Skip to main content

Effect of Pickup Position Uncertainty in Three-Dimensional Computational Integral Imaging

  • Chapter
  • First Online:
Three-dimensional Imaging, Visualization, and Display

Abstract

This chapter will review the relevant investigations analyzing the performance of Integral Imaging (II) technique under pickup position uncertainty. Theoretical and simulation results for the sensitivity of Synthetic Aperture Integral Imaging (SAII) to the accuracy of pickup position measurements are provided. SAII is a passive three-dimensional, multi-view imaging technique that, unlike digital holography, operates under incoherent or natural illumination. In practical SAII applications, there is always an uncertainty associated with the position at which each sensor captures the elemental image. In this chapter, we theoretically analyze and quantify image degradation due to measurements’ uncertainty in terms of Mean Square Error (MSE) metric. Experimental results are also presented that support the theory. We show that in SAII, with a given uncertainty in the sensor locations, the high spatial frequency content of the 3-D reconstructed images are most degraded. We also show an inverse relationship between the reconstruction distance and degradation metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benton S A (2001) Selected Papers on Three-Dimensional Displays. SPIE Optical Engineering Press, Bellingham, WA

    Google Scholar 

  2. Javidi B, Okano F (2002) Three Dimensional Television, Video, and Display Technologies. Springer, Berlin

    Google Scholar 

  3. Okoshi T (1976) Three-Dimensional Imaging Technique. Academic Press, New York

    Google Scholar 

  4. Javidi B, Hong S H, Matoba O (2006) Multi dimensional optical sensors and imaging systems. Appl. Opt. 45:2986–2994

    Article  ADS  Google Scholar 

  5. Levoy M (2006) Light fields and computational imaging. IEEE Comput. 39(8):46–55

    Article  Google Scholar 

  6. Lippmann M G (1908) Epreuves reversibles donnant la sensation durelief. J. Phys. 7:821–825

    Google Scholar 

  7. Dudnikov Y A (1974) On the design of a scheme for producing integral photographs by a combination method. Sov. J. Opt. Technol. 41:426–429

    Google Scholar 

  8. Ives H E (1931) Optical properties of a Lippmann lenticuled sheet. J. Opt. Soc. Am. 21:171–176

    Article  ADS  Google Scholar 

  9. Sokolov P (1911) Autostereoscpy and Integral Photography by Professor Lippmann’s Method. Moscow State Univ. Press, Moscow, Russia

    Google Scholar 

  10. Okano F, Hoshino H, Arai J et al (1997) Real time pickup method for a three dimensional image based on integral photography. Appl. Opt. 36:1598–1603

    Article  ADS  Google Scholar 

  11. Stern A, Javidi B (2006) Three-dimensional image sensing, visualization, and processing using integral imaging. Proc. IEEE 94:591–607

    Article  Google Scholar 

  12. Wilburn B, Joshi N, Vaish V, Barth A et al (2005) High performance imaging using large camera arrays. Proc. ACM 24:765–776

    Article  Google Scholar 

  13. Jang J S, Javidi B (2002) Three-dimensional synthetic aperture integral imaging. Opt. Lett. 27:1144–1146

    Article  ADS  Google Scholar 

  14. Burckhardt B (1968) Optimum parameters and resolution limitation of integral photography. J. Opt. Soc. Am. 58:71–76

    Article  ADS  Google Scholar 

  15. Hoshino H, Okano F, Isono H et al (1998) Analysis of resolution limitation of integral photography. J. Opt. Soc. Am. A 15:2059–2065

    Article  ADS  Google Scholar 

  16. Wilburn B, Joshi N, Vaish V et al (2005) High performance imaging using large camera arrays. ACM Trans. Graph. 24(3): 765–776

    Article  Google Scholar 

  17. Hong S H, Jang J S, Javidi B (2004) Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Express 12:483–491

    Article  ADS  Google Scholar 

  18. Stern A, Javidi B (2003) 3-D computational synthetic aperture integral imaging (COMPSAII). Opt. Express 11:2446–2451

    Article  ADS  Google Scholar 

  19. Igarishi Y, Murata H, Ueda M (1978) 3-D display system using a computer-generated integral photograph,. Jpn. J. Appl. Phys. 17:1683–1684

    Article  ADS  Google Scholar 

  20. Erdmann L, Gabriel K J (2001) High resolution digital photography by use of a scanning microlens array. Appl. Opt. 40:5592–5599

    Article  ADS  Google Scholar 

  21. Kishk S, Javidi B (2003) Improved resolution 3-D object sensing and recognition using time multiplexed computational integral imaging. Opt. Express 11:3528–3541

    Article  ADS  Google Scholar 

  22. Martínez-Cuenca R, Saavedra G, Martinez-Corral M et al (2004) Enhanced depth of field integral imaging with sensor resolution constraints. Opt. Express 12:5237–5242

    Article  ADS  Google Scholar 

  23. Jang J S, Javidi B (2002) Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Opt. Lett. 27:324–326

    Article  ADS  Google Scholar 

  24. Hong J, Park J H, Jung S et al (2004) Depth-enhanced integral imaging by use of optical path control. Opt. Lett. 29:1790–1792.

    Article  ADS  Google Scholar 

  25. Min S W, Kim J, Lee B (2004) Wide-viewing projection-type integral imaging system with an embossed screen. Opt. Lett. 29:2420–2422

    Article  ADS  Google Scholar 

  26. Martínez-Corral M, Javidi B, Martínez-Cuenca R et al (2004) Integral imaging with improved depth of field by use of amplitude modulated microlens array. Appl. Opt. 43:5806–5813

    Article  ADS  Google Scholar 

  27. Hwang Y S, Hong S H, Javidi B (2007) Free view 3-D visualization of occluded objects by using computational synthetic aperture integral imaging. J. Display Technol 3:64–70

    Article  ADS  Google Scholar 

  28. Yeom S, Javidi B, Watson E (2005) Photon counting passive 3-D image sensing for automatic target recognition. Opt. Express 13:9310–9330

    Article  ADS  Google Scholar 

  29. Frauel Y, Javidi B (2002) Digital three-dimensional image correlation by use of computer-reconstructed integral imaging. Appl. Opt. 41:5488–5496

    Article  ADS  Google Scholar 

  30. Tavakoli B, Danesh Panah M, Javidi B et al (2007) Performance of 3-D integral imaging with position uncertainty. Opt. Express 15:11889–11902

    Article  ADS  Google Scholar 

  31. Mukhopadhyay N (2000) Probability and Statistical Inference. Marcel Dekker, Inc. New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Javidi .

Editor information

Editors and Affiliations

Appendix

Appendix

The error spectrum follows the expression (5.18). Note that in the Eq. (5.18) only Δp has a random nature. Thus, the expected value for the error spectrum depends on the behavior of this variable, i.e., the distribution governing the spatial dislocation of the sensors during pickup.

$$\begin{aligned} \left| {Err({\bf{f}},z)} \right|^2 & = \frac{1}{{R^4 }}\left| {\sum\limits_i^{K \times K} {{\bf{\tilde I}}_i (1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} )} } \right|^2 \\ & = \frac{1}{{R^4 }}\left[ {\sum\limits_i^{K \times K} {\sum\limits_j^{K \times K} {{\tilde{\bf I}}_i {\tilde{\bf I}}_j^{\ast} (1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} )(1 - e^{ + jf_x \frac{{\Delta p_j }}{M}} )} } } \right]. \end{aligned}$$
((5.18))

Since expectation is a linear operator, one can break down the error expectation as follows:

$$\begin{aligned} E\left\{ {\left| {Err({\bf{f}},z)} \right|^2 } \right\} & = \frac{1}{{R^4 }}\left[ {\sum\limits_i^{K \times K} {\sum\limits_j^{K \times K} {{\tilde{\bf I}}_i {\tilde{\bf I}}_j^{\ast} E\left\{ {(1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} )(1 - e^{ + jf_x \frac{{\Delta p_j }}{M}} } \right\}} } } \right] \\ & = \frac{1}{{R^4 }}\left[ {\sum\limits_i^{K \times K} {\sum\limits_i^{K \times K} {{\tilde{\bf I}}_i {\tilde{\bf I}}_i^{\ast} E\left\{ {2 - e^{ - jf_x \frac{{\Delta p_i }}{M}} - e^{ + jf_x \frac{{\Delta p_i }}{M}} } \right\}} } } \right] + ... \\ & \quad\ \frac{1}{{R^4 }}\left[ {\sum\limits_{i \ne j}^{K \times K} {\sum\limits_{j \ne i}^{K \times K} {{\tilde{\bf I}}_i {\tilde{\bf I}}_j^{\ast} E\left\{ {(1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} )(1 - e^{ + jf_x \frac{{\Delta p_j }}{M}} )} \right\}} } } \right]{\rm{ }} \end{aligned}$$
((5.19))

Now, let \(\gamma = E\left\{ {\exp ( - jf_x \Delta p/M)} \right\}\) which is the moment generating function of random variable Δp [31]. Equation (5.19) reduces to:

$$\begin{aligned} E\left\{ {\left| {Err({\bf{f}},z)} \right|^2 } \right\} & = \frac{1}{{R^4 }}\left[ {\sum\limits_i^{K \times K} {\sum\limits_i^{K \times K} {{\tilde{\bf I}}_i {\tilde{\bf I}}_i^{\ast} (2 - \gamma - \gamma ^{\ast} )} } } \right] + \\ & \quad\ \frac{1}{{R^4 }}\left[ {\sum\limits_{i \ne j}^{K \times K} {\sum\limits_{j \ne i}^{K \times K} {{\tilde{\bf I}}_i {\tilde{\bf I}}_j^{\ast} E\left\{ {(1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} )(1 - e^{ + jf_x \frac{{\Delta p_j }}{M}} )} \right\}} } } \right] \end{aligned}.$$
((5.20))

Note that ∆p i denotes the sensor location error associated with ith sensor which is a random variable and the expected value of the random variable or a function of the random variable is constant which can come outside of the summation. In addition the sensor location errors are assumed to be independent, thus we have:

$$\begin{aligned} E\left\{ {(1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} )(1 - e^{ + jf_x \frac{{\Delta p_j }}{M}} )} \right\} & = E\left\{ {1 - e^{ - jf_x \frac{{\Delta p_i }}{M}} } \right\}E\left\{ {1 - e^{ + jf_x \frac{{\Delta p_j }}{M}} } \right\} \\ & = (1 - \gamma )(1 - \gamma ^{\ast} ) = \left| {1 - \gamma } \right|^2. \\ \end{aligned}$$
((5.21))

Consequently, the error spectrum expectation can be written as in Eq. (5.9).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DaneshPanah, M., Tavakoli, B., Javidi, B., Watson, E.A. (2009). Effect of Pickup Position Uncertainty in Three-Dimensional Computational Integral Imaging. In: Javidi, B., Okano, F., Son, JY. (eds) Three-dimensional Imaging, Visualization, and Display. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79335-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79335-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79334-4

  • Online ISBN: 978-0-387-79335-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics