.D. (1989) Plant gene transfer using electrofusion and electroporation. In: E. Neumann, A.E. Sowers and C.A. Jordan (Eds.), Electroporation and Electrofusion in Cell Biology, Plenium Press, New York, pp. 319–330.

    Google Scholar 

  • Saunders, J.A., Lin, C.H., Hou, B.H., Cheng, J., Tsengawa, N., Lin, J.J., Smith, C.R., McIntosh, M.S. and Wert, S.V. (1995) Rapid optimization of electroporation conditions for plant cells, protoplasts, and pollen. Molecular Biotechnology 3, 181–190.

    CAS  Google Scholar 

  • Schaffer, C. and Messner, P. (2005) The structure of secondary cell wall polymers: How Gram-positive bacteria stick their cell walls together. Microbiology 151, 643–651.

    Google Scholar 

  • Serša, G., Čemažar, M. and Miklavčič, D. (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Research 55, 3450–3455.

    Google Scholar 

  • Serša, G., Čemažar, M., emrov, D. and Miklavčič D. (1996) Changing electrode orientation improves the efficacy of electrochemotherapy of solid tumors in mice. Bioelectrochemistry and Bioenergetics 39, 61–66.

    Google Scholar 

  • Serša, G., tabuc, B., Čemažar, M., Jančar, B., Miklavčič, D. and Rudolf, Z. (1998) Electrochemotherapy with cisplatin: Potentiation of local cisplatin antitumor effectiveness by application of electric pulses in cancer patients. European Journal of Cancer 34, 1213–1218.

    Google Scholar 

  • Serša, G., Čemažar, M., Miklavčič, D. and Chaplin, D.J. (1999) Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Research 19, 4017–4022.

    Google Scholar 

  • Serša, G., Krzič, M., entjurc, M., Ivanusa T, Beravs, K., Kotnik V., Coer, A., Swartz, J. and Čemažar, M. (2002) Reduced blood flow and oxygenation in SA-1 tumors after electrochemotherapy with cisplatin. British Journal of Cancer, 87, 1047–1054.

    Google Scholar 

  • Serša, G., Čemažar, M. and Rudolf Z. (2003) Electrochemotherapy: advantages and drawbacks in treatment of cancer patients. Cancer Therapy 1, 133–142.

    Google Scholar 

  • Somiari, S., Glasspool-Malone, J., Drabick, J., Gilbert, R.A., Heller, R., Jaroszeski, M.J. and Malone, R.W. (2000) Theory and in vivo application of electroporative gene delivery. Molecular Therapy 2, 178–187.

    CAS  Google Scholar 

  • Sorokin, A.P., Ke, X.Y., Chen, D.F. and Elliott, N.C. (2000) Production of fertile transgenic plants via tissue electroporation. Plant Science 156, 227–233.

    CAS  Google Scholar 

  • Sukharev, S.I., Klenchin, V.A., Serov, S.M., Chernomordik, L.V. and Chizmadzhev Y.A. (1992) Electroporation and electrphoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophysical Journal 63, 1320–1327.

    CAS  Google Scholar 

  • Sowers, A.E (1986) A long -lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J Cell Biol 102, 1358–1362.

    CAS  Google Scholar 

  • Suga M., Goto, A. and Hatakeyama, T. (2007) Electrically induced protein release from Schizosaccharomyces pombe cells in a hyperosmotic condition during and following a high electropulsation. Journal of Bioscience and Bioengineering 103, 298–302.

    CAS  Google Scholar 

  • Susil, R., emrov, D. and Miklavčič, D. (1998) Electric field induced transmembrane potential depends on cell density and organization. Electro- and Magnetobiology 17, 391–399.

    Google Scholar 

  • Stenger, D.A.and Hui, S.W. (1986) Kinetics of ultrastructural changes during electrically-induced fusion of human erythrocytes. The Journal of Membrane Biology 93, 43–53.

    CAS  Google Scholar 

  • Stopper, H., Jones, H. and Zimmermann, U. (1987) Large scale transfection of mouse L-cells by electropermeabilization. Biochimica. et Biophysica Acta 900, 38–44.

    CAS  Google Scholar 

  • atkauskas, S., Bureau, M.F., Puc, M., Mahfoudi, A., Scherman, D., Miklavčič, D. and Mir, L.M. (2002) Mechanisms of in vivo DNA electro transfer, Respective contributions of cell electropermeabilization and DNA electrophoresis. Molecular Therapy 5, 1–8.

    Google Scholar 

  • atkauskas, S., Andre, F., Bureau, M.F., Scherman, D., Miklavčič, D. and Mir, L.M. (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electro transfer. Human Gene Therapy 16, 1194–1201.

    Google Scholar 

  • el, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L.M. and Miklavčič D. (2005) Sequential finite element model of tissue electropermeabilization. IEEE Transections on biomedical engineering 52, 816–827.

    Google Scholar 

  • el, D., Maček-Lebar, A. and Miklavčič D. (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Transections on biomedical engineering 54, 773–781.

    Google Scholar 

  • emrov, D. and Miklavčič, D. (1998) Calculation of the electrical parameters in electrochemotherapy of solid tumours in mice. Computers in Biology and Medicine 28, 439–448.

    Google Scholar 

  • emrov, D. and Miklavčič, D. (2000) Numerical modeling for in vivo electroporation. In: M.J. Jaroszeski, R. Heller and R. Gilbert (Eds.), Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery, Electrically Mediated Delivery of Molecules to Cells, Methods in Molecular Medicine, 37, Humana Press, New Jersy, pp. 63–81.

    Google Scholar 

  • Teissié, J. (1988) Effects of electric fields and currents on living cells and their potential use in biotechnology: a survey. Bioelectrochemistry and Bioenergetics 20, 133–142.

    Google Scholar 

  • Teissié, J., Knutson, V.P., Tsong T.Y. and Lane M.D. (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216, 537–538.

    Google Scholar 

  • Teissié, J., and Rols, M.P. (1986) Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochemical and Biophyscal Research Communications 140, 258–266.

    Google Scholar 

  • Teissié, J. and Conte, P. (1988 a) Electrofusion of large volumes of cells in culture. Part I Anchorage-dependant strains. Bioelectrochemistry and Bioenergetics 19, 49–57.

    Google Scholar 

  • Teissié, J. and Rols, M.P. (1988 b) Electerofusion of large volumes of cell culture. Part II. Cells growing in suspension. Bioelectrochemistry and Bioenergetics 19, 59–66.

    Google Scholar 

  • Teissié, J. and Rols, M.P. (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal 65, 409–413.

    Google Scholar 

  • Teissié, J. and Rols, M.P., (1994) Manipulation of the cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Annals New York Academy of Sciences USA 720, 98–109.

    Google Scholar 

  • Teissié, J. and Ramos, C. (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenecy in cell membrane Biophysical Journal 74, 1889–1898.

    Google Scholar 

  • Teissié, J., Eynard, N., Gabriel, B. and Rols, M.P. (1999) Electropermeabilization of cell membranes. Advanced drug Delivery Reviews 35, 3–19.

    Google Scholar 

  • Teissié, J., Eynard, N., Vernhes, M.C., Benichou, A., Ganeva, V., Galutzov, B. and Cabanes, P.A. (2002) Recent biotechnological developments of electropulsation: A prospective review. Bioelectrochemistry 55, 107–112.

    Google Scholar 

  • Tekle, Astumian, R.D. and Chock, P.B. (1990) Electro-permeabilization of cell membranes: effect of resting membrane potential. Biochemical and Biophysical Research Communications 172, 282–287.

    CAS  Google Scholar 

  • Tekle, Astumian, R.D. and Chock, P.B. (1991) Electroporation by using bipolar oscillating electric field: and improved method for DNA transfection of NIH 3T3 cells. Proceedings of the National Academy of Sciences of the United States of America 88, 4230–4234.

    CAS  Google Scholar 

  • Trevors, J.T., Chassy, B.M., Dower, W.J. and Blaschek, H.P. 1992 Electrotransformation of bacteria by plasmid DNA. In: D.C.Chang, B.M. Chassy, J.A. Saunders and A.E. Sowers (Eds), Guide to Electroporation and Electrofusion, Academic Press, San Diego, pp. 265–290.

    Google Scholar 

  • Tryfona, T. and Bustard, M.T. (2005) Enhancement of bimolecular transport by electroporation: A review of theory and potential application to transformation of Corynobacterium glutamicum. Biotechnology and Bioengineering 93, 413–423.

    Google Scholar 

  • Tsong, T.Y. (1991) Electroporation of cell membranes. Biophysical Journal 60, 297–306.

    CAS  Google Scholar 

  • Uemura, K. and Isobe, S. (2002) Developing a new apparatus for inactivating Escherichia coli in saline water with high electric field AC. Journal of Food Engineering 53, 203–207.

    Google Scholar 

  • Valič, B., Golzio, M., Pavlin, M., Schatz, A., Faurie, C., Gabriel, B., Teissié, J., Rols, M.P., and Miklavčič, D. (2003) Effects of electric field induced transmembrane potential on spheroidal cells: theory and experiment. European Biophysics Journal 32, 519–528.

    Google Scholar 

  • Valič, B., Pavlin, M. and Miklavčič, D. (2004) The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochemistry 63, 311–315.

    Google Scholar 

  • Vanisree, M., Lee, C.Y., Lo, S.F., Nalawade, S.M., Lin, C.Y., and Tsay, H.S. (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot. Bull. Acad. Sin. 45, 1–22.

    CAS  Google Scholar 

  • Van der Rest, M.E., Lange, C. and Molenaar, D. (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogenic plasmid DNA. App Microbiol Biotechnol 52, 541–545.

    Google Scholar 

  • Velizarov, S. and Berg, H. (1998a) Electropermeabilization and electrofusion of human lymphoma cells modified by proteolytic enzymes. Bioelectrochemistry 46, 263–265,

    CAS  Google Scholar 

  • Velizarov, S., Reitz, M., Gluck, B. and Berg H. (1998b) Electropermeabilization and electrofusion of human cells modified by anesthetic agents. Bioelectrochemistry 47, 89–96.

    CAS  Google Scholar 

  • Vernhes, M.C., Cabanes, P.A. and Teissié, J. (1999) Chinese hamster ovary cell sensitivity to localized electrical stresses. Bioelectrochemistry and Bioenergetics 48, 17–25.

    CAS  Google Scholar 

  • Vienken, J. and Zimmermann, U. (1985) An improved electrofusion technique for production of mouse hybridoma cells. FEBS Letters 182, 278–280.

    CAS  Google Scholar 

  • Wang, X., Hones, I. and Berg, H. (1998) Uptake of sensitizer by electroporated yeast cells. Bioelectrochemistry and bioenergetics 47, 175–177.

    CAS  Google Scholar 

  • Wards, B.J. and Collins, D.M. (1996) Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiology Letters 145, 101-105.

    CAS  Google Scholar 

  • Walden, R. and Wingender, R. (1995) Gene transfer and plant regeneration techniques, TIBTECH 13, 324–331.

    CAS  Google Scholar 

  • Weaver, J.C. and Chizmadzhev, Y.A. (1996) Theory of electroporation. Bioelectrochemistry and Bioenergetics 41, 135–160.

    CAS  Google Scholar 

  • Wolf, H., Rols, M.P., Boldt, E., Neumann, E. and Teissié J. (1994) Control by pulse parameters of electric field mediated gene transfer in mammalian cells. Biophysical Journal 66, 524–531.

    CAS  Google Scholar 

  • Wu, F.S. and Feng, T.Y. (1999) Delivery of plasmid DNA into intact plant cells by electroporation of plamolysed cells. Plant Cell Reports 18, 381–386.

    CAS  Google Scholar 

  • Wu, Y., Montes, J.G. and Sjodin, R.A. (1992) Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of the pulse-first and contact-first protocols. Biophysical Journal 61, 810–815.

    CAS  Google Scholar 

  • Xie, T.D., Sun, L. and Tsong, T.Y. (1990) Study of mechanisms of electric field-induced DNA transfection. I DNA entry by surface binding and diffusion through membrane pores. Biophysical Journal 58, 13–19.

    CAS  Google Scholar 

  • Xie, T.D. and Tsong, T.Y. (1992) Study of mechanisms of electric field-induced DNA transfection. II Electric parameters and other conditions for effective transfection. Biophysical Journal 63, 28–34.

    CAS  Google Scholar 

  • Xie, T.D., Sun, L., Zhao, H.G., Fuchs, J.A. and Tsong, T.Y. (1992) Study of mechanisms of electric field-induced DNA transfection. IV Effects of DNA topology on cell uptake and transfection efficiency. Biophysical Journal 63, 1026–1031.

    CAS  Google Scholar 

  • Xue, G.P., Johnson, J.S. and Dalrymple, B.P. (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacilus subtilis and Bacillus licheniformis. Journal of Microbiological Methods 34, 183–191.

    CAS  Google Scholar 

  • Yang, R.Y.K. and Bayraktar, H.T.P. (2003) Plant cell bioreactors with simultaneous electropermeabilization and electrophoresis. Journal of Biotechnology 100, 13–22.

    CAS  Google Scholar 

  • Zaharoff, D.A., Barr, R.C., Li, C.Y. and Yuan, F. (2002) Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Therapy 9, 1286–1290.

    CAS  Google Scholar 

  • Zaharoff, D.A. and Yuan, F. (2004) Effects of pulse strength and pulse duration on in vivo DNA electromobility. Bioelectrochemistry 62, 37–45.

    CAS  Google Scholar 

  • Zampaglione, I, Arcuri, M., Cappelletti, M., Perretta, G., Nicosia, A., La Monica, N. and Fattori, E. (2005) In vivo DNA gene electro-transfer, a systematic analysis of different electrical parameters. The Journal of Gene Medicine 7, 1475–1481.

    CAS  Google Scholar 

  • Zhang, Q., Barosa-Canovas, V. and Swanson, B.G. (1995) Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering 25, 261–281.

    Google Scholar 

  • Zhou, A., Liu, M., Baciu, C., Gluck, B. and Berg, H. (2000) Membrane electroporation increases photodynamic effects. Journal of Electroanalytical Chemistry 486, 220–224.

    CAS  Google Scholar 

  • Zimmermann, U. (1982) Electric field-mediated fusion and related electrical phenomena. Biochimica et Biophysica Acta 696, 227–277.

    Google Scholar 

  • upanič, A., Ribarič, S. and Miklavčič, D. (2007) Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma 54, 246–250.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank mag. Selma Čorović for preparation of the figures, Dr. Alenka Maček-Lebar and Ane upanič for their useful comments. The work was financially supported by Slovenian Research Agency (ARRS ).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kandušer, M., Miklavčič, D. (2009). Electroporation in Biological Cell and Tissue: An Overview. In: Electrotechnologies for Extraction from Food Plants and Biomaterials. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79374-0_1

Download citation

Publish with us

Policies and ethics