Synaptoproteomics of Existing and new Animal Models of Depression

  • Alessandra Mallei
  • Roberto Giambelli
  • Aram El Khoury
  • Susanne H. M. Gruber
  • Laura Musazzi
  • Valentina S. Barbiero
  • Daniela Tardito
  • Barbara Vollmayr
  • Peter Gass
  • Aleksander A. Mathé
  • Giorgio Racagni
  • Maurizio Popoli


Depression is a severe and life-threatening psychiatric illness whose pathogenesis is still essentially unknown. Proteomic analysis of synaptic terminals (synaptoproteomics) in animal models of depression is a powerful approach to gain insight into the molecular mechanisms underlying vulnerability to mood disorders and the long-term action of drug treatments. Here, we employed two different animal models of depression, the Learned Helplessness rats (a classical behavioral model of depression) and a new model of depression with gene—environment interaction (Flinders Sensitive Line rats subjected to early life stress). Both animal models were treated with the antidepressant escitalopram. Analysis of their synaptoproteomic profile revealed a number of protein spots differently regulated by basic vulnerability and/or early life stress. Using this approach, we obtained information regarding biomarkers that may represent predictors of pathology or response/resistance to drug treatment, as well as potential targets for novel pharmacological and therapeutic strategies.


Protein Spot Antidepressant Treatment Maternal Separation Early Life Stress Flinder Sensitive Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Serotonin 1A receptor


Bicinchoninic Acid






Database for Annotation, Visualization and Integrated Discovery




Flinders sensitive line


Flinders resistant line

G × E

Gene—environment interaction


Gene Ontology






Inflammatory bowel syndrome


Isoelectric focusing


Ingenuity pathways analysis


Immobilized pH gradient


Learned helplessness


Messenger RNA


Maternal separation


Non-learned helplessness




Prefrontal/frontal cortex


Isoelectric point


Post natal day


Random eyes movement


Sodium dodecyl sulfate


Sodium dodecyl sulfate polyacrylamide gel electrophoresis







This work was funded by a European Union (6th Framework Program) grant for project GENDEP (contract no. LSHB-CT-2003-503428) and by the Swedish Medical Research Council grant 10414 (to AAM).


  1. Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580PubMedCrossRefGoogle Scholar
  2. Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J (2005) BABELOMICS: a suit of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res 33:W460–W464PubMedCrossRefGoogle Scholar
  3. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537PubMedCrossRefGoogle Scholar
  4. Barbiero VS, Giambelli R, Musazzi L, Tiraboschi E, Tardito D, Perez J, Drago F, Racagni G, Popoli M (2007) Chronic antidepressants induce redistribution and differential activation of alphaCaM Kinase II between presynaptic compartments. Neuropsychopharmacology advance online publication, 14 March 2007; doi:10.1038/sj.npp.1301378Google Scholar
  5. Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, Musazzi L, Raiteri M, Racagni G, Popoli M (2005) Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 25:3270–3279PubMedCrossRefGoogle Scholar
  6. Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, Butterfield DA (2005) Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer's disease. Brain Res 1044:206–215PubMedCrossRefGoogle Scholar
  7. Caldji C, Francis D, Sharma S, Plotsky PM, Meaney MJ (2000) The effects of early rearing environment on the devepopment of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22:219–229PubMedCrossRefGoogle Scholar
  8. Caspi A, Moffitt TE (2006) Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 7:583–590PubMedCrossRefGoogle Scholar
  9. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389PubMedCrossRefGoogle Scholar
  10. Carboni L, Piubelli C, Righetti PG, Jansson B, Domenici E (2002) Proteomic analysis of rat brain tissue: comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents. Electrophoresis 23:4132–4141PubMedCrossRefGoogle Scholar
  11. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3PubMedCrossRefGoogle Scholar
  12. Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JA (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 372:115–129PubMedCrossRefGoogle Scholar
  13. El Khoury A, Gruber SHM, Mϕrk A, Mathé AA (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatr 30:535–540CrossRefGoogle Scholar
  14. Fountoulakis M (2004) Application of proteomiics technologies in the investigation of the brain. Mass Spectrom Rev 23:231–258PubMedCrossRefGoogle Scholar
  15. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatr 49:1023–1039CrossRefGoogle Scholar
  16. Henn FA, Edwards E, Anderson D, Vollmayr B (2002) Psychotherapy and antidepressant treatment of depression: evidence for similar neurobiological mechanism. World Psychiatr 1:115–117Google Scholar
  17. Hitzemann R (2000) Animal models of psychiatric disorders and their relevance to alcoholism. Alcohol Res Healt 3:149–158Google Scholar
  18. Janowsky DS, Risch SC, Parker D, Huey L, Judd L (1980) Increased vulnerability to cholinergic stimulation in affect disorder patients. Psychopharmacol Bull 16:29–31PubMedGoogle Scholar
  19. Janowsky DS, Overstreet DH, Nurnberger JI Jr (1994) Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Genet 54:335–344PubMedCrossRefGoogle Scholar
  20. Keller MB, Boland RJ (1998) Implications of failing to achieve successful long-term maintenance treatment of recurrent unipolar major depression. Biol Psychiatr 44:348–360CrossRefGoogle Scholar
  21. Kramer R, Cohen D (2004) Functional genomics to new drug targets. Nat Rev Drug Discov 3:965–72PubMedCrossRefGoogle Scholar
  22. Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM (2000) Long-term behavioural and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122:81–103PubMedCrossRefGoogle Scholar
  23. Lesch KP (2004) Gene-environment interaction and the genetics of depression. J Psychiatr Neurosci 29:174–84Google Scholar
  24. Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 279:987–1002PubMedCrossRefGoogle Scholar
  25. Liberatori S, Canas B, Tani C, Bini L, Buonocore G, Godovac-Zimmermann J, Mishra OP, Delivoria-Papadopoulos M, Bracci R, Pallini V (2004) Proteomic approach to the identification of voltage-dependent anion channel protein isoforms in guinea pig brain synaptosomes. Proteomics 4:1335–1340PubMedCrossRefGoogle Scholar
  26. Matthews K, Christmas D, Swan J, Sorrel E (2005) Animal models of depression: navigating through the clinical fog. Neurosci Biobehav Rev 29:503–513PubMedCrossRefGoogle Scholar
  27. Mello CF, Sultana R, Piroddi M, Cai J, Pierce WM, Klein JB, Butterfield DA (2007) Acrolein induces selective protein carbonylation in synaptosomes. Neuroscience 147:674–679PubMedCrossRefGoogle Scholar
  28. Musazzi L, Ryan B, Barbiero VS, Mallei A, Giambelli R, Tardito D, Gruber SHM, El Khoury A, Andersson W, Anwyl R, Racagni G, Mathé AA, Rowan MJ, Popoli M Early-life stress enhances NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression. Submitted Proc Natl Acad Sci USA 2007Google Scholar
  29. Overmier JB, Seligman ME (1967) Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol 63:28–33PubMedCrossRefGoogle Scholar
  30. Overstreet DH, Russell RW (1982) Selective breeding for diisopropyl fuorophosphate-sensitivity: behavioural effects of cholinergic agonists and antagonists. Psychopharmacology (Berl.) 78:150–155CrossRefGoogle Scholar
  31. Overstreet DH, Friedman E, Mathé AA, Yadid G (2005) The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 29:739–759PubMedCrossRefGoogle Scholar
  32. Paulson L, Martin P, Persson A, Nilsson CL, Ljung E, Westman-Brinkmalm A, Eriksson PS, Blennow K, Davidsson P (2003) Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J Neurosci Res 71:526–533PubMedCrossRefGoogle Scholar
  33. Plotsky PM, Meaney MJ (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 18:195–200PubMedCrossRefGoogle Scholar
  34. Pucilowski O, Overstreet DH, Rezvani AH, Janowsky DS (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav 54:1215–1220PubMedCrossRefGoogle Scholar
  35. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274PubMedCrossRefGoogle Scholar
  36. Rohlff C, Hollis K (2003) Modern proteomic strategies in the study of complex neuropsychiatric disorders. Biol Psychiatr 53:847–853CrossRefGoogle Scholar
  37. Russel RW, Overstreet DH (1987) Mechanisms underlying sensitivity to organophosphororus anticholinesterase compounds. Prog Neurobiol 28:97–129CrossRefGoogle Scholar
  38. Stasyk T, Huber LA (2004) Zooming in: fractionation strategies in proteomics. Proteomics 4:3704–3716PubMedCrossRefGoogle Scholar
  39. Satoh K, Takeuchi M, Oda Y, Deguchi-Tawarada M, Sakamoto Y, Matsubara K, Nagasu T, Takai Y (2002) Identification of activity-regulated proteins in the postsynaptic density fraction. Genes Cells 7:187–197PubMedCrossRefGoogle Scholar
  40. Urani A, Chourbaji S, Gass P (2005) Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 29:805–828PubMedCrossRefGoogle Scholar
  41. Vazquez DM, Lopez JF, Van Hoers H, Watson SJ, Levine S (2000) Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res 855:76–82PubMedCrossRefGoogle Scholar
  42. Vercauteren FG, Bergeron JJ, Vandesande F, Arckens L, Quirion R (2004) Proteomic approaches in brain research and neuropharmacology. Eur J Pharmacol 500:385–398PubMedCrossRefGoogle Scholar
  43. Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Protoc 8:1–7CrossRefGoogle Scholar
  44. Vollmayr B, Henn FA (2003) Stress models of depression. Clin Neurosci Res 3:245–251CrossRefGoogle Scholar
  45. Vollmayr B, Simonis C, Weber S, Gass P, Henn FA (2003) Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol Psychiatry 54:1035–1040PubMedCrossRefGoogle Scholar
  46. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094PubMedCrossRefGoogle Scholar
  47. Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45:425–455PubMedCrossRefGoogle Scholar
  48. Willner P (1995) Animal models of depression: validity and applications. Adv Biochem Psychopharmacol 49:19–41PubMedGoogle Scholar
  49. Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, Cousin MA, Dutia MB, Gillingwater TH (2007) Differential proteomic analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wld) gene. Mol Cell Proteomics 8:1318–1330CrossRefGoogle Scholar
  50. Witzmann FA, Arnold RJ, Bai F, Hrncirova P, Kimpel MW, Mechref YS, McBride WJ, Novotny MV, Pedrick NM, Ringham HN, Simon JR (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5:2177–2201PubMedCrossRefGoogle Scholar
  51. Yadid G, Nakash R, Deri I, Tamar G, Kinor N, Gispan I, Zangen A (2000) Elucidation of the neurobiology of depression: insights from a novel genetic animal model. Prog Neurobiol 62:353–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alessandra Mallei
  • Roberto Giambelli
  • Aram El Khoury
  • Susanne H. M. Gruber
  • Laura Musazzi
  • Valentina S. Barbiero
  • Daniela Tardito
  • Barbara Vollmayr
  • Peter Gass
  • Aleksander A. Mathé
  • Giorgio Racagni
  • Maurizio Popoli
    • 1
  1. 1.Center of Neuropharmacology, Department of Pharmacological SciencesUniversity of MilanoMilanoItaly

Personalised recommendations