Skip to main content

Animal Models for Anxiety Disorders

  • Chapter
  • First Online:
Biomarkers for Psychiatric Disorders

Abstract

Anxiety disorders are characterized by overwhelming anxiety or fear and are chronic and relentless if left untreated. Current available treatments for anxiety disorders are inadequate and some have severe side effects, thus warranting a better understanding of the etiology and mechanisms underlying anxiety and the development of anxiety disorders. In this chapter, the use of animal models to identify molecular and cellular circuitry that regulate fear or anxiety, and the influence of environment on the development of fear or anxiety, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotropin

CORT:

Corticosterone

CRH:

Corticotrophin-releasing hormone

CS:

Conditioned stimulus

5-HT1A:

Serotonin 1A receptor

LTP:

Long-term potentiation

MAO-A:

Monoamine oxidase A

PTSD:

Post-traumatic stress disorder

SSRI:

Serotonin reuptake inhibitors

US:

Un-conditioned stimulus

References

  • Altemus, M., Glowa, J. R., Galliven, E., Leong, Y. M., Murphy, D. L. (1996). Effects of serotonergic agents on food-restriction-induced hyperactivity. Pharm Biochem Behav 53, 123–131.

    Article  CAS  Google Scholar 

  • Bale, T. L., Contarino, A., Smith, G. W., Chan, R., Gold, L. H., Sawchenko, P. E., Koob, G. F., Vale, W. W., Lee, K. F. (2000). Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24, 410–414.

    Article  PubMed  CAS  Google Scholar 

  • Bale, T. L., Picetti, R., Contarino, A., Koob, G. F., Vale, W. W., Lee, K. F. (2002). Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 22, 193–199.

    PubMed  CAS  Google Scholar 

  • Bass, S. L., Gerlai, R. (2008). Zebrafish (Danio rerio) responds differentially to stimulus fish: The effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186, 107–117.

    Article  PubMed  Google Scholar 

  • Blanchard, D. C., Blanchard, D. C. (1972). Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 81, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, R. J., Blanchard, D. C. (1989). Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103, 70–82.

    Article  PubMed  CAS  Google Scholar 

  • Britton, D. R., Brittone, K. T. (1981). A sensitive open field measure of anxiolytic drug activity. Pharm Biochem Behav 15, 577–582.

    Article  CAS  Google Scholar 

  • Brown, J. S., Kalish, H. I., Farber, I. E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J. C. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinerphrine in mice lacking MAOA. Science 268, 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  • Cook, M., Mineka, S., Wolkenstein, B., Laitsch, K. (1985). Observational conditioning of snake fear in unrelated rhesus monkeys. J Abnorm Psychol 94, 591–610.

    Article  PubMed  CAS  Google Scholar 

  • Coste, S. C., Kesterson, R. A., Heldwein, K. A., Stevens, S. L., Heard, A. D., Hollis, J. H., Murray, S. E., Hill, J. K., Pantely, G. A., Hohimer, A. R., . . (2000)Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Crawley, J., Goodwin, F. K. (1980). Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. (1986). Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100, 814–824.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. (1992). The role of the amygdala in conditioned fear. In The Amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss.New York,

    Google Scholar 

  • Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C. F., Malicki, J., Stemple, D. L., Stainier, D. Y. R., Zwartkruis, F., Abdelilah, S., Rangini, Z., . (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46.

    PubMed  CAS  Google Scholar 

  • Dunn, A. J., Swiergiel, A. H. (1999). Behaivoral responses to stress are intact in CRF-deficient mice. Brain Res 845, 14–20.

    Article  PubMed  CAS  Google Scholar 

  • Eckart, K., Radulovic, J., Radulovic, M., Jahn, O., Blank, T.,et al. (2002). Pharmacology and biology of corticotropin-releasing factor (CRF) receptors. Recept Channel 8, 163–177.

    Article  CAS  Google Scholar 

  • Estes, W. K., Skinner, B. F. (1941). Some quantitative properties of anxiety. J Exp Psychol 29, 390–400.

    Article  Google Scholar 

  • Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychon Bull Rev 1, 429–438.

    Article  Google Scholar 

  • File, S. E. (1988). How good is social interaction as a test of anxiety? In Simon, P. SoubrieP. WildlochewrD. Selected models of anxiety, depression, and psychosis., Basel, Karger, pp. 151–166.

    Google Scholar 

  • File, S. E., Peet, L. A. (1980). The sensitivity of the rat corticosterone response to environmental manipulations and to chronic chlordiazepoxide. Physiol Behav 25, 753–758.

    Article  PubMed  CAS  Google Scholar 

  • Francis, D. D., Szegda, K., Campbell, G., Martin, W. D., Insel, T. R. (2003). Epigenetic sources of behavioral differences in mice. Nat Neurosci 6, 445–446.

    PubMed  CAS  Google Scholar 

  • Gardner, C. R. (1985). Distress vocalization in rat pups. A simple screeninng method for anxiolytic drugs. J Pharmac Meth 134, 275–283.

    Google Scholar 

  • Garner, J. P., Dufour, B., Gregg, L. E., Weisker, S. M., Mench, J. A. (2004). Social and husbandry factors affecting the prevalence and severity of barbering (“Whisker trimming”) by laboratory mice. Appl Anim Behav Sci 89, 263–282.

    Article  Google Scholar 

  • Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., Santarelli, L., Beck, S., Hen, R. (2002). Serotonin 1A receptor acts during development to establish normal anxiety-like behavior in the adult. Nature 416, 396–400.

    Article  PubMed  CAS  Google Scholar 

  • Guo, S. (2004). Linking genes to brain, behavior, and neurological diseases: what can we learn from zebrafish? Gene Brain Behav 3, 63–74.

    Article  CAS  Google Scholar 

  • Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., Van Eeden, F. J. M., Jiang, Y. J., Heisenberg, C. P., . (1996). The identification of genes with unique and essential function in the development of the zebrafish, Danio rerio. Development 123, 1–36.

    PubMed  CAS  Google Scholar 

  • Heisler, L. K., Chu, H. M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., Tecott, L. H. (1998). Elevated anxiety and anti-depressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci 95, 15049–15054.

    Article  PubMed  CAS  Google Scholar 

  • Joel, D., Avisar, A. (2001). Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res 123, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Kapp, B. S., Whalen, P. J., Supple, W. F., Pascoe, J. P. (1992). Amygdaloid contributions to conditioned arousal and sensory information processing. In The Amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss.New York,

    Google Scholar 

  • Kash, S. F., Tecott, L. H., Hodge, C., Baekkeskov, S. (1999). Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-Kda isoform of glutamic acid decarboxylase. Proc Natl Acad Sci 96, 1698–1703.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. J., Shih, J. C., Chen, K., Chen, L., Bao, S., Maren, S., Anagnostaras, S. G., Fanselow, M. S., De Maeyer, E., Seif, I., Thompson, R. F. (1997). Selective enhancement of emotional, but not, motor, learning in monoamine oxidase A-deficient mice. Proc Natl Acad Sci 94, 5929–5933.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto, T., Radulovic, J., Radulovic, M., Lin, C. R., Schrick, C., Hooshmand, F., Hermanson, O., Rosenfeld, M. G., Spiess, J. (2000). Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet 24, 415–419.

    Article  PubMed  CAS  Google Scholar 

  • LeDoux, J. E. (1992). Emotion and the amygdala. In The Amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss.New York,

    Google Scholar 

  • Levin, E. D., Bencan, Z., Cerutti, D. T. (2007). Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90, 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180–185.

    PubMed  CAS  Google Scholar 

  • Lister, R. G., Hilakivi, L. A. (1988). The effects of novelty, isolation, light, and ethanol on the social behavior of mice. Psychopharmacology 96, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Löw, K., Crestani, F., Keist, R., Benke, D., Brünig, I., Benson, J. A., Fritschy, J. M., Rülicke, T., Bluethmann, H., Möhler, H., Rudolph, U. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131–134.

    Article  PubMed  Google Scholar 

  • Mendoza, S. P., Smotherman, W. P., Miner, M., Kaplan, J., Leinve, S. (1978). Pituitary-adrenal response to separation in mother and infant squirrel monkeys. Dev Psychobiol 11, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. B., O'Callaghan, J. P. (2002). Neuroendocrine aspects of the response to stress. Metabolism 51, 5–10.

    Article  PubMed  CAS  Google Scholar 

  • Misslin, R., Ropartz, P. (1981). Effects of amygdala lesions on the responses to novelty in mice. Behav Process 6, 329–336.

    Article  Google Scholar 

  • Montgomery, K. C. (1955). The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 48, 254–260.

    Article  PubMed  CAS  Google Scholar 

  • Ninan, P. T. (1982). Benzodiazepine receptor-mediated experimental “anxiety” in primates. Science 218, 1332–1334.

    Article  PubMed  CAS  Google Scholar 

  • Noirot, E. (1972). Ultrasounds and maternal behavior in small rodents. Dev Psychobiol 5, 371–387.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberg, H. G., Keith, S. J., Paxton, D. M. (1997). Consideration of the relevance of ethological animal models for human repetitive behavioral spectrum disorders. Biol Psychiatr 41, 226–229.

    Article  CAS  Google Scholar 

  • Okon, E. E. (1972). Factors affecting ultrasound production in infant rodents. J Zool Lond 168, 139–148.

    Article  Google Scholar 

  • Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., Toth, M. (1998). Increased anxiety of mice lacking the serotonin 1A receptor. Proc Natl Acad Sci 95, 10734–10739.

    Article  PubMed  CAS  Google Scholar 

  • Pellow, S., Chopin, P., File, S. E., Briley, M. (1985). Validation of open/closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth 14, 149–167.

    Article  CAS  Google Scholar 

  • Preil, J., Müller, M. B., Gesing, A., Reul, J. M., Sillaber, I., van Gaalen, M. M., Landgrebe, J., Holsboer, F., Stenzel-Poore, M., Wurst, W. (2001). Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2. Endocrinology 142, 4946–4955.

    Article  PubMed  CAS  Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., Mann, J. J., Brunner, D., Hen, R. (1998). Serotonin 1A receptor knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci 95, 14476–14481.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M. (1975). Innate recognition of coral snake pattern by a possible avian predator. Science 187, 759–760.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M. (1977). Coral snake recognition and stimulus generalization by naive great kiskadees. Nature 265, 535–536.

    Article  Google Scholar 

  • Smith, G. W., Aubry, J. M., Dellu, F., Contarino, A., Bilezikjian, L. M., (1998)Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • Speedie , N., and Gerlai, R. (2007). Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res [Epub ahead of print].<bib id="bib54_9"> <otherref>Speedie, N., and Gerlai, R. (2007). Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res <Emphasis Type="Italic">[Epub ahead of print]</Emphasis>.</otherref> </bib>

    Google Scholar 

  • Stenzel-poore, M. P., Heinrichs, S. C., Rivest, S., Koob, G. F., Vale, W. W. (1994). overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 14, 2579–2584.

    PubMed  CAS  Google Scholar 

  • Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J. M., (1998). Impaired stress response and reduced anxiety in mice lacking functional corticotropin-releasing hormone receptor 1. Nat Genet 19, 162–166.al., e.

    Article  PubMed  CAS  Google Scholar 

  • Treit, D. (1985). The inhibitory effect of diazepam on defensive burying: anxiolytic vs. analgesic effects. Pharm Biochem Behav 22, 47–52.

    Article  CAS  Google Scholar 

  • Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M. H., Lewis, K., and al., e(1995). Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, R. N., Cummins, R. A. (1976). The open field test: a critical review. Psychol Bull 83, 482–504.

    Article  PubMed  CAS  Google Scholar 

  • Willner, P. (1984). The validity of animal models of depression. Psychopharmacology 83, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Zon, L. I., Peterson, R. T. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discovery 4, 35–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guo, S. (2008). Animal Models for Anxiety Disorders. In: Turck, C. (eds) Biomarkers for Psychiatric Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79251-4_9

Download citation

Publish with us

Policies and ethics