RNA Biomarkers in Schizophrenia

  • Daniel Martins de Souza
  • Emmanuel Dias-Neto


The deciphering of the human genome and the advances in transcriptome interrogation approaches and transformed RNA biomarkers make important promises for the understanding and management of psychiatric diseases. In this chapter we describe the techniques more widely used for gene expression analysis and present the main findings in the search for RNA biomarkers in schizophrenia such as the recurrent observation of alterations in genes that encode proteins involved in pathways related to myelinization, synapses, and energy metabolism. We also discuss the main findings resultant from peripheral blood cell studies and present new techniques and new sources of RNA biomarkers for the future of research in schizophrenia.


Peripheral Blood Cell Neuropsychiatric Disease Metachromatic Leukodystrophy Stanley Neuropathology Consortium Double Stranded cDNA Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alternative splicing


Dopamine receptor 2


Long isoform of dopamine receptor 2


Short isoform of dopamine receptor 2


Dorsolateral pre-frontal cortex




Expressed sequence tags


United States Food and Drug Administration


Gamma-amino butyric acid — A


Guanine nucleotide-binding regulatory protein Go-alpha


Metabotropic glutamate receptors




Neural cell adhesion molecule


Noncoding RNA


N-methyl-D-aspartic acid


Pre-frontal cortex


Pre-synaptic function


Quantitative polymerase chain reaction


Serial analysis of gene expression






peroxisomal acyl-CoA oxidase — short-chain dehydrogenase


peroxisomal acyl-CoA oxidase — long-chain dehydrogenase


acetyl-coenzyme A acyltransferase 2




adenylosuccinate synthetase


citrate lyase, alkylglycerone phosphate synthase


glutamate receptor ionotropic AMPA2


catalytic polypeptide-like apolipoprotein B mRNA editing enzyme 3B


ataxia telangiectasia mutated


synthase mitochondrial F1 complex alpha


antizyme inhibitor


cell translocation gene 1, antiproliferative


calmodulin 3




Charcot-Leyden crystal protein


claudin 11; oligodendrocyte specific protein


2′,3′-cyclic nucleotide 3′ phosphodiesterase


carnitine palmitoyltransferases 1


carnitine palmitoyltransferases 2




alpha catenin


chemokine C-X-C motif ligand 1


cytochrome P450 family 1, subfamily B, polypeptide 1


death-associated transcription factor 1


dual specificity phosphatase 6


ezrin-radixin-moesin phosphoprotein 50


endothelial differentiation gene 2




v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)


v-erb-b2 erythroblastic leukemia viral oncogene


growth-associated protein-43


glyceraldehyde-3-phosphate dehydrogenase


glutamic-oxaloacetic transaminase 2


glycogen synthase kinase 3 α




class II, DR β 1


heterogeneous nuclear ribonucleoprotein A3


myelin-associated glycoprotein


T-lymphocyte maturation-associated protein


myristoylated alanine-rich C kinase substrate


myc-associated zinc finger protein


malate dehydrogenase 1


myelin oligodendrocyte glycoprotein


mitochondrial complex I 75-kDa subunit


neuropeptide Y


neuropeptide Y receptor Y1 gene


neuregulin 1


N-ethylmaleimide sensitive factor


ornithine aminotransferase


3-oxoacid CoA transferase


pyruvate dehydrogenase


PDZ and LIM domain 5 ()


muscle pyruvate kinase


plasmolipin or transmembrane 4 superfamily 11


proteolipid protein


quaking homolog


RAB3C, member RAS oncogene family

S100A9 S100

calcium binding protein A9


superior cervical ganglia-10


selenium-binding protein 1




splicing factor, arginine/serine-rich 1


sensory motor neuron derived factor


synapsin 2


synaptojanin 1


MAX-like protein X




translocase of inner mitochondrial membrane 17


tumor necrosis factor receptor 2


ubiquitin C-terminal esterase L1


ubiquitin-specific protease 14


tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide



The authors thank ABADHS (Associação Beneficente Alzira Denise Hertzog Silva), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo — Brazil), CNPq (Conselho Nacional de Pesquisas) and DAAD (Deutscher Akademischer Austauschdienst) for their fundamental support of our research.


  1. Aberg K , Saetre P, Lindholm E et al. (2006a) Human QKI, a new candidate gene for schizophrenia involved in myelination. Am J Med Genet B Neuropsychiatr Genet. 141(1):84–90.Google Scholar
  2. Aberg K , Saetre P, Jareborg N, Jazin E (2006b) Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci U S A. 103(19):7482–7487.Google Scholar
  3. Adams MD, Dubnick M, Kerlavage AR et al. (1992) Sequence identification of 2,375 human brain genes. Nature. 355(6361):632–634.PubMedGoogle Scholar
  4. Aigner L, Arber S, Kapfhammer JP et al. (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell. 83:269–278.PubMedGoogle Scholar
  5. Arai M, Amano S, Ryo A et al. (2003) Identification of epilepsy-related genes by gene expression profiling in the hippocampus of genetically epileptic rat. Brain Res Mol Brain Res. 118(1–2):147–151.PubMedGoogle Scholar
  6. Arion D, Unger T, Lewis DA (2007) Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatr. 62(7):711–721.Google Scholar
  7. Arnold SE, Franz BR, Gur RC et al. (1995) Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatr. 152(5):738–748.PubMedGoogle Scholar
  8. Aston C, Jiang L, Sokolov BP (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res. 77(6):858–866.PubMedGoogle Scholar
  9. Avedissian M, Longo BM, Jaqueta CB et al. (2007) Hippocampal gene expression analysis using the ORESTES methodology shows that homer 1a mRNA is upregulated in the acute period of the pilocarpine epilepsy model. Hippocampus. 17(2):130–136.PubMedGoogle Scholar
  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297.PubMedGoogle Scholar
  11. Bell R, Munro J, Russ C et al. (2000) Systematic screening of the 14-3-3 eta (eta) chain gene for polymorphic variants and case-control analysis in schizophrenia. Am J Med Genet. 96(6):736–743.PubMedGoogle Scholar
  12. Benes FM, McSparren J, Bird ED et al. (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatr. 48(11):996–1001.PubMedGoogle Scholar
  13. Ben-Shachar D, Laifenfeld D (2004) Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol. 59:273–296.PubMedGoogle Scholar
  14. Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P (2004) Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol. 67(10):1965–1974.PubMedGoogle Scholar
  15. Benton WD, Davis RW (1977) Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 196(4286):180–182.PubMedGoogle Scholar
  16. Bertucci F, Bernard K, Loriod B et al. (1999) Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum Mol Genet. 8, 1715–1722PubMedGoogle Scholar
  17. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell. 126(1):37–47.PubMedGoogle Scholar
  18. Bovenberg RA, Burbach JP, Wiegant VM et al. (1986) Gamma-Endorphin and schizophrenia: amino acid composition of gamma-endorphin and nucleotide sequence of gamma-endorphin cDNA from pituitary glands of schizophrenic patients. Brain Res. 376(1):29–37.PubMedGoogle Scholar
  19. Bowden NA, Weidenhofer J, Scott RJ et al. (2006) Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res. 82(2–3):175–183.PubMedGoogle Scholar
  20. Bubber P, Tang J, Haroutunian V et al. (2004) Mitochondrial enzymes in schizophrenia. J Mol Neurosci. 24(2):315–321.PubMedGoogle Scholar
  21. Buratti E, Baralle M, Baralle FE (2006) Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res. 34(12):3494–3510.PubMedGoogle Scholar
  22. Cai J, Ash D, Kotch LE et al. (2005) Gene expression in pharyngeal arch 1 during human embryonic development. Hum Mol Genet. 14(7):903–912.PubMedGoogle Scholar
  23. Camargo AA, Samaia HP, Dias-Neto E et al. (2001) The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome. Proc Natl Acad Sci U S A. 98(21):12103–12108.PubMedGoogle Scholar
  24. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298.PubMedGoogle Scholar
  25. Chakravarty A (2003) Surrogate Markers: Their Role in Regulatory Decision Process. Food and Drug Administration. Scholar
  26. Cheng J, Kapranov P, Drenkow J et al. (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 308(5725):1149–1154.PubMedGoogle Scholar
  27. Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatr. 11:459–470.Google Scholar
  28. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatr. 160(6):1100–1109.PubMedGoogle Scholar
  29. Cowell JK, Hawthorn L (2007) The application of microarray technology to the analysis of the cancer genome. Curr Mol Med. 7(1):103–120.PubMedGoogle Scholar
  30. Cuperlovic-Culf M, Belacel N, Culf AS, Ouellette RJ (2006) Microarray analysis of alternative splicing. OMICS. 10(3):344–357.PubMedGoogle Scholar
  31. Dai X, Lercher LD, Clinton PM et al. (2003) The trophic role of oligodendrocytes in the basal forebrain. J Neurosci. 23(13):5846–5853.PubMedGoogle Scholar
  32. Dias-Neto E, Correa RG, Verjovski-Almeida S et al. (2000) Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proc Natl Acad Sci U S A. 97(7):3491–3496.PubMedGoogle Scholar
  33. Dracheva S, Davis KL, Chin B et al. (2006) Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis. 21(3):531–540.PubMedGoogle Scholar
  34. Ebersole TA, Chen Q, Justice MJ, Artzt K (1996) The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat Genet. 12(3):260–265.PubMedGoogle Scholar
  35. Frances AJ, First MB, Widiger TA et al. (1991) An A to Z guide to DSM-IV conundrums. J Abnorm Psychol 100:407–412.PubMedGoogle Scholar
  36. Freedman R (2003). Schizophrenia. N Engl J Med. 349:1738–1749.PubMedGoogle Scholar
  37. Giraldez AJ, Cinalli RM, Glasner ME et al. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science. 308(5723):833–838.PubMedGoogle Scholar
  38. Giros B, Sokoloff P, Martres MP et al. (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature. 342(6252):923–926.PubMedGoogle Scholar
  39. Glatt SJ, Everall IP, Kremen WS et al. (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci U S A. 102(43):15533–15538.PubMedGoogle Scholar
  40. Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 72(10):3961–3965.PubMedGoogle Scholar
  41. Günthard HF, Wong JK, Ignacio CC et al. (1998) Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples. AIDS Res Hum Retrovir. 14(10):869–876.PubMedGoogle Scholar
  42. Hakak Y, Walker JR, Li C et al. (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A. 98(8):4746–4751.PubMedGoogle Scholar
  43. Hardy RJ, Loushin CL, Friedrich VL Jr et al. (1996) Neural cell type-specific expression of QKI proteins is altered in quaking viable mutant mice. J Neurosci. 16(24):7941–7949.PubMedGoogle Scholar
  44. Hendriksen H, Datson NA, Ghijsen WE et al. (2001) Altered hippocampal gene expression prior to the onset of spontaneous seizures in the rat post-status epilepticus model. Eur J Neurosci. 14(9):1475–1484.PubMedGoogle Scholar
  45. Hu M, Polyak K (2006) Serial analysis of gene expression. Nat Protoc. 1:1743–1760.PubMedGoogle Scholar
  46. Hughes TR, Hiley SL, Saltzman AL et al. (2006) Microarray analysis of RNA processing and modification. Methods Enzymol. 410:300–16.PubMedGoogle Scholar
  47. Huntsman MM, Tran BV, Potkin SG et al. (1998) Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci U S A. 95(25):15066–15071.PubMedGoogle Scholar
  48. Hyde TM, Ziegler JC, Weinberger DR (1992) Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis. Arch Neurol. 49(4):401–406.PubMedGoogle Scholar
  49. Kan Z, Rouchka EC, Gish WR, States DJ (2001) Gene Structure Prediction and Alternative Splicing Analysis Using Genomically Aligned ESTs. Genome Res 11(5):889–900.PubMedGoogle Scholar
  50. Kane MD, Jatkoe TA, Stumpf CR et al. (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28, 4552–4557PubMedGoogle Scholar
  51. Kao HT, Porton B, Czernik AJ et al. (1998) A third member of the synapsin gene family. Proc Natl Acad Sci U S A. 95(8):4667–4672.PubMedGoogle Scholar
  52. Kapranov P, Cawley SE, Drenkow J et al. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science. 296(5569):916–919.PubMedGoogle Scholar
  53. Karry R, Klein E, Ben Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatr. 55(7):676–684.Google Scholar
  54. Katsel P, Davis KL, Haroutunian V (2005) Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res. 79(2–3):157–173.PubMedGoogle Scholar
  55. Kim JM, Lee KH, Jeon YJ et al. (2006) Identification of genes related to Parkinson's disease using expressed sequence tags. DNA Res. 13(6):275–286.PubMedGoogle Scholar
  56. Klevering BJ, Yzer S, Rohrschneider K et al. (2004) Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet. 12(12):1024–1032.PubMedGoogle Scholar
  57. Knox DP, Skuce PJ (2005) SAGE and the quantitative analysis of gene expression in parasites. Trends Parasitol. 21:322–326.PubMedGoogle Scholar
  58. Kozal MJ, Shah N, Shen N et al. (1996) Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nat Med. 2(7):753–759.PubMedGoogle Scholar
  59. Krichevsky AM, King KS, Donahue CP et al. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 9(10):1274–1281. Erratum in: RNA. 2004 10(3):551.PubMedGoogle Scholar
  60. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells. 24(4):857–864.PubMedGoogle Scholar
  61. Law AJ, Kleinman JE, Weinberger DR, Weickert CS (2007) Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet. 16(2):129–141.PubMedGoogle Scholar
  62. Liston C, Miller MM, Goldwater DS et al. (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 26(30):7870–7874.PubMedGoogle Scholar
  63. Liu X, Qin W, He G et al. (2005) A family-based association study of the MOG gene with schizophrenia in the Chinese population. Schizophr Res. 73(2–3):275–280.PubMedGoogle Scholar
  64. Lockhart DJ, Dong H, Byrne MC et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14:1675–1680.PubMedGoogle Scholar
  65. Lu L, Neff F, Alvarez-Fischer D et al. (2005a) Gene expression profiling of Lewy body-bearing neurons in Parkinson's disease. Exp Neurol. 195(1):27–39.Google Scholar
  66. Lu J, Getz G, Miska EA et al. (2005b) MicroRNA expression profiles classify human cancers. Nature. 435(7043):834–838.Google Scholar
  67. Lukiw WJ, Pogue AI (2007) Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem. 101(9):1265–1269.PubMedGoogle Scholar
  68. Magic Z, Radulovic S, Brankovic-Magic M (2007) cDNA microarrays: identification of gene signatures and their application in clinical practice. J BUON. 12 (Suppl. 1):S39–S44.PubMedGoogle Scholar
  69. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 27(3):435–448.PubMedGoogle Scholar
  70. Margulies M, Egholm M, Altman WE et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature. 437:376–380.PubMedGoogle Scholar
  71. Martorell L, Segues T, Folch G et al. (2006) New variants in the mitochondrial genomes of schizophrenic patients. Eur J Hum Genet. 14(5):520–528.PubMedGoogle Scholar
  72. McCullumsmith RE, Gupta D, Beneyto M et al. (2007) Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr Res. 90(1–3):15–27.PubMedGoogle Scholar
  73. McNamara RK, Lenox RH (1997) Comparative distribution of myristoylated alanine-rich C kinase substrate (MARCKS) and F1/GAP-43 gene expression in the adult rat brain. J Comp Neurol. 379(1):48–71.PubMedGoogle Scholar
  74. Mehler-Wex C, Duvigneau JC, Hartl RT et al. (2006) Increased mRNA levels of the mitochondrial complex I 75-kDa subunit. A potential peripheral marker of early onset schizophrenia? Eur Child Adolesc Psychiatr. 15(8):504–507.Google Scholar
  75. Middleton FA, Mirnics K, Pierri JN et al. (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 22(7):2718–2729.PubMedGoogle Scholar
  76. Middleton FA, Pato CN, Gentile KL et al. (2005) Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet. 136(1):12–25.Google Scholar
  77. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 24:167–202.PubMedGoogle Scholar
  78. Mimmack ML, Ryan M, Baba H et al. (2002) Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci U S A. 99(7):4680–4685.PubMedGoogle Scholar
  79. Mirnics K, Middleton FA, Marquez A et al. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 28(1):53–67.PubMedGoogle Scholar
  80. Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 8:479–486; Review.Google Scholar
  81. Miska EA, Alvarez-Saavedra E, Townsend M et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5(9):R68.PubMedGoogle Scholar
  82. Mowry BJ, Ewen KR, Nancarrow DJ et al. (2000) Second stage of a genome scan of schizophrenia: study of five positive regions in an expanded sample. Am J Med Genet. 96(6):864–869.PubMedGoogle Scholar
  83. Nielsen KL, Hϕgh AL, Emmersen J (2006) DeepSAGE—digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res. 34(19):e133.PubMedGoogle Scholar
  84. Noureddine MA, Li YJ, van der Walt JM et al. (2005) Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra. Mov Disord. 20(10):1299–1309.PubMedGoogle Scholar
  85. Numata S, Ueno S, Iga J et al. (2007) Gene expression in the peripheral leukocytes and association analysis of PDLIM5 gene in schizophrenia. Neurosci Lett. 415(1):28–33.PubMedGoogle Scholar
  86. Ouchi Y, Kubota Y, Ito C (2004) Serial analysis of gene expression in methamphetamine- and phencyclidine-treated rodent cerebral cortices: are there common mechanisms? Ann N Y Acad Sci. 1025:57–61.PubMedGoogle Scholar
  87. Owen MJ, O'Donovan MC, Harrison PJ (2005) Schizophrenia: a genetic disorder of the synapse? BMJ 330: 158–159.PubMedGoogle Scholar
  88. Ozbas-Gerçeker F, Redeker S, Boer K et al. (2006) Serial analysis of gene expression in the hippocampus of patients with mesial temporal lobe epilepsy. Neuroscience. 138(2):457–474.PubMedGoogle Scholar
  89. Patino WD, Mian OY, Hwang PM (2002) Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circ Res. 91(7):565–569.PubMedGoogle Scholar
  90. Peirce TR, Bray NJ, Williams NM et al. (2006) Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatr. 63(1):18–24.PubMedGoogle Scholar
  91. Perkins DO, Jeffries CD, Jarskog LF et al. (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 8(2):R27.PubMedGoogle Scholar
  92. Perl O, Strous RD, Dranikov A et al. (2006) Low levels of alpha7-nicotinic acetylcholine receptor mRNA on peripheral blood lymphocytes in schizophrenia and its association with illness severity. Neuropsychobiology. 53(2):88–93.PubMedGoogle Scholar
  93. Polak M, Haymaker W, Johnson JE, D'Amelio F (1982) Neuroglia and their reactions. In: Haymaker W, Adams RD (Eds.) Histology and Histopathology of the Nervous System. Springfield: Charles C. Thomas.Google Scholar
  94. Prabakaran S, Swatton JE, Ryan MM et al. (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatr. 9(7):684–697, 643.Google Scholar
  95. Raedler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol. 8(1):157–161.PubMedGoogle Scholar
  96. Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatr. 49(9):741–752.Google Scholar
  97. Ryu EJ, Angelastro JM, Greene LA (2005) Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis. 18(1):54–74.PubMedGoogle Scholar
  98. Ryu EJ, Harding HP, Angelastro JM et al. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci. 22(24):10690–10698.PubMedGoogle Scholar
  99. Saha S, Sparks AB, Rago C et al. (2002) Using the transcriptome to annotate the genome. Nat Biotechnol. 20(5):508–512.PubMedGoogle Scholar
  100. Sartorius LJ, Nagappan G, Lipska BK et al. (2006) Alternative splicing of human metabotropic glutamate receptor 3. J Neurochem. 96(4):1139–1148.PubMedGoogle Scholar
  101. Schratt GM, Tuebing F, Nigh EA et al. (2006) A brain-specific microRNA regulates dendritic spine development. Nature. 439(7074):283–289; Erratum in: Nature. 2006 441(7095):902.PubMedGoogle Scholar
  102. Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci U S A. 72: 4376–4380.PubMedGoogle Scholar
  103. Sidman RL, Dickie MM, Appel SH (1964) Mutant Mice (Quaking and Jimpy) with deficient myelination in the central nervous system. Science. 144:309–311.PubMedGoogle Scholar
  104. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R (2006) The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet. 141(2):142–148.Google Scholar
  105. Soares MB, Bonaldo MF, Jelene P et al. (1994) Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci U S A. 91(20):9228–9232.PubMedGoogle Scholar
  106. Sun Y, Zhang L, Johnston NL et al. (2001) Serial analysis of gene expression in the frontal cortex of patients with bipolar disorder. Br J Psychiatr (Suppl. 41):s137–s141.Google Scholar
  107. Tennis M, Krishnan S, Bonner M et al. (2006) p53 Mutation analysis in breast tumors by a DNA microarray method. Cancer Epidemiol Biomarkers Prev. 15(1):80–85.PubMedGoogle Scholar
  108. Tkachev D, Mimmack ML, Ryan MM et al. (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet. 362(9386):798–805.PubMedGoogle Scholar
  109. Tosato S, Dazzan P, Collier D (2005) Association between the neuregulin 1 gene and schizophrenia: a systematic review. Schizophr Bull. 31(3):613–617.PubMedGoogle Scholar
  110. Tsuang MT, Nossova N, Yager T et al. (2005) Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 133(1):1–5.Google Scholar
  111. Uranova N, Orlovskaya D, Vikhreva O et al. (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res. Bull. 55, 597–610.PubMedGoogle Scholar
  112. Usiello A, Baik JH, Rouge-Pont F et al. (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 408(6809):199–203.PubMedGoogle Scholar
  113. Van Bogaert P, Azizieh R, Désir J et al. (2007) Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 61(6):579–586.PubMedGoogle Scholar
  114. Vawter MP, Barrett T, Cheadle C et al. (2001) Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull. 55(5):641–650.PubMedGoogle Scholar
  115. Vawter MP, Frye MA, Hemperly JJ et al. (2000) Elevated concentration of N-CAM VASE isoforms in schizophrenia. J Psychiatr Res. 34(1):25–34.PubMedGoogle Scholar
  116. Vawter MP, Crook JM, Hyde TM et al. (2002) Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res. 58(1):11–20.PubMedGoogle Scholar
  117. Vawter MP, Ferran E, Galke B et al. (2004) Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res. 67(1):41–52.PubMedGoogle Scholar
  118. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science. 270:484–487.PubMedGoogle Scholar
  119. Vo N, Klein ME, Varlamova O et al. (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 102(45):16426–16431; Erratum in: Proc Natl Acad Sci U S A. 2006 17;103(3):825.PubMedGoogle Scholar
  120. Wan C, Yang Y, Feng G et al. (2005) Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci Lett. 388(3):126–131.PubMedGoogle Scholar
  121. Wang SM (2007) Understanding SAGE data. Trends Genet. 23(1):42–50.PubMedGoogle Scholar
  122. Xi ZR, Qin W, Yang YF et al. (2004) Transmission disequilibrium analysis of the GSN gene in a cohort of family trios with schizophrenia. Neurosci Lett. 372(3):200–203.PubMedGoogle Scholar
  123. Xu R, Hranilovic D, Fetsko LA et al. (2002) Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol Psychiatr. 7(10):1075–1082.Google Scholar
  124. Xu PT, Li YJ, Qin XJ et al. (2007) A SAGE study of apolipoprotein E3/3, E3/4 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Mol Cell Neurosci. 36(3):313–331.PubMedGoogle Scholar
  125. Yao JK, Reddy RD, van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs. 15(4):287–310.PubMedGoogle Scholar
  126. Zaidel DW, Esiri MM, Harrison PJ (1997) Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatr. 154(6):812–818.PubMedGoogle Scholar
  127. Zhang B, Farwell MA (2007) microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med. [Epub ahead of print].Google Scholar
  128. Zhao C, Xu Z, Chen J et al. (2006) Two isoforms of GABA(A) receptor beta2 subunit with different electrophysiological properties: Differential expression and genotypical correlations in schizophrenia. Mol Psychiatr. 11(12):1092–1105.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniel Martins de Souza
    • 1
    • 2
  • Emmanuel Dias-Neto
    • 1
    • 3
  1. 1.Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Faculdade de MedicinaUniversidade de São Paulo (USP)Brazil
  2. 2.Laboratório de Proteômica, Dept. de Bioquímica, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)Brazil
  3. 3.MD Anderson Cancer CenterUniversity of TexasHoustonUSA

Personalised recommendations