3-D to 2-D Convertible Displays Using Liquid Crystal Devices



Three-dimensional (3-D)/two-dimensional (2-D) convertibility is an important factor in developing 3-D displays for wide commercialization. In this chapter we review current 3-D/2-D convertible display technologies that use liquid crystal devices. These technologies include the parallax barrier method, the lenticular lens method and integral imaging.


Liquid Crystal Integral Imaging Optical Barrier Point Light Source Lens Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Korea Science and Engineering Foundation and the Ministry of Education, Science and Technology of Korea through the National Creative Research Initiative Program (#R16-2007-030-01001-0).


  1. [1]
    A. Jacobs, J. Mather, R. Winlow, D. Montgomery, G. Jones, M. Willis, M. Tillin, L. Hill, M. Khazova, H. Stevenson, and G. Bourhill, “2-D/3-D switchable displays,” Sharp Technical Journal, no. 4, 2003. http://www.sharp-world.com/corporate/info/rd/tj4/4-2-3.html
  2. [2]
    H. Kang, M. K. Jang, K.J. Kim, B.C. Ahn, S. D. Yeo, T. S. Park, J. W. Jang, K. I. Lee, and S. T. Kim, “The development of 42" 2-D/3-D switchable display,” Proc. of The 6th International Meeting on Information Display and The 5th International Display Manufacturing Conference (IMID/IDMC 2006), Daegu, Korea, Aug. 2006, pp. 1311–1313.Google Scholar
  3. [3]
    H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J.S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” Society for Information Display 2006 International Symposium, San Francisco, CA, USA, June 2006, vol. 37, book 1, pp. 81–84.Google Scholar
  4. [4]
    D.-S. Kim, S. D. Se, K. H. Cha, and J. P. Ku, “2-D/3-D compatible display by autostereoscopy,” Proc. of the K-IDS Three-Dimensional Display Workshop, Seoul, Korea, Aug. 2006, pp. 17–22.Google Scholar
  5. [5]
    G. J. Woodgate and J. Harrold, “A new architecture for high resolution autostereoscopic 2-D/3-D displays using free-standing liquid crystal microlenses,” Society for Information Display 2005 International Symposium, vol. 36, 2005, pp. 378–381.Google Scholar
  6. [6]
    J. Harrold, D. J. Wilkes, and G. J. Woodgate, “Switchable 2-D/3-D display – solid phase liquid crystal microlens array,” Proc. of International Display Workshops, Niigata, Japan, Dec. 2004, pp. 1495–1496.Google Scholar
  7. [7]
    S. T. de Zwart, W. L. IJzerman, T. Dekker, and W. A. M. Wolter, “A 20-in. switchable auto-stereoscopic 2-D/3-D display,” Proc. of International Display Workshops, Niigata, Japan, Dec. 2004, pp. 1459–1460.Google Scholar
  8. [8]
    O. H. Willemsen, S. T. de Zwart, M. G. H. Hiddink, and O. Willemsen, “2-D/3-D switchable displays,” Journal of the Society for Information Display, vol. 14, no. 8, pp. 715–722, 2006.CrossRefGoogle Scholar
  9. [9]
    M. G. H. Hiddink, S. T. de Zwart, and O. H. Willemsen, “Locally switchable 3-D displays,” Society for Information Display 2006 International Symposium, San Francisco, CA, USA, June 2006, vol. 37, book 2, pp. 1142–1145.Google Scholar
  10. [10]
    B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display (edited by T.-C. Poon), Springer, New York, USA, 2006, Chapter 12, pp. 333–378.CrossRefGoogle Scholar
  11. [11]
    A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. of the IEEE, vol. 94, no. 3, pp. 591–607, 2006.CrossRefGoogle Scholar
  12. [12]
    J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Applied Optics, vol. 45, no. 8, pp. 1704–1712, 2006.ADSCrossRefGoogle Scholar
  13. [13]
    T. Koike, M. Oikawa, K. Utsugi, M. Kobayashi, and M. Yamasaki, “Autostereoscopic display with 60 ray directions using LCD with optimized color filter layout,” Stereoscopic Displays and Applications XVIII, Electronic Imaging, Proc. SPIE, vol. 6490, Paper 64900T, pp. 64900T-1–64900T-9, San Jose, CA, USA, Jan. 2007.Google Scholar
  14. [14]
  15. [15]
    J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Optics Letters, vol. 29, no. 23, pp. 2734–2736, 2004.ADSCrossRefGoogle Scholar
  16. [16]
    J.-Y. Son, Y.-J. Choi, J.-E. Ban, V. Savelief, and E. F. Pen, “Multi-view image display system,” U. S. Patent No. 6,606,078, Aug. 2003.Google Scholar
  17. [17]
    J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Optics Express, vol. 13, no. 6, pp. 1875–1884, 2005.ADSCrossRefGoogle Scholar
  18. [18]
    S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Optics Letters, vol. 31, no. 19, pp. 2852–2854, 2006.ADSCrossRefGoogle Scholar
  19. [19]
    H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3-D-2-D convertible integral imaging system using a pinhole array on a polarizer,” Optics Express, vol. 14, no. 12, pp. 5183–5190, 2006.ADSCrossRefGoogle Scholar
  20. [20]
    H. Choi, Y. Kim, S.-W. Cho, and B. Lee, “A 3-D/2-D convertible display with pinhole array on a LC panel,” Proc. of the 13th International Display Workshops, Otsu, Japan, vol. 2, Dec. 2006, pp. 1361–1364.Google Scholar
  21. [21]
    Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Applied Optics, vol. 46, no. 29, pp. 7149–7154, 2007. Google Scholar
  22. [22]
    H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3-D/2-D convertible display system using two display devices and a lens array,” Optics Express, vol. 13, no. 21, pp. 8424–8432, 2005.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Electrical EngineeringSeoul National UniversityRepublic of Korea

Personalised recommendations