Imaging 3-D Objects by Extending the Depth of Focus in Digital Holography

  • Pietro Ferraro
  • Simonetta Grilli
  • Giuseppe Coppola
  • Sergio De Nicola


Digital holography is an imaging technique offering both sub-wavelength resolution and real-time capabilities to record 3-D objects using the interference between an object wave and a reference wave captured by an image sensor such as a CCD array. The basic advantage of digital holography is that it can quantitatively extract the three-dimensional (3-D) information of the object from the numerical reconstruction of a single digitally recorded hologram [1,2,3]. Since the information of the optically interfering waves is stored in the form of matrices, the numerical reconstruction process enables full digital processing of the holograms and offers many more possibilities than conventional optical processing. It is possible to numerically focus on any section of the 3-D volume object without mechanical focusing adjustment. This opens the field to a variety applications, such as 3-D microscopic investigations and real-time imaging of biological specimens where...


Reconstruction Process Reference Wave Angular Spectrum Object Wave Digital Holography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    L. Yaroslavsky and M. Eden, Fundamentals of Digital Optics, (BirkhŠuser, Boston, 1996).MATHGoogle Scholar
  2. [2]
    O. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).ADSCrossRefGoogle Scholar
  3. [3]
    T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771–778 (2002).ADSCrossRefGoogle Scholar
  4. [4]
    M. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305–310 (2000).
  5. [5]
    Y. Takaki and H. Ohzu, “Hybrid holographic microscopy: visualization of three-dimensional object information by use of viewing angles,” Appl. Opt. 39, 5302–5308 (2000).ADSCrossRefGoogle Scholar
  6. [6]
    T.C. Poon, K.B. Doh, and B.W. Schilling, “Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338–1344 (1995).ADSCrossRefGoogle Scholar
  7. [7]
    P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital hologram,” Opt. Lett. 29, 854–856 (2004).ADSCrossRefGoogle Scholar
  8. [8]
    T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221–1223 (1998).ADSCrossRefGoogle Scholar
  9. [9]
    D. Leserberg and C. Frère, “Computer generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020–3024 (1988)ADSCrossRefGoogle Scholar
  10. [10]
    N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier approach,” J. Opt. Soc. A. 15, 857–867 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    L. Yu, Y. An, and L. Cai, “Numerical reconstruction of digital holograms with variable viewing angles,” Opt. Express 10, 1250–1257(2002)
  12. [12]
    K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. A. 20, 1755–1762 (2003).ADSCrossRefGoogle Scholar
  13. [13]
    S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt. Express 13, 9935–9940 (2005)
  14. [14]
    E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).ADSCrossRefGoogle Scholar
  15. [15]
    P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography," Opt. Express 13, 6738–6749 (2005) Google Scholar
  16. [16]
    S. E. Fraser, “Crystal gazing in optical microscopy,” Nat. Bio. 21, 1272–1273 (2003)CrossRefGoogle Scholar
  17. [17]
    L. Mertz, “Transformation in Optics,” 101 (Wiley, New York, 1965).Google Scholar
  18. [18]
    J.W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).ADSCrossRefGoogle Scholar
  19. [19]
    T. H. Demetrakopoulos and R. Mitra, “Digital and optical reconstruction of images from suboptical patterns,” Appl. Opt. 13, 665–670 (1974).ADSCrossRefGoogle Scholar
  20. [20]
    L. P. Yaroslavsky, N.S. Merzlyakov, “Methods of digital holography,” (Consultants Bureau, New York, 1980).Google Scholar
  21. [21]
    D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Royal Society A 197, 454–487 (1949).MATHCrossRefGoogle Scholar
  22. [22]
    G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38 (1972).ADSCrossRefGoogle Scholar
  23. [23]
    R.J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449–1453 (1983).ADSCrossRefGoogle Scholar
  24. [24]
    For example, description of EFI capability and process in optical microscopes can be found into the web sites of two important manufacturers:; C12567BE0045ACF1/InhaltFrame/DA8E39D74AA60 C49412568B90054EDD2.
  25. [25]
    E. R.Dowski, Jr., W.T. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866 (1995).ADSCrossRefGoogle Scholar
  26. [26]
    D.L. Barton, et al. “Wavefront coded imaging system for MEMS analysis,” Presented at international Society for testing and failure analysis meeting. (Phoeneics, AZ, USA, Nov. 2002).Google Scholar
  27. [27]
    D. L. Marks, D.L. Stack, D.J. Brady, and J. Van Der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999).ADSCrossRefGoogle Scholar
  28. [28]
    S. Grilli, P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express. 9, 294–302 (2001).ADSCrossRefGoogle Scholar
  29. [29]
    U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).ADSCrossRefGoogle Scholar
  30. [30]
    S. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999)ADSCrossRefGoogle Scholar
  31. [31]
    P. Ferraro, G. Coppola, D. Alfieri, S. DeNicola, A. Finizio, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).ADSCrossRefGoogle Scholar
  32. [32]
    P. Ferraro, S. DeNicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).ADSCrossRefGoogle Scholar
  33. [33]
    G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pietro Ferraro
    • 1
  • Simonetta Grilli
  • Giuseppe Coppola
  • Sergio De Nicola
  1. 1.Istituto Nazionale di Ottica ApplicataConsiglio Nazionale delle RicercheVia Campi Flegrei 34Italy

Personalised recommendations