DNA Biomarkers for Pharmacogenomics and Personalized Medicine

  • John Raelson*
  • Abdelmajid Belouchi


Genome-wide association studies are expected to soon provide a significant increase in disease associated DNA sequences that can serve as biomarkers for diagnosis and treatment for psychiatric illnesses. These biomarkers have the potential to identify precisely defined disease phenotypes and to predict effective individually specific therapies. This chapter reviews the current knowledge of the association between DNA markers and disease phenotypes and discusses some of the anticipated problems that need to be overcome before DNA biomarkers can provide specific and sensitive diagnostic tests for both the presence of disease and the prediction of individual response to specific drugs.


Attention Deficit Hyperactivity Disorder Bipolar Disorder Major Depression Disorder Generalize Anxiety Disorder Single Nucleotide Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Attention deficit hyperactivity disorder


Genes, genes whose products are involved in absorption, distribution, metabolism and excretion of drugs


Bipolar disorder


Clinical Antipsychotic Trials of Intervention Effectiveness


Chi-square statistic for significance of counts


Deoxyribonucleic acid


Food and Drug Administration USA


Generalized anxiety disorder


Genetic Association Information Network


Genome-wide association study(ies) (=WGAS)


Linkage disequilibrium


Major depressive disorder


National Institute of Health USA


Negative predictive value of a diagnostic test


Positive predictive value of a diagnostic test


Prevalence of a disease or phenotype in a population


Ribonucleic acid


Sensitivity of a diagnostic test


Single nucleotide polymorphism


Specificity of a diagnostic test


Sequenced Treatment Alternatives for Depression Study




Whole genome association study(ies) (=GWAS)


Wellcome Trust Case-Control Consortium

Gene Abbreviations


Adenosine tri-phosphate-binding cassette sub-family B member 1, chromosome 7q21.12


Class I alcohol dehydrogenase 1 alpha subunit, chromosome 4q23


Class I alcohol dehydrogenase 1 beta subunit, chromosome 4q23


Class II alcohol dehydrogenase 4 pi subunit, chromosome 4q23


Mitochondrial aldehyde dehydrogenase 2, chromosome 12q24.12


Aldehyde oxidase, chromosome 2p33.1


Brain derived neurotrophic factor, chromosome 11p14.1


Breast cancer 1, chromosome 17q21.311

CARD15 (=NOD2)

Caspase recruitment domain 15 gene, chromosome 16q12.1


Cholinergic receptor muscarinic 2, chromosome 7q33


Catechol-O-methyltransferase, chromosome 22q11.21

CYP (=P450)

Cytochrome heme protein with pigment at 450 nm absorption; very large family of heme containing proteins involved in multi-component electron transfer chains. Many are involved in drug metabolism.


Cytochrome P450, family 2, subfamily E, polypeptide 1 variant, chromosome 10q26.3


d-amino acid oxidase, chromosome 12q24.11


Dopamine transporter, (=solute carrier family 6) chromosome 5p15.33


Dopamine β-hydroxylase precursor, chromosome 9q34.2


Disrupted in schizophrenia 1, chromosome 1q42.2


Dopamine receptor D1, chromosome 5q35.2


Dopamine receptor D2, chromosome 11q23.1-q23.2


Dopamine receptor D3, chromosome 3q13.31


Dopamine receptor D4, chromosome 11p15.5


Dopamine receptor D5, chromosome 4p16.1


Distrobrevin binding protein 1, (=dysbindin), chromosome 6p22.3)


The genomic homologue of erythroblastic leukemia viral oncogene, chromosome 2q34)


Flavin containing mono-oxygenase 3 isoform, chromosome 1q24.3


Gamma aminobutyric acid A receptor, chromosome 4p12


Glutamate decarboxylase 2, chromosome 10p12.1


5-Hydroxy tryptamine (serotonin) receptor 1B, chromosome 6q14


5-Hydroxy tryptamine (serotonin) receptor 2A, chromosome 13q14.2

5-HTT (=SLC6A4, =hSERT)

5-Hydroxy tryptamine transporter = serotonin symporter), chromosome 17q11.1-q12


5-HTT linked polymorphic region, a repeat length polymorphism in the promoter of the serotonin transporter gene

LG72 (=G72 = DAOA)

d-amino acid oxidase activator, chromosome 13q33.2


Monoamine oxidase A, chromosome Xp11.3

NOD2 (=CARD15)

Nucleotide binding oligomerization domain, chromosome 16q12.1


Neuregulin 1, chromosome 8p12


Phosphatidylinositol 3-kinase-AKT protein substrate, cell signaling pathway, multiple genes


Peroxisome proliferative activator receptor gamma, chromosome 3p25.2-p25.1

SLC6A4 (=5-HTT = hSERT)

Solute carrier family 6 neurotransmitter transporter (=5- hydroxy tryptamine transporter = serotonin symporter), chromosome 17q11.1-q12


Synaptosome associated protein, chromosome 20p12.2


Taste receptor 16, chromosome 7q31.32


Tryptophan hydroxylase 1, chromosome 11p15.1


Uridine di-phosphate glycosyltransferase 1 family, polypeptide A4, chromosome 2q37.1


  1. Abstracts for 15th World Congress of Psychiatric Genetics (2006) Am J Med Genet BNeuropsychiatr Genet141:683–824 Google Scholar
  2. Ahmadi KR, Weale ME, Xue ZY, Soranzo N, Yarnall DP, Briley JD, Maruyama Y, Kobayashi M, Wood NW, Spurr NK, Burns DK, Roses AD, Saunders AM, Goldstein DB (2005) A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet 37:84–89PubMedCrossRefGoogle Scholar
  3. Altman DG, Bland JM (1994) Statistic notes: diagnostic tests 1: sensitivity and specificity. BMJ 308:1552PubMedCrossRefGoogle Scholar
  4. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80PubMedCrossRefGoogle Scholar
  5. Barnett JH, Jones PB,Robbins TW, Muller U (2007) Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Mol Psychiatr 12:502–509Google Scholar
  6. Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatr 5:405–409CrossRefGoogle Scholar
  7. Barr CL, Feng Y, Wigg KG, Schachar R, Tannock R, Roberts W, Malone M, Kennedy JL (2001) 5′-untranslated region of the do-pamine D4 receptor gene and attention-deficit hyperactivity dis-order. Am J Med Genet 105:84–90PubMedCrossRefGoogle Scholar
  8. Battaglia M, Ogliari A, Zanoni A, Citterio A, Pozzoli U, Giorda R, Maffei C, Marino C (2005) Influence of the serotonin trans-porter promoter gene and shyness on children’s cerebral re-sponses to facial expressions. Arch Gen Psychiatr 62:85–94PubMedCrossRefGoogle Scholar
  9. Bengtsson BO, Thomson G (1981) Measuring the strength of asso-ciations between HLA antigens and diseases. Tissue Antigens 18:365–363CrossRefGoogle Scholar
  10. Benzecri J-P (1992) Correspondence analysis handbook.Dekker New YorkGoogle Scholar
  11. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ (2001) Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that di-rectly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69:428–433PubMedCrossRefGoogle Scholar
  12. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  13. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Map-ping complex disease loci in whole-genome association studies. Nature 429:446–452PubMedCrossRefGoogle Scholar
  14. Carter JC (2007) Multiple genes and factors associated with bipo-lar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 50:461–490PubMedCrossRefGoogle Scholar
  15. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymor-phism in the 5-HTT gene. Science 301:291–293CrossRefGoogle Scholar
  16. Covault J, Gelernter J, Hesselbrock V, Nellissery M, Kranzler HR (2004) Allelic and haplotypic association of GABRA2 with al-cohol dependence. Am J Med Genet B Neuropsychiatr Genet 129:104–109CrossRefGoogle Scholar
  17. Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB, DePaulo JR, McInnis MG, Cox NJ, McMahon FJ (2004) Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatr 9:87–92CrossRefGoogle Scholar
  18. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard F-P, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon A-M, Caterina D, Dufaure I, Maleksadeh K, Belova M, Luan J-J, Bouilolot M, Sambucy J-L, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub R, Weinberger, Cohen N, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Nat Acad Sci USA 99:13675–13680PubMedCrossRefGoogle Scholar
  19. Cook EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56:993–998PubMedGoogle Scholar
  20. Crabb DW, Edenberg HJ, Bosron WF, Li TK (1989) Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest 83:314–316PubMedCrossRefGoogle Scholar
  21. Leon J de (2006) AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Exp Rev Mol Diagn 6:277–286CrossRefGoogle Scholar
  22. Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizo-phrenia and bipolar disorder: review and meta-analysis. Biol Psychiatr 60:106–114CrossRefGoogle Scholar
  23. Dick DM Bierut LJ (2006) The genetics of alcohol dependence. Curr Psychiatr Rep 8:151–157CrossRefGoogle Scholar
  24. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart H, Abraham C, Regueiro M, Griffiths A, Das-sopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee A, Gregersen PK, Barmada MM, Rotter JI Nicolae DL, Cho JH (2006) A genome-wide association study Identifies IL23R as an inflammatory bowel disease gene. Sci-ence 314:1461–1463Google Scholar
  25. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO, Crowe RR, Goate A, Hesselbrock V, Jones K, Kwon J, Li TK, Nurnberger JI, O’Connor SJ, Reich T, Rice J, Schuckit MA, Porjesz B, Foroud T, Begleiter H (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714PubMedCrossRefGoogle Scholar
  26. Edenberg HJ, Xuei X, Chen HJ, Tian H, Wetherill LF, Dick DM, Almasy L, Bierut L, Bucholz KK, Goate A, Hesselbrock V, Ku-perman S, Nurnberger J, Porjesz B, Rice J, Schuckit M, Tisch-field J, Begleiter H, Foroud T (2006) Association of alcohol de-hydrogenase genes with alcohol dependence: a comprehensive analysis. Hum Mol Genet 15:1539–1549PubMedCrossRefGoogle Scholar
  27. Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatr 1052–1057 Google Scholar
  28. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatr 57:1313–1323CrossRefGoogle Scholar
  29. Farmer A, Elkin A, McGuffin P (2007) The genetics of bipolar af-fective disorder. Curr Opin Psychiatr 20:8–12CrossRefGoogle Scholar
  30. Fehr C, Sander T, Tadic A, Lenzen KP, Anghelescu I, Klawe C, Dahmen N, Schmidt LG, Szegedi A (2006) Confirmation of as-sociation of the GABRA2 gene with alcohol dependence by sub-type-specific analysis. Psychiatr Genet 16:9–17PubMedCrossRefGoogle Scholar
  31. Frodl T, Schüle C, Schmitt G, Born C, Baghai T, Zill P, Bottlender R, Rupprecht R, Bondy B, Reiser M, Möller HJ, Meisenzahl EM (2007) Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch Gen Psychiatr 64:410–416PubMedCrossRefGoogle Scholar
  32. Gemma S, Vichi S, Testai E (2006) Individual susceptibilitiy and alcohol effectes: biochemical and genetic aspects. Ann 1st Suk-per Sanita 42:8–16Google Scholar
  33. Goldstein DB (2005) The genetics of human drug response. Phil Trans R Soc B 360:1571–1572PubMedCrossRefGoogle Scholar
  34. Goldstein DB, Sullivan P (2006) Session 45 Pharmacogenomics ASHG 56th Annual Meeting New Orleans LouisianaGoogle Scholar
  35. Goldstein DB, Tate SK, Sisodiya SM (2003) Pharmacogenetics goes genomic. Nat Rev Genet 4:937–947PubMedCrossRefGoogle Scholar
  36. Gorwood P (2006) Meeting everyday challenges: antipsychotic therapy in the real world. Eur Neuropsychopharmacol 16:S156–S162PubMedCrossRefGoogle Scholar
  37. Ginsburg GS, Donahue MP, Newby LK (2005) Cardiovascular ge-nomic medicine: Prospects for personalized cardiovascular medicine. J Am Col Cardiol 46:1615–1627CrossRefGoogle Scholar
  38. Green EK, Raybould R, Macgregor S, Gordon-Smith K, Heron J, Hyde S, Grozeva D, Hamshere M, Williams N, Owen MJ, O’Donovan MC, Jones L, Jones I, Kirov G, Craddock N (2005) Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipo-lar disorder. Arch Gen Psychiatr 62:642–648PubMedCrossRefGoogle Scholar
  39. Greenacre MJ (1993) Correspondence analysis in practice. Academic Press LondonGoogle Scholar
  40. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689PubMedCrossRefGoogle Scholar
  41. Hampe J Franke A, Rosentiel P, Till A, Teuber M, Huse K Albrecht M, Mayr G, De la Vega FM, Briggs J, Gunter S, Pres-cott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczack M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identi-fies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211PubMedCrossRefGoogle Scholar
  42. Haykin S (1999) Neural networks 2Prentice Hall, New Yorknd edition.Google Scholar
  43. Hinrichs AL, Wang JC, Bufe B, Kwon JM, Budde J, Allen R, Bertelsen S, Evans W, Dick D, Rice J, Foroud T, Nurnberger J, Tischfield JA, Kuperman S, Crowe R, Hesselbrock V, Schuckit M, Almasy L, Porjesz B, Edenberg HJ, Begleiter H, Meyerhof W, Bierut LJ, Goate AM (2006) Functional variant in a bitter-taste receptor (hTAS2R16) influences risk of alcohol depend-ence. Am J Hum Genet 78:103–111PubMedCrossRefGoogle Scholar
  44. Hitchen L (2006) Adverse drug reactions result in 250 000 UK admissions a year. BMJ 332:1109PubMedCrossRefGoogle Scholar
  45. Hoover-Plow J, Shchurin A, Hart E, Sha J, Hill AE, Singer JB, Nadeau JH (2006) Genetic background determines response to hemostasis and thrombosis. BMC Blood Disord 6:6PubMedCrossRefGoogle Scholar
  46. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassul M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau, C Macry J, Colombel JF, Shabatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:537–539CrossRefGoogle Scholar
  47. Illumina Inc (2007) New Illumina human 1M and human 450S genotyping bead chips. Pre Release Information Sheet. techsup-port@illumina.comGoogle Scholar
  48. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320Google Scholar
  49. Kalow W (2005) Pharmacogenomics: historical perspective and current status. MethMol Biol 311:3–15Google Scholar
  50. Kato D (2007) Molecular genetics of bipolar disorder and depres-sion. Psychiatr Clin Neurosci 61:3–19CrossRefGoogle Scholar
  51. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA; (2007) Neurocognitive effects of antipsychotic medi-cations in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatr 64:633–647CATIE Investigators; Neurocognitive Work-ing GroupPubMedCrossRefGoogle Scholar
  52. Kockelkorn TTJP, Arai M, Matsumoto H, Fukuda N, Yamada K, Minabe Y, Toyota T, Ujike H, Sora I, Mori N, Yoshikawa T, Itokawa M (2004) Association study of polymorphisms in the 5’ upstream region of human DISC1 gene with schizophrenia. Neurosci Lett 368:41–45PubMedCrossRefGoogle Scholar
  53. Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath PJ Hamilton SP (2007) Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatr 61:734–742CrossRefGoogle Scholar
  54. Lake CR (2007) Disorders of thought are severe mood disorders: the selective attention defect in mania challenges the Kraepelinian dichotomy–A review. Schizophr Bulln May 21 Epublication ahead of print Google Scholar
  55. Lappalainen J, Krupitsky E, Remizov M, Pchelina S, Taraskina A, Zvartau E, Somberg LK, Covault J, Kranzler HR, Krystal JH, Gelernter J (2005) Association between alcoholism and gamma-amino butyric acid alpha2 receptor subtype in a Russian population. Alcohol Clin Exp Res 29:493–498PubMedCrossRefGoogle Scholar
  56. Lappalainen J, Krupitsky E, Kranzler HR, Luo X, Remizov M, Pchelina S, Taraskina A, Zvartau E, Räsanen P, Makikyro T, Somberg LK, Krystal JH, Stein MB, Gelernter J (2007) Muta-tion screen of the GAD2 gene and association study of alcohol-ism in three populations. Am J Med Genet B Neuropsychiatr Genet 144:183–192Google Scholar
  57. Lawrence RW, Evans DM, Cardon LR (2005) Prospects and pit-falls in whole genome association studies. Philos Trans R Soc Lond B Biol Sci 360:1589–95PubMedCrossRefGoogle Scholar
  58. Lee S-G, Joo Y, Kim B, Chung S,, Kim H-L, Lee I, Choi B, Kim C, Song K (2005) Association of ala72ser polymorphism with COMT enzyme activity and the risk of schizophrenia in Koreans. Hum Genet 116:319–328PubMedCrossRefGoogle Scholar
  59. Levin M, Bertell R (1978) Simple estimation of population attrib-utable risk from case control studies. Am J Epidemiol 108:78–79PubMedGoogle Scholar
  60. Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM, Steinthorsdottir V, Januel D, Gudnadottir VG, Petursson H, Ingason A, Gulcher JR, Stefansson K, Collier DA (2004) Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatr 9:698–704Google Scholar
  61. Li J, Wang Y, Zhou R, Zhang H, Yang L, Wang B, Khan S, Faraone SV (2005) Serotonin 5-HT1B receptor gene and atten-tion deficit hyperactivity disorder in Chinese Han subjects. Am J Med Genet B Neuropsychiatric Genet 132:59–63CrossRefGoogle Scholar
  62. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, Vos M, de Dixon A, Demarche B, Gut I, Heath S, Foglio M, Liang L, Laukens D, Mni M, Zelenika D, Gossum A, Van Rutgeerts P, Belaiche J, Lathrop M, Georges M (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates ex-pression of PTGER4. PLOS Genet 3:538–543CrossRefGoogle Scholar
  63. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK, (2005) Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–23PubMedCrossRefGoogle Scholar
  64. Lowe N, Kirley A, Hawi Z, Sham P, Wickham H, Kratochvil CJ, Smith SD, Lee SY, Levy F, Kent L, Middle F, Rohde LA, Ro-man T, Ta hir E, Yazgan Y, Asherson P, Mill J, Thapar A, Payton A, Todd RD, Stephens T, Ebstein RP, Manor I, Barr CL, Wigg KG, Sinke RJ, Buitelaar JK, Smalley SL, Nelson SF, Biederman J, Faraone SV, Gill M (2004) Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly in-attentive and combined subtypes. Am J Hum Genet 74:348–356PubMedCrossRefGoogle Scholar
  65. Luo X, Kranzler HR, Zuo L, Wang S, Blumberg HP, Gelernter J (2005) CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case-control structured association study. Hum Mol Genet 14:2421–2432PubMedCrossRefGoogle Scholar
  66. Maeda K, Nwulia E, Chang J, Balkissoon R, Ishizuka K, Chen H, Zandi P, McInnis MG, Sawa (2006)A Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatr 60:929–935CrossRefGoogle Scholar
  67. Magi R, Pfeufer A, Nelis M, Montpetit A, Metspalu A, Remm M (2007) Evaluating the performance of commercial whole-genome marker sets for capturing common genetic variation. BMC Genomics 8:159 Epublication ahead of print PubMedCrossRefGoogle Scholar
  68. Manor I, Eisenberg J, Tyano S, Sever Y, Cohen H, Ebstein RP, Kotler M (2001) Family-based association study of the serotonin transporter promoter region polymorphism (5-HTTLPR) in attention deficit hyperactivity disorder. Am J Med Genet 105:91–95PubMedCrossRefGoogle Scholar
  69. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Mont-grain N, Dione C, Lavallee JC, Garneau Y, Gingras N, Nicole L, Pires A, Ponton AM, Potvin A, Wallot H, Merette C (2005) Shared and specific susceptibility loci for schizophrenia and bi-polar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatr 10:486–499CrossRefGoogle Scholar
  70. McCullagh P, Nelder JA (1999) Generalized linear models second edition.Chapman and Hall/CRC Boca Raton, London, New York, Washington DCGoogle Scholar
  71. McGrath M, Kawachi I, Ascherio A, Colditz GA, Hunter DJ, Vivo I De (2004) Association between catechol-O-methyltransferase and phobic anxiety. Am J Psychiatr 161:1703–1705PubMedCrossRefGoogle Scholar
  72. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, Sorant AJM, Papanicolaou GJ, Laje G, Fava M, Trivedi MH, Wisniewski SR, Manji H (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antipressant treatment. Am J Hum Genet 78:804–812PubMedCrossRefGoogle Scholar
  73. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tav tigian S, Liu Q, Cochran C, Bennett LM, Ding W. et al. (1994) A strong candidate for the breast and ovarian cancer sus-ceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  74. Müller DJ, Kennedy JL (2005) Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics 7:863–887CrossRefGoogle Scholar
  75. Naoe Y, Shinkai T, Hori H, Fukunaka Y, Utsunomiya K Sakata S, Matsumoto C, Shimizu K, Hwang R, Ohmori O, Nakamura J (2007) No association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and schizophrenia in Asian populations: Evidence from a case-control study and meta-analysis. Neurosci Lett 415:108–112PubMedCrossRefGoogle Scholar
  76. Nicodemus KK, Luna A, Vakkalanka R, Goldberg T, Egan M, Straub RE, Weinberger DR (2006) Further evidence for associa-tion between ErbB4 and schizophrenia and influence on cogni-tive intermediate phenotypes in healthy controls. Mol Psychiatr 11:1062–1069CrossRefGoogle Scholar
  77. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM, Williams HJ, Preece AC, Dwyer S, Wilkinson JC, Spurlock G, Kirov G, Buckland P, Waddington JL, Gill M, Cor-vin AP, Owen MJ, O,Donovan MC (2006) Evidence that inter-action between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 141:96–101Google Scholar
  78. Parkes M, Barett JC, Presscott NJ, Tremelling M, Anderson CA, Fisher SA Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, McArdle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell DP, Sat sangi J, Mansfield JC, The Wellcome Trust Case Control Consortium, Cardon L, Mathew CG (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contrib.ute to Crohn’s disease susceptibility. Nat Genet June 6 Epublication ahead of print. Google Scholar
  79. Payton A, Holmes J, Barrett JH, Hever T, Fitzpatrick H, Trumper AL, Harrington R, McGuffin P, O’Donovan M, Owen M, Ollier W, Worthington J, Thapar A (2001) Examining for association between candidate gene polymorphisms in the dopamine path-way and attention-deficit hyperactivity disorder: a family-based study. Am J Med Genet 105:464–470PubMedCrossRefGoogle Scholar
  80. Rioux JD, Xavier RJ, Taylor KD Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths Am, Targan SR, Ippoliti AF, Bernard E-J, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhard AH, Rotter JI, Duerr RH, Cho JH, Daly MJ Brant SR (2007) Genome-wide as-sociation study identifies new susceptibility loci for Crohn dis-ease and implicates autophagy in disease pathogenesis. Nat Ge-net 39:596–634CrossRefGoogle Scholar
  81. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRefGoogle Scholar
  82. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S,Otte AC, Tullius M, Kovalenko S, Bogaert AV, Maier W, Rietschel M, Propping P, Noethen MM, Cichon S (2004) Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatr 9:203–207CrossRefGoogle Scholar
  83. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, Schiffer R, Kotler M, Strous RD, Swartz-Vanetik M, Knobler HY, Shinar E, Beckmann JS, Yakir B, Risch N, Zak NB, Dar-vasi A (2002) A highly significant association between a COMT haplo type and schizophrenia. Am J Hum Genet 71:1296–1302PubMedCrossRefGoogle Scholar
  84. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R (2006) The involvement of erbB4 with schizophrenia. Am J Med Genet B Neruopsychiatr Genet 141B:142–148CrossRefGoogle Scholar
  85. Simard J, Jeunteun J, Lenoir G, Tonin P, Normand T, The VL, Vivier A, Laska D, Morgan K, Rouleau GA, Lynch H, Labrie F, Narod SA (1993) Gentic mapping of the breast-ovarian cancer syndrome to a small interval on chromosome 17q12–21: A ex-clusion of candidate genes EDH17B2 and RARA. Hum Mol Genet 2:1193–1199PubMedCrossRefGoogle Scholar
  86. Smith KM, Daly M, Fischer M, Yiannoutsos CT, Bauer L, Barkley R, Navia BA (2003) Association of the dopamine beta hydroxy-lase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study. Am J Med Genet B Neuropsychiatr Genet 119:778–85Google Scholar
  87. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andersson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Pertusson H, Steffanson Kal (2002) Neuregulin 1 and susceptibility to schizo-phrenia. Am J Hum Genet 71:877–892PubMedCrossRefGoogle Scholar
  88. Stefansson H, Sarginson J, Kong A, Yates P, Steinhorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher J, Stefansson K, St Clair D (2003) Association of Neuregulin 1 with Schizophrenia confirmed in a Scottish population. Am J Hum Genet 72:83–87PubMedCrossRefGoogle Scholar
  89. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Givverman A, Wang X O’Neill FA, Walsh D, Kendler KS (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of t he mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348PubMedCrossRefGoogle Scholar
  90. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lerer B, Rietschel M, Trixler M, Maier W, Wilde nauer DB (2003) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dys-bindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72:185–190PubMedCrossRefGoogle Scholar
  91. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, Blackwood DH, Porteous DJ (2006) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatr 657–668Google Scholar
  92. Vizirianakis I (2005) Improving pharmacotherapy outcomes by pharmacogenomics: from expectation to reality. Pharmacoge-nomics 6:701–711CrossRefGoogle Scholar
  93. Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S, Kwon JM, Wu W, Dick DM, Rice J, Jones K, Nurnberger JI, Tischfield J, Porjesz B, Edenberg HJ, Hesselbrock V, Crowe R, Schuckit M, Begleiter H, Reich T, Goate AM, Bierut LJ (2004) Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 13:1903–1911PubMedCrossRefGoogle Scholar
  94. Wang JC, Hinrichs AL, Bertelsen S, Stock H, Budde JP, Dick DM, Bucholz KK, Rice J, Saccone N, Edenberg HJ, Hesselbrock V, Kuperman S, Schuckit MA, Bierut LJ, Goate AM (2007) Func-tional variants in TAS2R38 and TAS2R16 influence alcohol consumption in high-risk families of African-American origin. Alcohol Clin Exp Res 31:209–215PubMedCrossRefGoogle Scholar
  95. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678Google Scholar
  96. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M, Norton N, Williams H, Clement M, Dwyer S, Curran C, Wilkinson J, Voskvina B, Waddington JL, Gill M, Corvin P, Zammit S, Kirov G, Owen MJ, O’Donovan MC (2004) Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatr 61:336–344PubMedCrossRefGoogle Scholar
  97. Wray NR, James MR, Mah SP, Nelson M, Andrews G, Sullivan PF, Montgomery GW, Birley AJ, Braun A, Martin NG (2007) Anxiety and co-morbid measures associated with PLXNA2. Arch Gen Psychiatr 64:318–326PubMedCrossRefGoogle Scholar
  98. Zhang F, Sarginson J, Crombie C, Walker N, St Clair D, Shaw D (2006) Genetic association between Schizophrenia and DISC1 gene in the Scottish population. Am J Med Genet B Neuropsychiatr Genet 141:155–159Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John Raelson*
    • 1
  • Abdelmajid Belouchi
  1. 1.Genizon BiosciencesMcCaffreyCanada QCH4T 2C7

Personalised recommendations