Skip to main content

NEW INSIGHTS INTO CLASSICAL COSTIMULATION OF CD8+ T CELL RESPONSES.

  • Chapter
  • First Online:
Crossroads between Innate and Adaptive Immunity II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 633))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bretscher, P. Cohn, M. (1970)A theory of self–nonself discrimination. Science 169, 1042–1049

    Article  Google Scholar 

  2. Lafferty, K.J. Cunningham, A.J. (1975)A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 53, 27–42

    Article  Google Scholar 

  3. Aruffo, A. Seed, B. (1987)Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci USA 84, 8573–8577

    Article  Google Scholar 

  4. Gmunder, H. Lesslauer, W. (1984)A 45-kDa human T-cell membrane glycoprotein functions in the regulation of cell proliferative responses. Eur J Biochem 142, 153–160

    Article  Google Scholar 

  5. Ledbetter, J.A. et al. (1985)Antibodies to Tp67 and Tp44 augment and sustain proliferative responses of activated T cells. J Immunol 135, 2331–2336

    Google Scholar 

  6. Moretta, A., Pantaleo, G., Lopez-Botet, M. Moretta, L. (1985)Involvement of T44 molecules in an antigen-independent pathway of T cell activation. Analysis of the correlations to the T cell antigen–receptor complex. J Exp Med 162, 823–838

    Article  Google Scholar 

  7. Weiss, A., Manger, B. Imboden, J. (1986)Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J Immunol 137, 819–825

    Google Scholar 

  8. Martin, P.J. et al. (1986)A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J Immunol 136, 3282–3287

    Google Scholar 

  9. June, C.H., Ledbetter, J.A., Lindsten, T. Thompson, C.B. (1989)Evidence for the involvement of three distinct signals in the induction of IL-2 gene expression in human T lymphocytes. J Immunol 143, 153–161

    Google Scholar 

  10. Ledbetter, J.A. et al. (1990)CD28 ligation in T-cell activation: evidence for two signal transduction pathways. Blood 75, 1531–1539

    Google Scholar 

  11. Linsley, P.S. et al. (1992)Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 176, 1595–1604

    Article  Google Scholar 

  12. Stamper, C.C. et al. (2001)Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses Nature 410, 608–611

    Article  CAS  Google Scholar 

  13. Martin, M., Schneider, H., Azouz, A. Rudd, C.E. (2001)Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 194, 1675–1681

    Article  Google Scholar 

  14. Walunas, T.L., Bakker, C.Y. Bluestone, J.A. (1996)CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183, 2541–2550

    Article  Google Scholar 

  15. Walunas, T.L. et al. (1994)CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413

    Article  Google Scholar 

  16. Hutloff, A. et al. (1999)ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266

    Article  CAS  Google Scholar 

  17. Dong, C. et al. (2001)ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101

    Article  Google Scholar 

  18. Dong, C., Temann, U.A. Flavell, R.A. (2001)Cutting edge: critical role of inducible costimulator in germinal center reactions. J Immunol 166, 3659–3662

    Google Scholar 

  19. McAdam, A.J. et al. (2001)ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105

    Article  CAS  Google Scholar 

  20. Bertram, E.M. et al. (2002)Role of ICOS versus CD28 in antiviral immunity. Eur J Immunol 32, 3376–3385

    Google Scholar 

  21. Keir, M.E., Francisco, L.M. Sharpe, A.H. (2007)PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 19, 309–314

    Article  CAS  Google Scholar 

  22. Barber, D.L. et al. (2006)Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687

    Article  CAS  Google Scholar 

  23. Petrovas, C. et al. (2007)SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood 110, 928–936

    Article  CAS  Google Scholar 

  24. Trautmann, L. et al. (2006)Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12, 1198–1202

    Article  CAS  Google Scholar 

  25. Petrovas, C. et al. (2006)PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 203, 2281–2292

    Article  CAS  Google Scholar 

  26. Day, C.L. et al. (2006)PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354

    Article  CAS  Google Scholar 

  27. Zeng, C., Wu, T., Zhen, Y., Xia, X.P. Zhao, Y. (2005)BTLA, a new inhibitory B7 family receptor with a TNFR family ligand. Cell Mol Immunol 2, 427–432

    Google Scholar 

  28. Krieg, C., Boyman, O., Fu, Y.X. Kaye, J. (2007)B and T lymphocyte attenuator regulates CD8+ T cell-intrinsic homeostasis and memory cell generation. Nat Immunol 8, 162–171

    Article  CAS  Google Scholar 

  29. Yang, S.Y., Denning, S.M., Mizuno, S., Dupont, B. Haynes, B.F. (1988)A novel activation pathway for mature thymocytes. Costimulation of CD2 (T,p50) and CD28 (T,p44) induces autocrine interleukin 2/interleukin 2 receptor-mediated cell proliferation. J Exp Med 168, 1457–1468

    Article  Google Scholar 

  30. Gross, J.A., Callas, E. Allison, J.P. (1992)Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 149, 380–388

    Google Scholar 

  31. Nelson, A.J., Hosier, S., Brady, W., Linsley, P.S. Farr, A.G. (1993)Medullary thymic epithelium expresses a ligand for CTLA4 in situ and in vitro. J Immunol 151, 2453–2461

    Google Scholar 

  32. Degermann, S., Surh, C.D., Glimcher, L.H., Sprent, J. Lo, D. (1994)B7 expression on thymic medullary epithelium correlates with epithelium-mediated deletion of V beta 5+ thymocytes. J Immunol 152, 3254–3263

    Google Scholar 

  33. McKean, D.J. et al. (2001)Maturation versus death of developing double-positive thymocytes reflects competing effects on Bcl-2 expression and can be regulated by the intensity of CD28 costimulation. J Immunol 166, 3468–3475

    Google Scholar 

  34. Cibotti, R., Punt, J.A., Dash, K.S., Sharrow, S.O. Singer, A. (1997)Surface molecules that drive T cell development in vitro in the absence of thymic epithelium and in the absence of lineage-specific signals. Immunity 6, 245–255

    Article  Google Scholar 

  35. Punt, J.A., Osborne, B.A., Takahama, Y., Sharrow, S.O. Singer, A. (1994)Negative selection of CD4+ CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J Exp Med 179, 709–713

    Article  Google Scholar 

  36. Shahinian, A. et al. (1993)Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612

    Article  Google Scholar 

  37. Tang, Q. et al. (2003)Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells. J Immunol 171, 3348–3352

    Google Scholar 

  38. Tai, X., Cowan, M., Feigenbaum, L. Singer, A. (2005)CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6, 152

    Article  CAS  Google Scholar 

  39. Walunas, T.L., Sperling, A.I., Khattri, R., Thompson, C.B. Bluestone, J.A. (1996)CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J Immunol 156, 1006–1013

    Google Scholar 

  40. Yamada, H. et al. (1985)Monoclonal antibody 9.3 and anti-CD11 antibodies define reciprocal subsets of lymphocytes. Eur J Immunol 15, 1164–1168

    Article  Google Scholar 

  41. Pellat-Deceunynck, C. et al. (1994)Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 84, 2597–2603

    Google Scholar 

  42. Kozbor, D., Moretta, A., Messner, H.A., Moretta, L. Croce, C.M. (1987)Tp44 molecules involved in antigen-independent T cell activation are expressed on human plasma cells. J Immunol 138, 4128–4132

    Google Scholar 

  43. Warrington, K.J., Vallejo, A.N., Weyand, C.M. Goronzy, J.J. (2003)CD28 loss in senescent CD4+ T cells: reversal by interleukin-12 stimulation. Blood 101, 3543–3549

    Article  CAS  Google Scholar 

  44. Effros, R.B. et al. (1994)Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29, 601–609

    Article  Google Scholar 

  45. Posnett, D.N., Sinha, R., Kabak, S. Russo, C. (1994)Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 179, 609–618

    Article  Google Scholar 

  46. Vallejo, A.N., Weyand, C.M. Goronzy, J.J. (2004)T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med 10, 119–124

    Article  CAS  Google Scholar 

  47. Inaba, K. et al. (1994)The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med 180, 1849–1860

    Article  Google Scholar 

  48. Hathcock, K.S., Laszlo, G., Pucillo, C., Linsley, P. Hodes, R.J. (1994)Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 180, 631–640

    Article  Google Scholar 

  49. Frauwirth, K.A. et al. (2002)The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777

    Article  Google Scholar 

  50. Thompson, C.B. et al. (1989)CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA 86, 1333–1337

    Article  Google Scholar 

  51. Bjorndahl, J.M., Sung, S.S., Hansen, J.A. Fu, S.M. (1989)Human T cell activation: differential response to anti-CD28 as compared to anti-CD3 monoclonal antibodies. Eur J Immunol 19, 881–887

    Article  Google Scholar 

  52. Lier, R.A., Van Brouwer, M. Aarden, L.A. (1988)Signals involved in T cell activation. T cell proliferation induced through the synergistic action of anti-CD28 and anti-CD2 monoclonal antibodies. Eur J Immunol 18, 167–172

    Article  Google Scholar 

  53. Appleman, L.J., Berezovskaya, A., Grass, I. Boussiotis, V.A. (2000)CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 164, 144–151

    Google Scholar 

  54. Appleman, L.J., Puijenbroek, A.A., van Shu, K.M., Nadler, L.M. Boussiotis, V.A. (2002)CD28 costimulation mediates down-regulation of p27kip1 and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J Immunol 168, 2729–2736

    Google Scholar 

  55. Kirchhoff, S., Muller, W.W., Li-Weber, M. Krammer, P.H. (2000)Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 30, 2765–2774

    Article  Google Scholar 

  56. Sperling, A.I. et al. (1996)CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 157, 3909–3917

    Google Scholar 

  57. Viola, A. Lanzavecchia, A. (1996)T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106

    Article  Google Scholar 

  58. Itoh, Y. Germain, R.N. (1997)Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual cytokine responses of CD4+ T cells. J Exp Med 186, 757–766

    Article  Google Scholar 

  59. Schwartz, R.H. (1990)A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356

    Article  Google Scholar 

  60. Mueller, D.L., Jenkins, M.K. Schwartz, R.H. (1989)Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7, 445–480

    Google Scholar 

  61. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. Allison, J.P. (1992)CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609

    Article  Google Scholar 

  62. Nourse, J. et al. (1994)Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372, 570–573

    Article  Google Scholar 

  63. Boise, L.H. et al. (1995)CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87–98

    Article  Google Scholar 

  64. Wu, L.X. et al. (2005)CD28 regulates the translation of Bcl-xL via the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway. J Immunol 174, 180–194

    Google Scholar 

  65. Bajenoff, M. et al. (2007)Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol 28, 346–352

    Article  CAS  Google Scholar 

  66. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. Amigorena, S. (2002)Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20, 621–667

    Article  Google Scholar 

  67. Shahinian, A. et al. (1993)Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612

    Article  Google Scholar 

  68. Suresh, M. et al. (2001)Role of CD28-B7 interactions in generation and maintenance of CD8 T cell memory. J Immunol 167, 5565–5573

    Google Scholar 

  69. McAdam, A.J., Farkash, E.A., Gewurz, B.E. Sharpe, A.H. (2000)B7 costimulation is critical for antibody class switching and CD8(+) cytotoxic T-lymphocyte generation in the host response to vesicular stomatitis virus. J Virol 74, 203–208

    Article  Google Scholar 

  70. Fuse, S. et al. (2006)CD80 and CD86 control antiviral CD8+ T-cell function and immune surveillance of murine gammaherpesvirus 68. J Virol 80, 9159–9170

    Article  CAS  Google Scholar 

  71. Lumsden, J.M., Roberts, J.M., Harris, N.L., Peach, R.J. Ronchese, F. (2000)Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J Immunol 164, 79–85

    Google Scholar 

  72. Bertram, E.M., Lau, P. Watts, T.H. (2002)Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 168, 3777–3785

    Google Scholar 

  73. Halstead, E.S., Mueller, Y.M., Altman, J.D. Katsikis, P.D. (2002)In vivo stimulation of CD137 broadens primary antiviral CD8(+) T cell responses. Nat Immunol 3, 536–541

    Article  CAS  Google Scholar 

  74. Liu, Y., Wenger, R.H., Zhao, M. Nielsen, P.J. (1997)Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med 185, 251–262

    Article  Google Scholar 

  75. Kundig, T.M. et al. (1996)Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5, 41–52

    Article  Google Scholar 

  76. Sprent, J. Surh, C.D. (2002)T cell memory. Annu Rev Immunol 20, 551–579

    Article  Google Scholar 

  77. Curtsinger, J.M., Lins, D.C. Mescher, M.F. (1998)CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C. −) to TCR/CD8 signaling in response to antigen J Immunol160, 3236–3243

    Google Scholar 

  78. Bachmann, M.F. et al. (1999)Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J Exp Med 189, 1521–1530

    Article  Google Scholar 

  79. Kim, S.K., Schluns, K.S. Lefrancois, L. (1999)Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J Immunol 163, 4125–4132

    Google Scholar 

  80. Bertram, E.M. et al. (2004)A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172, 981–988

    Google Scholar 

  81. Flynn, K. Mullbacher, A. (1996)memory alloreactive cytotoxic T cells do not require costimulation for activation in vitro. Immunol Cell Biol 74, 413–420

    Article  Google Scholar 

  82. Croft, M., Bradley, L.M. Swain, S.L. (1994)Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 152, 2675–2685

    Google Scholar 

  83. Altman, J.D. et al. (1996)Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96

    Article  Google Scholar 

  84. London, C.A., Lodge, M.P. Abbas, A.K. (2000)Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 164, 265–272

    Google Scholar 

  85. Borowski, A.B. et al. (2007)Memory CD8+ T cells require CD28 costimulation. J Immunol 179, 6494–6503

    Google Scholar 

  86. Belz, G.T. et al. (2006)Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. Eur J Immunol 36, 327–335

    Article  CAS  Google Scholar 

  87. Zammit, D.J., Cauley, L.S., Pham, Q.M. Lefrancois, L. (2005)Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570

    Article  CAS  Google Scholar 

  88. Ndejembi, M.P. et al. (2006)Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J Immunol 177, 7698–7706

    Google Scholar 

  89. Bevan, M.J. Fink, P.J. (2001)The CD8 response on autopilot. Nat Immunol 2, 381–382

    Google Scholar 

  90. Kaech, S.M. Ahmed, R. (2001)Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat Immunol 2, 415–422

    Google Scholar 

  91. Murali-Krishna, K. et al. (1998)Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187

    Article  Google Scholar 

  92. Prilliman, K.R. et al. (2002)Cutting edge: a crucial role for B7-CD28 in transmitting T help from APC to CTL. J Immunol 169, 4094–4097

    Google Scholar 

  93. Grayson, J.M., Zajac, A.J., Altman, J.D. Ahmed, R. (2000)Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J Immunol 164, 3950–3954

    Google Scholar 

  94. Schmitt, C.A. (2003)Senescence, apoptosis and therapy – cutting the lifelines of cancer. Nat Rev Cancer 3, 286–295

    Article  CAS  Google Scholar 

  95. Chen, Q.M., Liu, J. Merrett, J.B. (2000)Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347, 543–551

    Article  Google Scholar 

  96. Sasaki, M., Kumazaki, T., Takano, H., Nishiyama, M. Mitsui, Y. (2001)Senescent cells are resistant to death despite low Bcl-2 level. Mech Ageing Dev 122, 1695–1706

    Article  Google Scholar 

  97. Kim, R. (2005)Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333, 336–343

    Article  CAS  Google Scholar 

  98. Servet-Delprat, C. et al. (2000)Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 164, 1753–1760

    Google Scholar 

  99. Morrow, G., Slobedman, B., Cunningham, A.L. Abendroth, A. (2003)Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol 77, 4950–4959

    Article  CAS  Google Scholar 

  100. Chaudhry, A. et al. (2005)The Nef protein of HIV-1 induces loss of cell surface costimulatory molecules CD80 and CD86 in APCs. J Immunol 175, 4566–4574

    Google Scholar 

  101. Majumder, B. et al. (2005)Human immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escape. J Virol 79, 7990–8003

    Article  CAS  Google Scholar 

  102. Dong, H. et al. (2002)Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8, 793–800

    Google Scholar 

  103. Gabrilovich, D.I. et al. (1996)Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2, 1096–1103

    Article  Google Scholar 

  104. Gabrilovich, D. et al. (1998)Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166

    Google Scholar 

  105. Brown, J.A. et al. (2003)Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170, 1257–1266

    Google Scholar 

  106. Curiel, T.J. et al. (2003)Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9, 562–567

    Article  CAS  Google Scholar 

  107. Leach, D.R., Krummel, M.F. Allison, J.P. (1996)Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736

    Article  Google Scholar 

  108. Abrams, J.R. et al. (1999)CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 103, 1243–1252

    Article  Google Scholar 

  109. Kremer, J.M. et al. (2003)Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349, 1907–1915

    Article  Google Scholar 

  110. Genovese, M.C. et al. (2005)Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353, 1114–1123

    Article  Google Scholar 

  111. Guinan, E.C. et al. (1999)Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 340, 1704–1714

    Article  Google Scholar 

  112. Adams, A.B. et al. (2003)Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111, 1887–1895

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 AI66215, R01 AI46719, and R01 AI62437 from the National Institutes of Health awarded to PDK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bucks, C.M., Katsikis*, P.D. (2009). NEW INSIGHTS INTO CLASSICAL COSTIMULATION OF CD8+ T CELL RESPONSES.. In: Schoenberger, S., Katsikis, P., Pulendran, B. (eds) Crossroads between Innate and Adaptive Immunity II. Advances in Experimental Medicine and Biology, vol 633. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79311-5_9

Download citation

Publish with us

Policies and ethics