Skip to main content

DETECTION OF MICROBES BY NATURAL KILLER T CELLS

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 633))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kronenberg, M. (2005)Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23, 877–900

    Article  Google Scholar 

  2. Godfrey, D.I. Berzins, S.P. (2007)Control points in NKT-cell development. Nat Rev Immunol 7, 505–518

    Article  Google Scholar 

  3. Moody, D.B., Zajonc, D.M. Wilson, I.A. (2005)Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol 5, 387–399

    Article  Google Scholar 

  4. Stetson, D.B. et al. (2003)Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198, 1069–1076

    Article  Google Scholar 

  5. Matsuda, J.L. et al. (2003)Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100, 8395–8400

    Article  Google Scholar 

  6. Brigl, M. Brenner, M.B. (2004)CD1: antigen presentation and T cell function. Annu Rev Immunol 22, 817–890

    Article  Google Scholar 

  7. Kawakami, K. et al. (2003)Critical role of Valpha14+natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae. infection Eur J Immunol 33, 3322–3330

    Article  Google Scholar 

  8. Nieuwenhuis, E.E. et al. (2002)CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa. from lung Nat Med 8, 588–593

    Article  Google Scholar 

  9. Cui, J. et al. (1997)Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626

    Article  Google Scholar 

  10. Joyee, A.G. et al. (2007)Distinct NKT cell subsets are induced by different Chlamydia. species leading to differential adaptive immunity and host resistance to the infections J Immunol 178, 1048–1058

    Google Scholar 

  11. Tupin, E., Kinjo, Y. Kronenberg, M. (2007)The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5, 405–417

    Article  Google Scholar 

  12. Ishikawa, H. et al. (2000)CD4(+) v(alpha)14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int Immunol 12, 1267–1274

    Article  Google Scholar 

  13. Mattner, J., Donhauser, N., Werner-Felmayer, G. Bogdan, C. (2006)NKT cells mediate organ-specific resistance against Leishmania major. infection Microbes Infect 8, 354–362

    Article  Google Scholar 

  14. Amprey, J.L. et al. (2004)A subset of liver NK T cells is activated during Leishmania donovani. infection by CD1d-bound lipophosphoglycan J Exp Med 200, 895–904

    Article  Google Scholar 

  15. Duthie, M.S., Kahn, M., White, M., Kapur, R.P. Kahn, S.J. (2005)Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi. infection Infect Immun 73, 181–192

    Article  Google Scholar 

  16. Grubor-Bauk, B., Simmons, A., Mayrhofer, G. Speck, P.G. (2003)Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol 170, 1430–1434

    Google Scholar 

  17. Ashkar, A.A. Rosenthal, K.L. (2003)Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 77, 10168–10171

    Article  Google Scholar 

  18. Renukaradhya, G.J. et al. (2005)Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. J Immunol 175, 4301–4308

    Google Scholar 

  19. Lin, Y., Roberts, T.J., Spence, P.M. Brutkiewicz, R.R. (2005)Reduction in CD1d expression on dendritic cells and macrophages by an acute virus infection. J Leukocyte Biol 77, 151–158

    Article  Google Scholar 

  20. Sanchez, D.J., Gumperz, J.E. Ganem, D. (2005)Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 115, 1369–1378

    Google Scholar 

  21. Yuan, W., Dasgupta, A. Cresswell, P. (2006)Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat Immunol 7, 835–842

    Article  Google Scholar 

  22. Chen, N. et al. (2006)HIV-1 down-regulates the expression of CD1d via Nef. Eur J Immunol 36, 278–286

    Article  Google Scholar 

  23. Dieli, F. et al. (2000)Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction. J Exp Med 192, 1645–1652

    Article  Google Scholar 

  24. Nagarajan, N.A. Kronenberg, M. (2007)Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178, 2706–2713

    Google Scholar 

  25. Nakamatsu, M. et al. (2007)Role of interferon-gamma in Valpha14+natural killer T cell-mediated host defense against Streptococcus pneumoniae. infection in murine lungs Microbes Infect 9, 364–374

    Article  Google Scholar 

  26. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. Brenner, M.B. (2003)Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4, 1230–1237

    Article  Google Scholar 

  27. Mattner, J. et al. (2005)Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529

    Article  Google Scholar 

  28. Mallevaey, T. et al. (2006)Activation of invariant NKT cells by the helminth parasite schistosoma mansoni. J Immunol 176, 2476–2485

    Google Scholar 

  29. Zhou, D. et al. (2004)Lysosomal glycosphingolipid recognition by NKT cells Science 306, 1786–1789

    Article  Google Scholar 

  30. Gadola, S.D. et al. (2006)Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203, 2293–2303

    Article  Google Scholar 

  31. Porubsky, S. et al. (2007)Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci USA 104, 5977–5982

    Article  Google Scholar 

  32. Speak, A.O. et al. (2007)Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci USA 104, 5971–5976

    Article  Google Scholar 

  33. Schofield, L. et al. (1999)CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225–229

    Article  Google Scholar 

  34. Molano, A. et al. (2000)Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses. J Immunol 164, 5005–5009

    Google Scholar 

  35. Romero, J.F., Eberl, G., MacDonald, H.R. Corradin, G. (2001)CD1d-restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice. Parasite Immunol 23, 267–269

    Article  Google Scholar 

  36. Fischer, K. et al. (2004)Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 101, 10685–10690

    Article  Google Scholar 

  37. Kinjo, Y. et al. (2005)Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525

    Article  Google Scholar 

  38. Sriram, V., Du, W., Gervay-Hague, J. Brutkiewicz, R.R. (2005)Cell wall glycosphingolipids of Sphingomonas paucimobilis. are CD1d-specific ligands for NKT cells Eur J Immunol 35, 1692–1701

    Article  Google Scholar 

  39. Neef, A., Witzenberger, R. Kampfer, P. (1999)Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23, 261–267

    Article  Google Scholar 

  40. Kawahara, K., Kubota, M., Sato, N., Tsuge, K. Seto, Y. (2002)Occurrence of an alpha-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol Lett 214, 289–294

    Google Scholar 

  41. Kawahara, K., Moll, H., Knirel, Y.A., Seydel, U. Zahringer, U. (2000)Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur J Biochem 267, 1837–1846

    Article  Google Scholar 

  42. Hsueh, P.R. et al. (1998)Nosocomial infections caused by Sphingomonas paucimobilis. : clinical features and microbiological characteristics Clin Infect Dis 26, 676–681

    Article  Google Scholar 

  43. Perola, O. et al. (2002)Recurrent Sphingomonas paucimobilis. -bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients J Hosp Infect 50, 196–201

    Article  Google Scholar 

  44. Kumar, H., Belperron, A., Barthold, S.W. Bockenstedt, L.K. (2000)Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 165, 4797–4801

    Google Scholar 

  45. Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A. Schneerson, R. (2003)A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci USA 100, 7913–7918

    Article  Google Scholar 

  46. Kinjo, Y. et al. (2006)Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7, 978–986

    Article  Google Scholar 

  47. Michel, M.L. et al. (2007)Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204, 995–1001

    Article  Google Scholar 

  48. Scott-Browne, J.P. et al. (2007)Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8, 1105–1113

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R37 AI71922, RO1 AI45053, RO1 AI69276 (MK), and a fellowship from The Irvington Institute Fellowship Program of the Cancer Research Institute Research (Y.K.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kinjo, Y., Kronenberg, M. (2009). DETECTION OF MICROBES BY NATURAL KILLER T CELLS. In: Schoenberger, S., Katsikis, P., Pulendran, B. (eds) Crossroads between Innate and Adaptive Immunity II. Advances in Experimental Medicine and Biology, vol 633. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79311-5_3

Download citation

Publish with us

Policies and ethics