Biomarkers for the Development of Antidepressant and Anxiolytic Drugs



Depression and anxiety disorders are by far the most prevalent mental disorders. Even though current treatments are effective overall, a large number of patients treated with antidepressants do not benefit sufficiently from therapy. To improve this unsatisfactory situation, drugs with a diverse profile of action are required to provide a more specific treatment to patients not sufficiently responding to standard therapy. Biomarkers sensitive for drug action are the ideal tools to identify compounds with a specific profile of action at an early stage of drug development. This chapter summarizes the suitability of neuroendocrine tests, sleep and other EEG markers, imaging techniques, gene expression, and protein markers for serving as clinical biomarkers in depression and anxiety, and discusses their potential for improving drug discovery and development.


Single Photon Emission Compute Tomography Antidepressant Treatment Corticotropin Release Hormone Antidepressant Treatment Outcome Neuroendocrine Test 

List of abbreviations


Alpha 2-adrenergic receptor






Corticotropin releasing hormone


Cerebrospinal fluid




Combined dexamethasone/CRH test


Dexamethasone suppression test








Functional magnetic resonance imaging


Gamma-aminobutyric acid receptor A


Growth hormone


Growth hormone releasing hormone


Glyoxalase 1


Histamine 1 receptor






Serotonin 2, 3 receptors


Insuline-like growth factor 1


Munich Antidepressant Response Signature project


Positron emission tomography




Rapid eye movement


Single photon emission computed tomography






Thyreotropin-releasing hormone


Thyroidea-stimulating hormone


World Health Organisation


  1. Abelson JL, Glitz D, Cameron OG, Lee MA, Bronzo M, Curtis GC (1991) Blunted growth hormone response to clonidine in patients with generalized anxiety disorder. Arch Gen Psychiatr 48:157–162PubMedCrossRefGoogle Scholar
  2. Ansseau M, Freckell R, von Maassen D, Cerfontaine JL, Papart P, Timsit-Berthier M, Legros JJ, Franck G (1988) Prediction of treatment response to selective antidepressants from clonidine and apomorphine neuroendocrine challenges. In: Briley M, Fillion G (eds) New concepts in depression. McMillan, London, 269–276ppGoogle Scholar
  3. Appelhof BC, Huyser J, Verweij M, Brouwer JP, Dyck R, van Fliers E, Hoogendijk WJ, Tijssen JG, Wiersinga WM, Schene AH (2006) Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol Psychiatr 59:696–701CrossRefGoogle Scholar
  4. Arana GWB, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatr 42:1193–1204PubMedCrossRefGoogle Scholar
  5. Aubry JM, Gervasoni N, Osiek C, Perret G, Rossier MF, Bertschy G, Bondolfi G (2007) The DEX/CRH neuroendocrine test and the prediction of depressive relapse in remitted depressed outpatients. J Psychiatr Res 41:290–294PubMedCrossRefGoogle Scholar
  6. Bares M, Brunovsky M, Kopecek M, Stopkova P, Novak T, Kozeny J, Hoschl C (2007) Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res 41:319–325PubMedCrossRefGoogle Scholar
  7. Bauer M, Heinz A, Whybrow PC (2002) Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol Psychiatr 7:140–156CrossRefGoogle Scholar
  8. Bertolote JM, Fleischmann S (2002) Suicide and psychiatric diagnosis: a world-wide perspective. World Psychiatr 1:181–186Google Scholar
  9. Bijl RV, Ravelli A, Zessen G van (1998) Prevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Soc Psychiatry Psychiatr Epidemiol 33:587–595PubMedCrossRefGoogle Scholar
  10. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95Google Scholar
  11. Brambilla F, Scarone S, Massironi R, Nobile P, Pugnetti L (1982) Abnormal anterior pituitary responsiveness to hypothalamic hormones in primary affective disorders. Effect of desipramine therapy. Neuropsychobiology 8:269–275PubMedCrossRefGoogle Scholar
  12. Brambilla F, Perna G, Garberi A, Nobile P, Bellodi L (1995) Alpha 2-adrenergic receptor sensitivity in panic disorder: I. GH response to GHRH and clonidine stimulation in panic disorder. Psychoneuroendocrinology 20:1–9PubMedCrossRefGoogle Scholar
  13. Bruder GE (1992) P300 findings for depressive and anxiety disorders. Ann NY Acad Sci 658:205–222PubMedCrossRefGoogle Scholar
  14. Carroll BJ, Feinberg M, Greden JF (1981) A specific laboratory test for the diagnosis of melancholia. Arch Gen Psychiatr 38:15–22PubMedCrossRefGoogle Scholar
  15. Chrousos GP, Schuermeyer TH, Doppman J, Oldfield EH, Schulte HM, Gold PW, Loriaux DL (1985) NIH conference. Clinical applications of corticotropin-releasing factor. Ann Intern Med 102:344–358PubMedGoogle Scholar
  16. Cook IA, Leuchter AF, Morgan M, Witte E, Stubbeman WF, Abrams M, Rosenberg S, Uijtdehaage SH (2002) Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacology 27:120–131PubMedCrossRefGoogle Scholar
  17. Cook IA, Leuchter AF, Morgan ML, Stubbeman W, Siegman B, Abrams M (2005) Changes in prefrontal activity characterize clinical response in SSRI nonresponders: a pilot study. J Psychiatr Res 39:461–466PubMedCrossRefGoogle Scholar
  18. Coplan JD, Papp LA, Martinez J, Pine D, Rosenblum LA, Cooper T, Liebowitz MR, Gorman JM (1995) Persistence of blunted human growth hormone response to clonidine in fluoxetine-treated patients with panic disorder. Am J Psychiatr 152:619–622PubMedGoogle Scholar
  19. Corrigan MH, Gillette GM, Quade D, Garbutt JC (1992) Panic, suicide, and agitation: independent correlates of the TSH response to TRH in depression. Biol Psychiatr 31:984–992CrossRefGoogle Scholar
  20. Kloet ER, de Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRefGoogle Scholar
  21. Souza DM, de Dias-Neto E (2008) RNA biomarkers in schizophrenia. In: Turck CW (ed) Biomarkers for psychiatric disorders. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Deuschle M, Schmider J, Weber B, Standhardt H, Korner A, Lammers CH, Schweiger U, Hartmann A, Heuser I (1997) Pulse-dosing and conventional application of doxepin: effects on psychopathology and hypothalamus-pituitary-adrenal (HPA) system. J Clin Psychopharmacol 17:156–160PubMedCrossRefGoogle Scholar
  23. Deuschle M, Schweiger U, Gotthardt U, Weber B, Korner A, Schmider J, Standhardt H, Lammers CH, Krumm B, Heuser IJ (1998) The combined dexamethasone/corticotropin-releasing hormone stimulation test is more closely associated with features of diurnal activity of the hypothalamo-pituitary-adrenocortical system than the dexamethasone suppression test. Biol Psychiatr 43:762–766CrossRefGoogle Scholar
  24. Ditzen C, Jastorff AM, Kessler MS, Bunck M, Teplytska L, Erhardt A, Kromer SA, Varadarajulu J, Targosz BS, Sayan-Ayata EF, Holsboer F, Landgraf R, Turck CW (2006) Protein biomarkers in a mouse model of extremes in trait anxiety. Mol Cell Proteomics 5:1914–1920PubMedCrossRefGoogle Scholar
  25. Duval F, Mokrani MC, Crocq MA, Jautz M, Bailey P, Diep TS, Macher JP (1996) Effect of antidepressant medication on morning and evening thyroid function tests during a major depressive episode. Arch Gen Psychiatr 53:833–840PubMedCrossRefGoogle Scholar
  26. Erhardt A, Ising M, Unschuld PG, Kern N, Lucae S, Putz B, Uhr M, Binder EB, Holsboer F, Keck ME (2006) Regulation of the hypothalamic-pituitary-adrenocortical system in patients with panic disorder. Neuropsychopharmacology 31:2515–2522PubMedCrossRefGoogle Scholar
  27. Frieboes RM, Sonntag A, Yassouridis A, Eap CB, Baumann P, Steiger A (2003) Clinical outcome after trimipramine in patients with delusional depression – a pilot study. Pharmacopsychiatry 36:12–17PubMedCrossRefGoogle Scholar
  28. Gold PW, Chrousos GP (1985) Clinical studies with corticotropin releasing factor: implications for the diagnosis and pathophysiology of depression, Cushing’s disease, and adrenal insufficiency. Psychoneuroendocrinology 10:401–419PubMedCrossRefGoogle Scholar
  29. Gold PW, Chrousos G, Kellner C, Post R, Roy A, Augerinos P, Schulte H, Oldfield E, Loriaux DL (1984) Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. Am J Psychiatr 141:619–627PubMedGoogle Scholar
  30. Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH, Nieman LK, Post RM, Pickar D, Gallucci W (1986) Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. New Engl J Med 314:1329–1335PubMedCrossRefGoogle Scholar
  31. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM (2004) Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatr 161:1256–1263PubMedCrossRefGoogle Scholar
  32. Herr AS, Tsolakidou AF, Yassouridis A, Holsboer F, Rein T (2003) Antidepressants differentially influence the transcriptional activity of the glucocorticoid receptor in vitro. Neuroendocrinology 78:12–22PubMedCrossRefGoogle Scholar
  33. Heuser IJ, Yassouridis A, Holsboer F (1994) The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 28:341–356PubMedCrossRefGoogle Scholar
  34. Heuser IJ, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatr 153:93–99PubMedGoogle Scholar
  35. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501PubMedCrossRefGoogle Scholar
  36. Holsboer F, Liebl R, Hofschuster E (1982) Repeated dexamethasone suppression test during depressive illness. Normalisation of test result compared with clinical improvement. J Affect Disord 4:93–101PubMedCrossRefGoogle Scholar
  37. Holsboer F, Bardeleben U, von Gerken A, Stalla GK, Müller OA (1984) Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. N Engl J Med 311:1127PubMedGoogle Scholar
  38. Holsboer F, Gerken A, Bardeleben U, von Grimm W, Beyer H, Müller OA, Stalla GK (1986a) Human corticotropin-releasing hormone in depression – correlation with thyrotropin secretion following thyrotropin-releasing hormone. Biol Psychiatr 21:601–611CrossRefGoogle Scholar
  39. Holsboer F, Philipp M, Steiger A, Gerken A (1986b) Multisteroid analysis after DST in depressed patients–a controlled study. J Affect Disord 10:241–249CrossRefGoogle Scholar
  40. Holsboer F, Bardeleben U, von Wiedemann K, Müller OA, Stalla GK (1987) Serial assessment of corticotropin-releasing hormone response after dexamethasone in depression. Implications for pathophysiology of DST nonsuppression. Biol Psychiatr 22:228–234CrossRefGoogle Scholar
  41. Holsboer-Trachsler E, Stohler R, Hatzinger M (1991) Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatr Res 38:163–171CrossRefGoogle Scholar
  42. Ishihara L, Brayne C (2006) A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol Scand 113:211–220PubMedCrossRefGoogle Scholar
  43. Ising M, Künzel HE, Binder EB, Nickel T, Modell S, Holsboer F (2005) The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuropsychopharmacol Biol Psychiatr 29:1085–1093CrossRefGoogle Scholar
  44. Ising M, Horstmann S, Kloiber S, Lucae S, Binder EB, Kern N, Künzel HE, Pfennig A, Uhr M, Holsboer F (2007) Combined Dexamethasone/Corticotropin Releasing Hormone test predicts treatment response in major depression – a potential biomarker? Biol Psychiatr 62:47–54CrossRefGoogle Scholar
  45. Jackson IM (1998) The thyroid axis and depression. Thyroid 8:951–956PubMedCrossRefGoogle Scholar
  46. Jacobi F, Wittchen HU, Holting C, Hofler M, Pfister H, Müller N, Lieb R (2004) Prevalence, co-morbidity and correlates of mental disorders in the general population: results from the German Health Interview and Examination Survey (GHS). Psychol Med 34:597–611PubMedCrossRefGoogle Scholar
  47. Kartha A, Anthony D, Manasseh CS, Greenwald JL, Chetty VK, Burgess JF, Culpepper L, Jack BW (2007) Depression Is a Risk Factor for Rehospitalization in Medical Inpatients. Prim Care Companion J Clin Psychiatr 9:256–262CrossRefGoogle Scholar
  48. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatr 51:8–19PubMedCrossRefGoogle Scholar
  49. Kimura M, Steiger A (2008) Sleep EEG provides biomarker in depression. In: Turck CW(ed) Biomarkers for psychiatric disorders. Springer, Berlin Heidelberg New YorkGoogle Scholar
  50. Kromer SA, Kessler MS, Milfay D, Birg IN, Bunck M, Czibere L, Panhuysen M, Putz B, Deussing JM, Holsboer F, Landgraf R, Turck CW (2005) Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 25:4375–4384PubMedCrossRefGoogle Scholar
  51. Kunugi H, Ida I, Owashi T, Kimura M, Inoue Y, Nakagawa S, Yabana T, Urushibara T, Kanai R, Aihara M, Yuuki N, Otsubo T, Oshima A, Kudo K, Inoue T, Kitaichi Y, Shirakawa O, Isogawa K, Nagayama H, Kamijima K, Nanko S, Kanba S, Higuchi T, Mikuni M (2006) Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a Multicenter Study. Neuropsychopharmacology 31:212–220PubMedGoogle Scholar
  52. Kupfer DJ, Foster FG, Reich L, Thompson SK, Weiss B (1976) EEG sleep changes as predictors in depression. Am J Psychiatr 133:622–626PubMedGoogle Scholar
  53. Kupfer DJ, Spiker DG, Coble PA, Neil JF, Ulrich R, Shaw DH (1980) Depression, EEG sleep, and clinical response. Compr Psychiatr 21:212–220CrossRefGoogle Scholar
  54. Lal S (1988) Apomorphine in the evaluation of dopaminergic function in man. Prog Neuropsychopharmacol Biol Psychiatr 12:117–164CrossRefGoogle Scholar
  55. Leuchter AF, Cook IA, Lufkin RB, Dunkin J, Newton TF, Cummings JL, Mackey JK, Walter DO (1994) Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage 1:208–219PubMedCrossRefGoogle Scholar
  56. McPherson H, Walsh A, Silverstone T (2003) Growth hormone and prolactin response to apomorphine in bipolar and unipolar depression. J Affect Disord 76:121–125PubMedCrossRefGoogle Scholar
  57. Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Anisman H (2004) Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J Neurosci 24:1478–1485PubMedCrossRefGoogle Scholar
  58. Modrego PJ, Ferrandez J (2004) Depression in patients with mild cognitive impairment increases the risk of developing dementia of Alzheimer type: a prospective cohort study. Arch Neurol 61:1290–1293PubMedCrossRefGoogle Scholar
  59. Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale WW (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344PubMedCrossRefGoogle Scholar
  60. Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatr 45:577–579PubMedCrossRefGoogle Scholar
  61. Nickel T, Sonntag A, Schill J, Zobel AW, Ackl N, Brunnauer A, Murck H, Ising M, Yassouridis A, Steiger A, Zihl J, Holsboer F (2003) Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J Clin Psychopharmacol 28:155–168CrossRefGoogle Scholar
  62. Norbury R, Mackay CE, Cowen PJ, Goodwin GM, Harmer CJ (2007) Short-term antidepressant treatment and facial processing. Functional magnetic resonance imaging study. Br J Psychiatr 190:531–532CrossRefGoogle Scholar
  63. Pariante CM, Thomas SA, Lovestone S, Makoff A, Kerwin RW (2004) Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinology 29:423–447PubMedCrossRefGoogle Scholar
  64. Pollock VE, Schneider LS (1990) Quantitative, waking EEG research on depression. Biol Psychiatr 27:757–780CrossRefGoogle Scholar
  65. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444PubMedCrossRefGoogle Scholar
  66. Raison CL, Miller AH (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatr 160:1554–1565PubMedCrossRefGoogle Scholar
  67. Reul JM, Stec I, Soeder M, Holsboer F (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133:312–320PubMedCrossRefGoogle Scholar
  68. Ribeiro SC, Tandon R, Grunhaus L, Greden JF (1993) The DST as a predictor of outcome in depression: a meta-analysis. Am J Psychiatr 150:1618–1629PubMedGoogle Scholar
  69. Rinne T, Kloet ER, de Wouters L, Goekoop JG, Rijk RH, de Brink W van den (2003) Fluvoxamine reduces responsiveness of HPA axis in adult female BPD patients with a history of sustained childhood abuse. Neuropsychopharmacology 28:126–132PubMedCrossRefGoogle Scholar
  70. Rosenbaum JF, Fava M, Pava JA, McCarthy MK, Steingard RJ, Bouffides E (1993) Anger attacks in unipolar depression, Part 2: Neuroendocrine correlates and changes following fluoxetine treatment. Am J Psychiatr 150:1164–1168PubMedGoogle Scholar
  71. Roy A, Pickar D, Paul S, Doran A, Chrousos GP, Gold PW (1987) CSF corticotropin-releasing hormone in depressed patients and normal control subjects. Am J Psychiatr 144:641–645PubMedGoogle Scholar
  72. Rubin RT, Poland RE, Lesser IM, Winston RA, Blodgett ALN (1987) Neuroendocrine aspects of primary endogenous depression. Arch Gen Psychiatr 44:336Google Scholar
  73. Rybakowski JK, Twardowska K (1999) The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. Journal of Psychiatr Res 33:363–370CrossRefGoogle Scholar
  74. Sachar EJ (1967) Corticosteroids in depressive illness. II. A longitudinal psychoendocrine study. Arch Gen Psychiatr 17:554–567PubMedCrossRefGoogle Scholar
  75. Schreiber W, Lauer CJ, Krumrey K, Holsboer F, Krieg JC (1996) Dysregulation of the hypothalamic-pituitary-adrenocortical system in panic disorder. Neuropsychopharmacology 15:7–15PubMedCrossRefGoogle Scholar
  76. Schüle C, Baghai T, Zwanzger P, Ella R, Eser D, Padberg F, Möller HJ, Rupprecht R (2003) Attenuation of hypothalamic-pituitary-adrenocortical hyperactivity in depressed patients by mirtazapine. Psychopharmacology 166:271–275PubMedGoogle Scholar
  77. Sharpley AL, Cowen PJ (1995) Effect of pharmacologic treatments on the sleep of depressed patients. Biol Psychiatr 37:85–98CrossRefGoogle Scholar
  78. Steiger A (2007) Neuroendocrinology of Sleep. In: Lajtha A, Blaustein J (eds) Handbook of Neurochemestry and Molecular Neurobiology – Behavioral Neurochemistry, Neuroendocrinology and Molecular Neurobiology.Springer, Berlin Heidelberg New York, pp 897–932Google Scholar
  79. Tancer ME, Stein MB, Uhde TW (1993) Growth hormone response to intravenous clonidine in social phobia: comparison to patients with panic disorder and healthy volunteers. Biol Psychiatr 34:591–595CrossRefGoogle Scholar
  80. Thase ME, Kupfer DJ, Fasiczka AJ, Buysse DJ, Simons AD, Frank E (1997) Identifying an abnormal electroencephalographic sleep profile to characterize major depressive disorder. Biol Psychiatr 41:964–973CrossRefGoogle Scholar
  81. Tsuno N, Besset A, Ritchie K (2005) Sleep and depression. J Clin Psychiatr 66:1254–1269CrossRefGoogle Scholar
  82. Tukel R, Kora K, Hekim N, Oguz H, Alagol F (1999) Thyrotropin stimulating hormone response to thyrotropin releasing hormone in patients with panic disorder. Psychoneuroendocrinology 24:155–160PubMedCrossRefGoogle Scholar
  83. Turck CW, Ditzen C, Sayan-Ayata EF (2008) Proteomic strategies for biomarker discovery – from differential expression to isoforms to pathways. In: Turck CW (ed) Biomarkers for psychiatric disorders. Springer, Berlin Heidelberg New YorkGoogle Scholar
  84. Uhde TW, Stein MB, Vittone BJ, Siever LJ, Boulenger JP, Klein E, Mellman TA (1989) Behavioral and physiologic effects of short-term and long-term administration of clonidine in panic disorder. Arch Gen Psychiatr 46:170–177PubMedCrossRefGoogle Scholar
  85. Valdivieso S, Duval F, Mokrani MC, Schaltenbrand N, Castro JO, Crocq MA, Macher JP (1996) Growth hormone response to clonidine and the cortisol response to dexamethasone in depressive patients. Psychiatr Res 60:23–32CrossRefGoogle Scholar
  86. Watson S, Gallagher P, Del-Estal D, Hearn A, Ferrier IN, Young AH (2002) Hypothalamic – pituitary – adrenal axis function in patients with chronic depression. Psychol Med32:1021–1028PubMedCrossRefGoogle Scholar
  87. WHO European Ministerial Conference (2005) Mental health: fac-ing the challenges, building solutions. WHO Regional Office for Europe, Copenhagen,Google Scholar
  88. Zobel AW, Yassouridis A, Frieboes RM, Holsboer F (1999) Prediction of medium-term outcome by cortisol response to the combined dexamethasone-CRH test in patients with remitted depression. Am J Psychiatr 156:949–951PubMedGoogle Scholar
  89. Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. a prospective study. J Psychiatr Res 35:83–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Max Planck Institute of PsychiatryMunichGermany

Personalised recommendations