Skip to main content

Viewing Zones of IP and Other Multi-view Image Methods

  • Chapter
  • First Online:
Three-dimensional Imaging, Visualization, and Display

Abstract

Multi-view, three-dimensional imaging methods use a different set of view images (multi-view) to create three-dimensional images. In these methods, the images can be projected with an array of projectors (projection type) or displayed on a display panel (contact type). However, the methods are basically based on both binocular and motion parallaxes as their depth cue. For the parallaxes, the viewing zone should be divided into many viewing regions and each of these regions allows viewers to perceive an individual view image or a mixed image composed of parts from more than two different view images in a multi-view image set. The number of viewing regions and the composition of the image at each of the regions can be predicted by the number of different view images in the multi-view image and of pixels in a pixel cell. When the pixel cell is composed of non-integer number pixels, more regions are created than an integer number and the compositions become more complicated. This is because a number of pixel cells are involved in defining the viewing regions.

In this chapter, the viewing zones for the multi-view 3-D imaging systems are analyzed and the image’s composition at each viewing region of the zone is defined. For the contact type, the analysis is extended for both integer and non-integer number pixels in the pixel cell, and it is shown that the depth cues in IP are parallaxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for Displaying 3 Dimensional Images” (Invited Paper), Proceedings of the IEEE, Special Issue on: 3-D Technologies for Imaging & Display, Vol. 94, No. 3, pp 502–523, 2006

    Google Scholar 

  2. J.-Y. Son and B. Javidi, “3-Dimensional Imaging Systems Based on Multiview Images,” (Invited Paper), IEEE/OSA. J. Display Technol., Vol. 1, No. 1, pp 125–140, 2005

    Google Scholar 

  3. Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular Accommodation by Super Multi-View Stereogram and 45-View Stereoscopic Display,” IDW’96, Proceedings of the 11th International Display Workshops, pp 489–492, 1996

    Google Scholar 

  4. J.-Y. Son, V. G. Komar, Y.-S. Chun, S. Sabo, V. Mayorov, L. Balasny, S. Belyaev, M. Semin, M. Krutik, and H.-W. Jeon, “A Multiview 3 Dimensional Imaging System With Full Color Capabilities," SPIE Proc., Vol. 3295A, pp. 218–225, 1998.

    Article  ADS  Google Scholar 

  5. J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for Designing Autostereoscopic Imaging Systems Based on Lenticular, Parallax Barrier and IP Plates,” Opt. Eng., V 42, No. 11, pp 3326–3333, 2003

    Google Scholar 

  6. J.-Y. Son, V. V. Saveljev, M.-C. Park, and S.-W. Kim, “Viewing Zones in PLS Based Multiview 3 Dimensional Imaging Systems,” IEEE/OSA J. Display Technol., Vol. 4, No. 1, pp 109–114, 2008.

    Google Scholar 

  7. J.-Y. Son, V. V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, “Viewing Zones in 3-D Imaging Systems Based on Lenticular, Parallax Barrier and Microlens Array Plates", Appl. Opt., Vol. 43, No. 26, 4985–4992, 2004 (Appl. Opt. Cover)

    Article  ADS  Google Scholar 

  8. R. Boerner, “Three Autostereoscopic 1.25m Diagonal Rear Projection Systems with Tracking Feature,” IDW’97 Proc. pp. 835–838, Japan, 1997

    Google Scholar 

  9. G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer Tracking Autostereoscopic 3D Display Systems,” Proc. of SPIE, Vol. 3012, pp 187–198, 1997

    Article  ADS  Google Scholar 

  10. J.-Y. Son, “Autostereoscopic Imaging System Based on Special Optical Plates" in Three-Dimensional Television, Video, and Display Technology, B. Javidi and F. Okano (eds.), Springer-Verlag, New-York, 2002

    Google Scholar 

  11. M. C. Forman, N. Davies, and M. McCormick, “Continuous Parallax in Discrete Pixelated Integral Three-Dimensional Displays," J. Opt. Soc. Am. A, Vol. 20, No. 3, pp 411–420, 2003

    Article  ADS  Google Scholar 

  12. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Multifacet Structure of Observed Reconstructed Integral Imaging,” J. Opt. Soc. Am. A, Vol. 22, No. 4, pp 597–603, 2005

    Article  ADS  Google Scholar 

  13. J. S. Jang and B. Javidi, "Large Depth-of-Focus Time-Multiplexed Three-Dimensional Integral Imaging by Use of Lenslets with Nonuniform Focal Lengths and Aperture Sizes," Opt. Lett., Vol. 28, No. 20, pp 1924–1926, 2003.

    Article  ADS  Google Scholar 

  14. F. Okano, H. Hosino, J. Arai, M. Yamada, and I. Yuyama, “Three Dimensional Television System Based on Integral Photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano (eds.), Springer, Berlin, Germany, 2002

    Google Scholar 

  15. http://www.Projectorpeople.com

  16. S. S. Kim, V. Saveljev, E. F. Pen, and J. Y. Son, "Optical Design and Analysis for Super-Multiview Three-Dimensional Imaging Systems," SPIE Proc., Vol. 4297, pp 222–226, January 20–26, San Jose, 2001

    Article  ADS  Google Scholar 

  17. Y. Takaki and H. Nakanuma, “Improvement of Multiple Imaging System Used for Natural 3D Display Which Generates High-Density Directional Images,” Proc. SPIE, Vol. 5243, 2003, pp 43–49

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Young Son .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Son, JY. (2009). Viewing Zones of IP and Other Multi-view Image Methods. In: Javidi, B., Okano, F., Son, JY. (eds) Three-dimensional Imaging, Visualization, and Display. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79335-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79335-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79334-4

  • Online ISBN: 978-0-387-79335-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics