Skip to main content

Metabolomics: A Global Biochemical Approach to the Discovery of Biomarkers for Psychiatric Disorders

  • Chapter
  • First Online:
Biomarkers for Psychiatric Disorders

Abstract

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal or pathogenic processes, as well as responses to therapeutic interventions. The discovery of biomarkers for psychiatric disorders and their incorporation into clinical decision-making could dramatically change the future delivery of health care. Thus, there is great need for the discovery, evaluation, and clinical validation of biomarkers. Abnormalities present in psychiatric illness might be related to changes in cellular metabolism leading to measurable differences in the composition and levels of the universe of all plasma metabolites known as the metabolome. Characterizing these biochemical changes could be very useful in the identification of disease biomarkers. Metabolomics is the study of metabolism at the global level. The concept that a metabolic state is representative of the overall physiologic status of the organism lies at the heart of metabolomics. Metabolomic studies capture global biochemical events by assaying thousands of small molecules in cells, tissues, organs, or biological fluids, followed by the application of informatic techniques to define metabolomic signatures. Metabolomic studies can lead to enhanced understanding of disease mechanisms in psychiatric illnesses, as demonstrated by early work in schizophrenia and mood disorders. This chapter begins with an overview of the principles underlying biomarker research and changes in metabolism associated with psychiatric disorders. Then, it describes the conceptual basis for metabolomics, the analytical and informatic techniques used to define metabolomic signatures, and how to use this information to identify biomarkers for psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HIAA:

5-hydroxyindoleacetic acid

5HT:

Serotonin

ACH:

Acetylcholine

AODS:

Antioxidant defense system

BD:

Bipolar Disorder

CSF:

Cerebrospinal fluid

DA:

Dopamine

DFA:

Discriminant function analysis

GABA:

Gamma-aminobutyric acid

GC:

Gas chromatography

Glu:

Glutamate

HVA:

Homovanillic acid

LC:

Liquid chromatography

LCECA:

Liquid chromatography coupled with electrochemical array detection

LC-MS:

Liquid chromatography coupled with mass spectroscopy

Li:

Lithium

MDD:

Major Depressive Disorder

MHPG:

3-methoxy-4-hydroxyphenylglycol

MS:

Mass spectrometry

NE (or NA):

Norepinephrine

NMR:

Nuclear magnetic resonance spectroscopy

NT:

Neurotransmitter pathways

PC:

Phosphotidylcholine

PCA:

Principal components analysis

PDBs:

Psychiatric disorders biomarkers

PE:

Phosphotidylethanolamine

PLS:

Partial least squares

SQZ:

Schizophrenia

SSRI:

Selective serotonin reuptake inhibitors

Vlp:

Valproate

References

  • Appleton KM, Hayward RC, Gunnell D, et al.: Effects of n-3 long-chain polyunsaturated fatty acids on depressed mood: systematic review of published trials. Am J Clin Nutr 84:1308–1316, 2006.

    PubMed  CAS  Google Scholar 

  • Audenaert K, Peremans K, Goethals I, et al.: Functional imaging, serotonin and the suicidal brain. Acta Neurol Belg 106:125–131, 2006.

    PubMed  CAS  Google Scholar 

  • Bakhtiar R: Biomarkers in drug discovery and development. J Pharmacol Toxicol Meth, 2007.

    Google Scholar 

  • Bell C, Abrams J, Nutt D: Tryptophan depletion and its implications for psychiatry. Br J Psychiatr 178:399–405, 2001.

    CAS  Google Scholar 

  • Berger GE, Wood SJ, Pantelis C, et al.: Implications of lipid biology for the pathogenesis of schizophrenia. Aust New Zeal J Psychiatr 36:355–366, 2002.

    Google Scholar 

  • Berrettini WH, Nurnberger JI, Jr., Scheinin M, et al.: Cerebrospinal fluid and plasma monoamines and their metabolites in euthymic bipolar patients. Biol Psychiatr 20:257–269, 1985.

    CAS  Google Scholar 

  • Bhagwagar Z, Wylezinska M, Jezzard P, et al.: Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 1–6, 2007.

    Google Scholar 

  • Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95, 2001.

    Google Scholar 

  • Birkenhager TK, van den Broek WW, Fekkes D, et al.: Lithium addition in antidepressant-resistant depression: effects on platelet 5-HT, plasma 5-HT and plasma 5-HIAA concentration. Prog Neuropsychopharmacol Biol Psychiatr 31:1084–1088, 2007.

    Google Scholar 

  • Bowers MB, Jr., Mazure CM, Nelson JC, et al.: Lithium in combination with perphenazine: effect on plasma monoamine metabolites. Biol Psychiatr 32:1102–1107, 1992.

    CAS  Google Scholar 

  • Brambilla P, Perez J, Barale F, et al.: GABAergic dysfunction in mood disorders. Mol Psychiatr 8:721–737, 715, 2003.

    CAS  Google Scholar 

  • Breier A: Serotonin, schizophrenia and antipsychotic drug action. Schizophr Res 14:187–202, 1995.

    PubMed  CAS  Google Scholar 

  • Brindle JT, Antti H, Holmes E, et al.: Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444, 2002.

    PubMed  CAS  Google Scholar 

  • Brindle JT, Nicholson JK, Schofield PM, et al.: Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128:32–36, 2003.

    PubMed  CAS  Google Scholar 

  • Brown AS, Gewirtz G, Harkavy-Friedman J, et al.: Effects of clozapine on plasma catecholamines and relation to treatment response in schizophrenia: a within-subject comparison with haloperidol. Neuropsychopharmacology 17:317–325, 1997.

    PubMed  CAS  Google Scholar 

  • Casey DE: Dyslipidemia and atypical antipsychotic drugs. J Clin Psychiatr 65(Suppl. 18):27–35, 2004.

    CAS  Google Scholar 

  • Chou JC, Czobor P, Tuma I, et al.: Pretreatment plasma HVA and haloperidol response in acute mania. J Affect Disord 59:55–59, 2000.

    PubMed  CAS  Google Scholar 

  • Coen M, Ruepp SU, Lindon JC, et al.: Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J Pharm Biomed Anal 35:93–105, 2004.

    PubMed  CAS  Google Scholar 

  • Coppen A: Electrolytes and mental illness. Proc Annu Meet Am Psychopathol Assoc 58:397–409, 1969.

    PubMed  CAS  Google Scholar 

  • Correll CU, Frederickson AM, Kane JM, et al.: Does antipsychotic polypharmacy increase the risk for metabolic syndrome? Schizophr Res 89:91–100, 2007.

    PubMed  Google Scholar 

  • Crocker IP, Kenny LC, Thornton WA, et al.: Excessive stimulation of poly(ADP-ribosyl)ation contributes to endothelial dysfunction in pre-eclampsia. Br J Pharmacol 144:772–780, 2005.

    PubMed  CAS  Google Scholar 

  • Curzon G: Relationships between plasma, CSF and brain tryptophan. J Neural Transm (Suppl.):81–92, 1979.

    Google Scholar 

  • Curzon G: Influence of plasma tryptophan on brain 5HT synthesis and serotonergic activity. Adv Exp Med Biol 133:207–219, 1981.

    PubMed  CAS  Google Scholar 

  • Dauner M, Bailey JE, U. S: Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76:1440156, 2001.

    Google Scholar 

  • Davila R, Zumarraga M, Basterreche N, et al.: Influence of the catechol-O-methyltransferase Val108/158Met polymorphism on the plasma concentration of catecholamine metabolites and on clinical features in type I bipolar disorder—a preliminary report. J Affect Disord 92:277–281, 2006.

    PubMed  CAS  Google Scholar 

  • de Graaf AA, Mahle M, Möllney M, et al.: Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J Biotechnol 77:25035, 2000.

    Google Scholar 

  • De Milito A, Titanji K, Zazzi M: Surrogate markers as a guide to evaluate response to antiretroviral therapy. Curr Med Chem 10:349–365, 2003.

    PubMed  Google Scholar 

  • Deeks JJ, Altman DG: Diagnostic tests 4: likelihood ratios. BMJ 329:168–169, 2004.

    PubMed  Google Scholar 

  • Delgado PL, Moreno FA: Role of norepinephrine in depression. J Clin Psychiatr 61(Suppl. 1):5–12, 2000.

    CAS  Google Scholar 

  • Delgado PL: How antidepressants help depression: mechanisms of action and clinical response. J Clin Psychiatr 65(Suppl. 4):25–30, 2004.

    CAS  Google Scholar 

  • Delgado PL: Monoamine depletion studies: implications for antidepressant discontinuation syndrome. J Clin Psychiatr 67 (Suppl. 4):22–26, 2006.

    CAS  Google Scholar 

  • Denkert C, Budczies J, Kind T, et al.: Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66:10795–10804, 2006.

    PubMed  CAS  Google Scholar 

  • Dunne VG, Bhattachayya S, Besser M, et al.: Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: a pattern-recognition 1H NMR study. NMR Biomed 18:24–33, 2005.

    PubMed  CAS  Google Scholar 

  • Ebuehi OA, Bishop SA, Fanmuyiwa OO, et al.: Biogenic amines metabolism and blood chemistry of psychiatric patients. Afr J Med Med Sci 30:269–273, 2001.

    PubMed  CAS  Google Scholar 

  • Ellis PM, Mellsop GW, Beeston R, et al.: Platelet tritiated imipramine binding in patients suffering from mania. J Affect Disord 22:105–110, 1991.

    PubMed  CAS  Google Scholar 

  • Ellison G: Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res Brain Res Rev 19:223–239, 1994.

    PubMed  CAS  Google Scholar 

  • Fan C, Oh DS, Wessels L, et al.: Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569, 2006.

    PubMed  CAS  Google Scholar 

  • Fan TW-M, Lane AN: Structure-based profiling of metabolites and isotopomers by NMR. Prog NMR Spectrosc, in press.

    Google Scholar 

  • Fan X, Bai J, Shen P: Diagnosis of breast cancer using HPLC metabonomics fingerprints coupled with computational methods. Conf Proc IEEE Eng Med Biol Soc 6:6081–6084, 2005.

    PubMed  Google Scholar 

  • Fortunati F, Mazure C, Preda A, et al.: Plasma catecholamine metabolites in antidepressant-exacerbated mania and psychosis. J Affect Disord 68:331–334, 2002.

    PubMed  CAS  Google Scholar 

  • Frank R, Hargreaves R: Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580, 2003.

    PubMed  CAS  Google Scholar 

  • Freeman MP, Hibbeln JR, Wisner KL, et al.: Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatr 67:1954–1967, 2006.

    CAS  Google Scholar 

  • Frye MA, Tsai GE, Huggins T, et al.: Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatr 61:162–166, 2007.

    CAS  Google Scholar 

  • Garcia -Portilla MP, Saiz PA, Benabarre A, et al.: The prevalence of metabolic syndrome in patients with bipolar disorder. J Affect Disord, 2007.

    Google Scholar 

  • Garfinkel PE, Warsh JJ, Stancer HC: Depression: new evidence in support of biological differentiation. Am J Psychiatr 136:535–539, 1979.

    PubMed  CAS  Google Scholar 

  • German JB, Gillies LA, Smilowitz JT, et al.: Lipidomics and lipid profiling in metabolomics. Curr Opin Lipidol 18:66–71, 2007.

    PubMed  CAS  Google Scholar 

  • Gerner RH, Fairbanks L, Anderson GM, et al.: CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am J Psychiatr 141:1533–1540, 1984.

    PubMed  CAS  Google Scholar 

  • Goodwin FK, Sack RL: Central dopamine function in affective illness: evidence from precursors, enzyme inhibitors, and studies of central dopamine turnover. Adv Biochem Psychopharmacol 12:261–279, 1974.

    PubMed  CAS  Google Scholar 

  • Goodwin FK, Jamison KR, Ghaemi SN: Manic-depressive illness: bipolar disorders and recurrent depression, 2nd Edition. New York: Oxford University Press, 2007.

    Google Scholar 

  • Greenspan K, Schildkraut JJ, Gordon EK, et al.: Catecholamine metabolism in affective disorders. 3. MHPG and other catecholamine metabolites in patients treated with lithium carbonate. J Psychiatr Res 7:171–183, 1970.

    PubMed  CAS  Google Scholar 

  • Grossman F, Potter WZ: Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH. Psychiatr Res 87:21–27, 1999.

    CAS  Google Scholar 

  • Hall JA, Brown R, Paul J: An exploration into study design for biomarker identification: issues and recommendations. Cancer Genomics Proteomics 4:111–119, 2007.

    PubMed  CAS  Google Scholar 

  • Han X, Holtzman DM, McKeel DW, Jr., et al.: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis. J Neurochem 82:809–818, 2002.

    PubMed  CAS  Google Scholar 

  • Harrigan G, Goodacre R: Metabolic profiling: its role in biomarker discovery and gene function analysis. Boston: Kluwer, 2003.

    Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T, et al.: Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatr 64:193–200, 2007.

    PubMed  CAS  Google Scholar 

  • Heritch AJ: Evidence for reduced and dysregulated turnover of dopamine in schizophrenia. Schizophr Bull 16:605–615, 1990.

    PubMed  CAS  Google Scholar 

  • Hoekstra R, Fekkes D, Loonen AJ, et al.: Bipolar mania and plasma amino acids: increased levels of glycine. Eur Neuropsychopharmacol 16:71–77, 2006.

    PubMed  CAS  Google Scholar 

  • Holmes E, Tsang TM, Huang JT, et al.: Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3:e327, 2006.

    PubMed  Google Scholar 

  • Horrobin DF: The roles of prostaglandins and prolactin in depression, mania and schizophrenia. Postgrad Med J 53 (Suppl. 4):160–165, 1977.

    PubMed  CAS  Google Scholar 

  • Horrobin DF, Manku MS, Hillman H, et al.: Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatr 30:795–805, 1991.

    CAS  Google Scholar 

  • Horrobin DF: Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins Leukot Essent Fatty Acids 55:3–7, 1996.

    PubMed  CAS  Google Scholar 

  • Horrobin DF: The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 30:193–208, 1998.

    PubMed  CAS  Google Scholar 

  • Janowsky DS, el-Yousef MK, Davis JM, et al.: Cholinergic reversal of manic symptoms. Lancet 1:1236–1237, 1972.

    PubMed  CAS  Google Scholar 

  • Janowsky DS, el-Yousef MK, Davis JM, et al.: A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635, 1972.

    PubMed  CAS  Google Scholar 

  • Joyce PR, Fergusson DM, Woollard G, et al.: Urinary catecholamines and plasma hormones predict mood state in rapid cycling bipolar affective disorder. J Affect Disord 33:233–243, 1995.

    PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk R: Metabolic profiling of patients with schizophrenia. PLoS Med 3:e363, 2006.

    PubMed  Google Scholar 

  • Kaddurah-Daouk R, McEvoy J, Baillie RA, et al.: Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatr 12:934–945, 2007.

    CAS  Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM: Metabolomics: A global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683, 2008.

    PubMed  CAS  Google Scholar 

  • Kasa K, Otsuki S, Yamamoto M, et al.: Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatr 17:877–883, 1982.

    CAS  Google Scholar 

  • Kell DB: Metabolomics and systems biology: making sense of the soup. Curr Opin Micro 7:296–307, 2004.

    CAS  Google Scholar 

  • Kelley ME, Yao JK, van Kammen DP: Plasma catecholamine metabolites as markers for psychosis and antipsychotic response in schizophrenia. Neuropsychopharmacology 20:603–611, 1999.

    PubMed  CAS  Google Scholar 

  • Kessler RC, Berglund P, Demler O, et al.: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105, 2003.

    PubMed  Google Scholar 

  • Khan MM, Evans DR, Gunna V, et al.: Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res 58:1–10, 2002.

    PubMed  Google Scholar 

  • Knable MB, Weinberger DR: Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 11:123–131, 1997.

    PubMed  CAS  Google Scholar 

  • Koslow SH, Maas JW, Bowden CL, et al.: CSF and urinary biogenic amines and metabolites in depression and mania. A controlled, univariate analysis. Arch Gen Psychiatr 40:999–1010, 1983.

    PubMed  CAS  Google Scholar 

  • Kristal BS, Kaddurah-Daouk R, Beal MF, et al.: Metabolomics: concept and potential neuroscience application, in Handbook of Neurochemistry and Molecular Neurobiology: Brain Energetics. Integration of Molecular and Cellular Processes. Edited by. Berlin Heidelberg New York, Springer, 2007, pp. 889–912.

    Google Scholar 

  • Kristal BS, Shurubor YI, Kaddurah-Daouk R, et al.: Metabolomics in the study of aging and caloric restriction. Methods Mol Biol 371:393–409, 2007.

    PubMed  CAS  Google Scholar 

  • Kugaya A, Sanacora G: Beyond monoamines: glutamatergic function in mood disorders. CNS Spectrum 10:808–819, 2005.

    Google Scholar 

  • Lake CR, Pickar D, Ziegler MG, et al.: High plasma norepinephrine levels in patients with major affective disorder. Am J Psychiatr 139:1315–1318, 1982.

    PubMed  CAS  Google Scholar 

  • Lassere MN, Johnson KR, Boers M, et al.: Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema. J Rheumatol 34:607–615, 2007.

    PubMed  Google Scholar 

  • Leonard BE: Evidence for a biochemical lesion in depression. J Clin Psychiatr 61 (Suppl. 6):12–17, 2000.

    CAS  Google Scholar 

  • Leoni V, Masterman T, Patel P, et al.: Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers. J Lipid Res 44:793–799, 2003.

    PubMed  CAS  Google Scholar 

  • Levine J, Panchalingam K, Rapoport A, et al.: Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatr 47:586–593, 2000.

    CAS  Google Scholar 

  • Levine J, Sela BA, Osher Y, et al.: High homocysteine serum levels in young male schizophrenia and bipolar patients and in an animal model. Prog Neuropsychopharmacol Biol Psychiatr 29:1181–1191, 2005.

    CAS  Google Scholar 

  • Lewine RR, Risch SC, Risby E, et al.: Lateral ventricle-brain ratio and balance between CSF HVA and 5-HIAA in schizophrenia. Am J Psychiatr 148:1189–1194, 1991.

    PubMed  CAS  Google Scholar 

  • Lieb J, Karmali R, Horrobin D: Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukot Med 10:361–367, 1983.

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Mailman RB, Duncan G, et al.: Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatr 44:1099–1117, 1998.

    CAS  Google Scholar 

  • Lin PY, Su KP: A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatr 68:1056–1061, 2007.

    CAS  Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E, et al.: Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12:289–320, 2000.

    CAS  Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E, et al.: Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol 187:137–146, 2003.

    PubMed  CAS  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK: Metabonomics in pharmaceutical R&D. FEBS J 274:1149–1151, 2007.

    Google Scholar 

  • Lucini V, Lucca A, Catalano M, et al.: Predictive value of tryptophan/large neutral amino acids ratio to antidepressant response. J Affect Disord 36:129–133, 1996.

    PubMed  CAS  Google Scholar 

  • Maas JW, Dekirmenjian H, Fawcett JA: MHPG excretion by patients with affective disorders. Int Pharmacopsychiatr 9:14–26, 1974.

    CAS  Google Scholar 

  • Maeng S, Zarate CA, Jr., Du J, et al.: Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptors. Biol Psychiatr, 2007.

    Google Scholar 

  • Maes M, Scharpe S, Meltzer HY, et al.: Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatr Res 54:143–160, 1994.

    CAS  Google Scholar 

  • Mahadik SP, Mukherjee S, Correnti EE, et al.: Plasma membrane phospholipid and cholesterol distribution of skin fibroblasts from drug-naive patients at the onset of psychosis. Schizophr Res 13:239–247, 1994.

    PubMed  CAS  Google Scholar 

  • Mahmood T, Silverstone T: Serotonin and bipolar disorder. J Affect Disord 66:1–11, 2001.

    PubMed  CAS  Google Scholar 

  • Maier B, Laurer HL, Rose S, et al.: Physiological levels of pro- and anti-inflammatory mediators in cerebrospinal fluid and plasma: a normative study. J Neurotrauma 22:822–835, 2005.

    PubMed  Google Scholar 

  • Maj M, Ariano MG, Arena F, et al.: Plasma cortisol, catecholamine and cyclic AMP levels, response to dexamethasone suppression test and platelet MAO activity in manic-depressive patients. A longitudinal study. Neuropsychobiology 11:168–173, 1984.

    PubMed  CAS  Google Scholar 

  • Makatsori A, Duncko R, Moncek F, et al.: Modulation of neuroendocrine response and non-verbal behavior during psychosocial stress in healthy volunteers by the glutamate release-inhibiting drug lamotrigine.

    Google Scholar 

  • Makatsori A, Duncko R, Moncek F, et al.: Modulation of neuroendocrine response and non-verbal behavior during psychosocial stress in healthy volunteers by the glutamate release-inhibiting drug lamotrigine. Neuroendocrinology 79:34–42, 2004.

    PubMed  CAS  Google Scholar 

  • Mann JJ, Oquendo M, Underwood MD, et al.: The neurobiology of suicide risk: a review for the clinician. J Clin Psychiatr 60 (Suppl. 2):7–11; discussion 18–20, 113–116, 1999.

    Google Scholar 

  • Mazure CM, Bowers MB: Pretreatment plasma HVA predicts neuroleptic response in manic psychosis. J Affect Disord 48:83–86, 1998.

    PubMed  CAS  Google Scholar 

  • Meisenzahl EM, Schmitt GJ, Scheuerecker J, et al.: The role of dopamine for the pathophysiology of schizophrenia. Int Rev Psychiatr 19:337–345, 2007.

    CAS  Google Scholar 

  • Miyamoto S, LaMantia AS, Duncan GE, et al.: Recent advances in the neurobiology of schizophrenia. Mol Interv 3:27–39, 2003.

    PubMed  Google Scholar 

  • Mooney JJ, Schatzberg AF, Cole JO, et al.: Urinary 3-methoxy-4-hydroxyphenylglycol and the depression-type score as predictors of differential responses to antidepressants. J Clin Psychopharmacol 11:339–343, 1991.

    PubMed  CAS  Google Scholar 

  • Morvan D, Demidem A: Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways. Cancer Res 67:2150–2159, 2007.

    PubMed  CAS  Google Scholar 

  • Mueller PS, Davis JM, Bunney WE, Jr., et al.: Plasma free fatty acids concentration in depressive illness. Arch Gen Psychiatr 22:216–221, 1970.

    PubMed  CAS  Google Scholar 

  • Muller N, Riedel M, Schwarz MJ: Psychotropic effects of COX-2 inhibitors—a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37:266–269, 2004.

    PubMed  CAS  Google Scholar 

  • Muller N, Schwarz MJ, Dehning S, et al.: The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatr 11:680–684, 2006.

    CAS  Google Scholar 

  • Murakami M, Kudo I: Phospholipase A2. J Biochem (Tokyo) 131:285–292, 2002.

    CAS  Google Scholar 

  • Nanda BL, Nataraju A, Rajesh R, et al.: PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants—a new role as anti-inflammatory molecule. Curr Top Med Chem 7:765–777, 2007.

    PubMed  CAS  Google Scholar 

  • Nicholson JK: Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52, 2006.

    PubMed  Google Scholar 

  • Obeid R, Kostopoulos P, Knapp JP, et al.: Biomarkers of folate and vitamin B12 are related in blood and cerebrospinal fluid. Clin Chem 53:326–333, 2007.

    PubMed  CAS  Google Scholar 

  • Odunsi K, Wollman RM, Ambrosone CB, et al.: Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 113:782–788, 2005.

    PubMed  CAS  Google Scholar 

  • Paige LA, Mitchell MW, Krishnan KR, et al.: A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatr 22:418–423, 2007.

    Google Scholar 

  • Palomino A, Gonzalez-Pinto A, Aldama A, et al.: Decreased levels of plasma glutamate in patients with first-episode schizophrenia and bipolar disorder. Schizophr Res 95:174–178, 2007.

    PubMed  Google Scholar 

  • Pani L, Pira L, Marchese G: Antipsychotic efficacy: relationship to optimal D2-receptor occupancy. Eur Psychiatr 22:267–275, 2007.

    Google Scholar 

  • Patterson AD, Li H, Eichler GS, et al.: UPLC-ESI-TOFMS-based metabolomics and gene expression dynamics inspector self-organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation. Anal Chem, 2008.

    Google Scholar 

  • Peet M, Moody JP, Worrall EP, et al.: Plasma tryptophan concentration in depressive illness and mania. Br J Psychiatr 128:255–258, 1976.

    CAS  Google Scholar 

  • Petty F, Schlesser MA: Plasma GABA in affective illness. A preliminary investigation. J Affect Disord 3:339–343, 1981.

    PubMed  CAS  Google Scholar 

  • Petty F, Rush AJ, Davis JM, et al.: Plasma GABA predicts acute response to divalproex in mania. Biol Psychiatr 39:278–284, 1996.

    CAS  Google Scholar 

  • Piccirillo G, Fimognari FL, Infantino V, et al.: High plasma concentrations of cortisol and thromboxane B2 in patients with depression. Am J Med Sci 307:228–232, 1994.

    PubMed  CAS  Google Scholar 

  • Portilla D, Li S, Nagothu KK, et al.: Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 69:2194–2204, 2006.

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Bosetti F: Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatr 59:592–596, 2002.

    PubMed  CAS  Google Scholar 

  • Reddy R, Keshavan M, Yao JK: Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 62:205–212, 2003.

    PubMed  Google Scholar 

  • Ross BM, Seguin J, Sieswerda LE: Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis 6:21, 2007.

    PubMed  Google Scholar 

  • Roy A, Guthrie S, Pickar D, et al.: Plasma norepinephrine responses to cold challenge in depressed patients and normal controls. Psychiatr Res 21:161–168, 1987.

    CAS  Google Scholar 

  • Roy A: Plasma HVA levels in depressed patients and controls. J Affect Disord 14:293–296, 1988.

    PubMed  CAS  Google Scholar 

  • Rozen S, Cudkowicz ME, Bogdanov M, et al.: Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108, 2005.

    PubMed  CAS  Google Scholar 

  • Sabatine MS, Liu E, Morrow DA, et al.: Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112:3868–3875, 2005.

    PubMed  CAS  Google Scholar 

  • Sajda P: Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 8:537–565, 2006.

    PubMed  CAS  Google Scholar 

  • Sanacora G, Saricicek A: GABAergic contributions to the pathophysiology of depression and the mechanism of antidepressant action. CNS Neurol Disord Drug Targets 6:127–140, 2007.

    PubMed  CAS  Google Scholar 

  • Schatzberg AF, Orsulak PJ, Rosenbaum AH, et al.: Catecholamine measures for diagnosis and treatment of patients with depressive disorders. J Clin Psychiatr 41:35–39, 1980.

    CAS  Google Scholar 

  • Schatzberg AF, Orsulak PJ, Rosenbaum AH, et al.: Toward a biochemical classification of depressive disorders, V: heterogeneity of unipolar depressions. Am J Psychiatr 139:471–475, 1982.

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ: Biogenic amines and affective disorders. Annu Rev Med 25:333–348, 1974.

    PubMed  CAS  Google Scholar 

  • Schmitt A, Maras A, Petroianu G, et al.: Effects of antipsychotic treatment on membrane phospholipid metabolism in schizophrenia. J Neural Transm 108:1081–1091, 2001.

    PubMed  CAS  Google Scholar 

  • Segal M, Avital A, Drobot M, et al.: Serum creatine kinase level in unmedicated nonpsychotic, psychotic, bipolar and schizoaffective depressed patients. Eur Neuropsychopharmacol 17:194–198, 2007a.

    CAS  Google Scholar 

  • Segal M, Avital A, Drobot M, et al.: CK levels in unmedicated bipolar patients. Eur Neuropsychopharmacol 17:763–767, 2007b.

    CAS  Google Scholar 

  • Sher L, Carballo JJ, Grunebaum MF, et al.: A prospective study of the association of cerebrospinal fluid monoamine metabolite levels with lethality of suicide attempts in patients with bipolar disorder. Bipolar Disord 8:543–550, 2006.

    PubMed  CAS  Google Scholar 

  • Shin H, Markey MK: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. J Biomed Inform 39:227–248, 2006.

    PubMed  CAS  Google Scholar 

  • Sicras -Mainar A, Blanca-Tamayo M, Rejas-Gutierrez J, et al.: Metabolic syndrome in outpatients receiving antipsychotic therapy in routine clinical practice: a cross-sectional assessment of a primary health care database. Eur Psychiatr, 2007.

    Google Scholar 

  • Skosnik PD, Yao JK: From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia? Prostaglandins Leukot Essent Fatty Acids 69:367–384, 2003.

    PubMed  CAS  Google Scholar 

  • Sobczak S, Honig A, van Duinen MA, et al.: Serotonergic dysregulation in bipolar disorders: a literature review of serotonergic challenge studies. Bipolar Disord 4:347–356, 2002.

    PubMed  CAS  Google Scholar 

  • Steuer R, Morgenthal K, Weckwerth W, et al.: A gentle guide to the analysis of metabolomic data. Methods Mol Biol 358:105–126, 2007.

    PubMed  CAS  Google Scholar 

  • Sublette ME, Russ MJ, Smith GS: Evidence for a role of the arachidonic acid cascade in affective disorders: a review. Bipolar Disord 6:95–105, 2004.

    PubMed  CAS  Google Scholar 

  • Swann AC, Secunda S, Davis JM, et al.: CSF monoamine metabolites in mania. Am J Psychiatr 140:396–400, 1983.

    PubMed  CAS  Google Scholar 

  • Swann AC, Petty F, Bowden CL, et al.: Mania: gender, transmitter function, and response to treatment. Psychiatr Res 88:55–61, 1999.

    CAS  Google Scholar 

  • Tandon R, Channabasavanna SM, Greden JF: CSF biochemical correlates of mixed affective states. Acta Psychiatr Scand 78:289–297, 1988.

    PubMed  CAS  Google Scholar 

  • Taylor V, MacQueen G: Associations between bipolar disorder and metabolic syndrome: a review. J Clin Psychiatr 67:1034–1041, 2006.

    Google Scholar 

  • Tkachev D, Mimmack ML, Huffaker SJ, et al.: Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int J Neuropsychopharmacol 10:557–563, 2007.

    PubMed  CAS  Google Scholar 

  • Tsang TM, Huang JT, Holmes E, et al.: Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J Proteome Res 5:756–760, 2006.

    PubMed  CAS  Google Scholar 

  • Underwood B, Broadhurst D, Dunn WB, et al.: Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129:877–886, 2006.

    PubMed  Google Scholar 

  • van der Greef J, Martin S, Juhasz P, et al.: The art and practice of systems biology in medicine: mapping patterns of relationships. J Proteome Res 6:1540–1559, 2007.

    PubMed  Google Scholar 

  • van Doorn M, Vogels J, Tas A, et al.: Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in Type 2 diabetes mellitus patients and healthy volunteers. Br J Clin Pharmacol 63:562–574, 2007.

    PubMed  Google Scholar 

  • Vasan RS: Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362, 2006.

    PubMed  Google Scholar 

  • Wang C, Kong H, Guan Y, et al.: Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77:4108–4116, 2005.

    PubMed  CAS  Google Scholar 

  • Watkins SM, Reifsnyder PR, Pan HJ, et al.: Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J Lipid Res 43:1809–1811, 2002.

    PubMed  CAS  Google Scholar 

  • Watkins SM: Lipomic profiling in drug discovery, development and clinical trial evaluation. Curr Opin Drug Discov Devel 7:112–117, 2004.

    PubMed  CAS  Google Scholar 

  • Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111, 2006.

    PubMed  CAS  Google Scholar 

  • Weljie AM, Dowlatabadi R, Miller BJ, et al.: An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. J Proteome Res 6:3456–3464, 2007.

    PubMed  CAS  Google Scholar 

  • Wichers MC, Koek GH, Robaeys G, et al.: IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatr 10:538–544, 2005.

    CAS  Google Scholar 

  • Wiest MM, Watkins SM: Biomarker discovery using high-dimensional lipid analysis. Curr Opin Lipidol 18:181–186, 2007.

    PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN, Jr., Tune LE, et al.: Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–1563, 1986.

    PubMed  CAS  Google Scholar 

  • Yang J, Xu G, Zheng Y, et al.: Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci 813:59–65, 2004.

    PubMed  CAS  Google Scholar 

  • Yao JK, Reddy R, McElhinny LG, et al.: Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophr Res 32:1–8, 1998a.

    CAS  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP: Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatr Res 80:29–39, 1998b.

    CAS  Google Scholar 

  • Yao JK, Reddy RD, van Kammen DP: Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatr 45:1512–1515, 1999.

    CAS  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP: Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatr Res 97:137–151, 2000.

    CAS  Google Scholar 

  • Yao JK, Reddy RD, van Kammen DP: Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310, 2001.

    PubMed  CAS  Google Scholar 

  • Yao JK, Thomas EA, Reddy RD, et al.: Association of plasma apolipoproteins D with RBC membrane arachidonic acid levels in schizophrenia. Schizophr Res 72:259–266, 2005.

    PubMed  Google Scholar 

  • Yao JK, Leonard S, Reddy R: Altered glutathione redox state in schizophrenia. Dis Markers 22:83–93, 2006.

    PubMed  CAS  Google Scholar 

  • Yoshimura R, Nakano Y, Hori H, et al.: Effect of risperidone on plasma catecholamine metabolites and brain-derived neurotrophic factor in patients with bipolar disorders. Hum Psychopharmacol 21:433–438, 2006.

    PubMed  CAS  Google Scholar 

  • Young LT, Warsh JJ, Kish SJ, et al.: Reduced brain 5-HT and elevated NE turnover and metabolites in bipolar affective disorder. Biol Psychiatr 35:121–127, 1994.

    CAS  Google Scholar 

  • Yuan K, Kong H, Guan Y, et al.: A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. J Chromatogr B Analyt Technol Biomed Life Sci 850:236–240, 2007.

    PubMed  CAS  Google Scholar 

  • Yumru M, Savas HA, Kurt E, et al.: Atypical antipsychotics related metabolic syndrome in bipolar patients. J Affect Disord 98:247–252, 2007.

    PubMed  CAS  Google Scholar 

  • Zarate CA, Jr., Singh JB, Carlson PJ, et al.: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatr 63:856–864, 2006.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by National Institutes of Health grants R24 GM078233, “The Metabolomics Research Network” (R.K.D., B.S.K., R.M.W.); SMRI (R.K.-D.), NARSAD (R.K.-D.), Stanley Medical Research Institute (M.P.Q. and J.C.S.); MH 68766 (J.C.S.), MH 69774 (J.C.S.), MH 068662 (J.C.S.), RR 20571 (J.C.S.), UTHSCSA's GCRC (M01-RR-01346) (J.C.S.) and Department of Psychiatry Friends of Psychiatry Grant (M.P.Q. and J.C.S.), NARSAD (J.C.S.), Veterans Administration (Merit Review) (J.C.S.), and the Krus Endowed Chair in Psychiatry (J.C.S.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaddurah-Daouk, R., Soares, J.C., Quinones, M.P. (2008). Metabolomics: A Global Biochemical Approach to the Discovery of Biomarkers for Psychiatric Disorders. In: Turck, C. (eds) Biomarkers for Psychiatric Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79251-4_6

Download citation

Publish with us

Policies and ethics