Strategies to Identify Biomarkers for Depression

  • Marcelo Paez-Pereda
  • Markus Panhuysen


Usually, disease biomarkersare directly linked to the biological processes that are involved in the causation and progress of the condition. However, in the case of depression and other psychiatric disorders, the mechanisms responsible for the disease are often poorly understood. Factors that contribute to the difficulty of finding biomarkers for psychiatric diseases include the heterogeneity of each psychiatric disease, the complexity of diagnosis, and the difficult accessibility to biological samples of affected tissues. Here, we present possible approaches for the identification of depression biomarkers. The first, a knowledge-based approach, makes use of our current understanding of the underlying disease mechanisms. As an example, the stress response cascade provides a source for numerous candidate biomarkers. Second, reverse-engineering the biological effects and signaling mechanisms of known antidepressants is another promising way to obtain useful biomarkers. Third, biomarkers could be identified by means of unbiased research. The different “omics” technologies have recently yielded promising results in comparing biological parameters of depressive patients vs. control subjects. However, many of these studies only show an increased mean value for a candidate biomarker in depressive patients, while correlative and longitudinal studies are rare. The validity of these approaches remains to be confirmed by further studies in clinical and epidemiological settings using larger numbers of samples.


Bipolar Disorder Depressed Patient Antidepressant Treatment Melatonin Level Glutamatergic Neurotransmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adrenocorticotropic hormone


Brain-derived neurotrophic factor


Cyclic adenosine monophosphate


Central nervous system


Cyclooxigenase 2


cAMP responsive element binding protein


Corticotropin-releasing hormone


CRH receptor


C-reactive protein


Cerebrospinal fluid






FK506-binding immunophilin 5


Functional magnetic resonance imaging


Glucocorticoid receptor


Hypothalamic–pituitary–adrenal axis


Hypothalamic–pituitary–thyroid axis


Human tryptophan hydroxylase 2






Inflammatory response system


Mineralocorticoid receptor


Magnetic resonance imaging




N-terminal pro-B-type natriuretic peptide


Purinergic receptor, ligand-gated ion channel 7


Prostaglandin E2


Single nucleotide polymorphism




Tumor necrosis factor alpha


Thyroid-stimulating hormone


  1. Abkevich V, Camp NJ, Hensel CH, Neff CD, Russell DL, Hughes DC, Plenk AM, Lowry MR, Richards RL, Carter C, Frech GC, Stone S, Rowe K, Chau CA, Cortado K, Hunt A, Luce K, O’Neil G, Poarch J, Potter J, Poulsen GH, Saxton H, Bernat-Sestak M, Thompson V, Gutin A, Skolnick MH, Shattuck D, Cannon-Albright L (2003) Predisposition locus for major depression at chromosome 12q22–12q23.2. Am J Hum Genet 73:1271–1281PubMedCrossRefGoogle Scholar
  2. Bennett MR (2007) Synaptic P2X7 receptor regenerative-loop hypothesis for depression. Aust NZ J Psychiatr 41:563–571CrossRefGoogle Scholar
  3. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Kunzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Kohnlein O, Dabitz H, Bruckl T, Muller N, Pfister H, Lieb R, Mueller JC, Lohmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325PubMedCrossRefGoogle Scholar
  4. Bowden NA, Weidenhofer J, Scott RJ, Schall U, Todd J, Michie PT, Tooney PA (2006) Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res 82:175–183PubMedCrossRefGoogle Scholar
  5. Brines M Cerami A (2006) Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int 70:246–250PubMedCrossRefGoogle Scholar
  6. Brunner J, Bronisch T, Uhr M, Ising M, Binder E, Holsboer F, Turck CW (2005) Proteomic analysis of the CSF in unmedicated patients with major depressive disorder reveals alterations in suicide attempters. Eur Arch Psychiatr Clin Neurosci 255:438–440CrossRefGoogle Scholar
  7. Bunney WE Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22:335–345PubMedCrossRefGoogle Scholar
  8. Carlezon WA, Jr., Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445PubMedCrossRefGoogle Scholar
  9. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRefGoogle Scholar
  10. Delorme R, Durand CM, Betancur C, Wagner M, Ruhrmann S, Grabe HJ, Nygren G, Gillberg C, Leboyer M, Bourgeron T, Courtet P, Jollant F, Buresi C, Aubry JM, Baud P, Bondolfi G, Bertschy G, Perroud N, Malafosse A (2006) No human tryptophan hydroxylase-2 gene R441H mutation in a large cohort of psychiatric patients and control subjects. Biol Psychiatr 60:202–203CrossRefGoogle Scholar
  11. Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatr 59:1136–1143CrossRefGoogle Scholar
  12. Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985:420–444PubMedCrossRefGoogle Scholar
  13. Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, Falke C, Zarate CA, Jr and Manji HK (2007) The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 32:793–802PubMedCrossRefGoogle Scholar
  14. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatr 59:1116–1127CrossRefGoogle Scholar
  15. Dunn AJ, Swiergiel AH, de BR (2005) Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 29:891–909PubMedCrossRefGoogle Scholar
  16. Erhardt A, Lucae S, Unschuld PG, Ising M, Kern N, Salyakina D, Lieb R, Uhr M, Binder EB, Keck ME, Muller-Myhsok B, Holsboer F (2007) Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders. J Affect Disord 101:159–168PubMedCrossRefGoogle Scholar
  17. Felgenhauer K (15–12–1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52:1158–1164CrossRefGoogle Scholar
  18. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di VF (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883PubMedGoogle Scholar
  19. Fountoulakis KN, Kantartzis S, Siamouli M, Panagiotidis P, Kaprinis S, Iacovides A, Kaprinis G (2006) Peripheral thyroid dysfunction in depression. World J Biol Psychiatr 7:131–137CrossRefGoogle Scholar
  20. Geuze E, Vermetten E, Bremner JD (2005) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders . Mol Psychiatr10:160–184CrossRefGoogle Scholar
  21. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N, Han M, Liew CC, Tsuang MT (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 102:15533–15538PubMedCrossRefGoogle Scholar
  22. Hamet P Tremblay J (2005) Genetics and genomics of depression. Metabolism 54:10–15PubMedCrossRefGoogle Scholar
  23. Illman J, Corringham R, Robinson D, Jr., Davis HM, Rossi JF, Cella D, Trikha M (2005) Are inflammatory cytokines the common link between cancer-associated cachexia and depression? J Support Oncol 3:37–50PubMedGoogle Scholar
  24. Ising M, Kunzel HE, Binder EB, Nickel T, Modell S, Holsboer F (2005) The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuropsychopharmacol Biol Psychiatr 29:1085–1093CrossRefGoogle Scholar
  25. Jehn CF, Kuehnhardt D, Bartholomae A, Pfeiffer S, Krebs M, Regierer AC, Schmid P, Possinger K, Flath BC (2006) Biomarkers of depression in cancer patients. Cancer 107:2723–2729PubMedCrossRefGoogle Scholar
  26. Joels M, Karst H, Alfarez D, Heine VM, Qin Y, van RE, Verkuyl M, Lucassen PJ, Krugers HJ (2004) Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress 7:221–231PubMedCrossRefGoogle Scholar
  27. Joffe RT Marriott M (2000) Thyroid hormone levels and recurrence of major depression. Am J Psychiatr 157:1689–1691PubMedCrossRefGoogle Scholar
  28. Kraemer HC, Schultz SK, Arndt S (2002) Biomarkers in psychiatry: methodological issues. Am J Geriatr Psychiatr 10:653–659Google Scholar
  29. Kugaya A Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectrum 10:808–819Google Scholar
  30. Lam RW (2006) Sleep disturbances and depression: a challenge for antidepressants. Int Clin Psychopharmacol 21:(Suppl 1)S25–S29PubMedCrossRefGoogle Scholar
  31. Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40:171–176PubMedCrossRefGoogle Scholar
  32. Lewy AJ, Lefler BJ, Emens JS, Bauer VK (2006) The circadian basis of winter depression. Proc Natl Acad Sci USA 103:7414–7419PubMedCrossRefGoogle Scholar
  33. Lieb J, Karmali R, Horrobin D (1983) Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukot Med 10:361–367PubMedCrossRefGoogle Scholar
  34. Loosen PT (1986) Hormones of the hypothalamic-pituitary-thyroid axis: a psychoneuroendocrine perspective. Pharmacopsychiatry 19:401–415PubMedCrossRefGoogle Scholar
  35. Lucae S, Salyakina D, Barden N, Harvey M, Gagne B, Labbe M, Binder EB, Uhr M, Paez-Pereda M, Sillaber I, Ising M, Bruckl T, Lieb R, Holsboer F, Muller-Myhsok B (2006) P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 15:2438–2445PubMedCrossRefGoogle Scholar
  36. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatr 19:11–38CrossRefGoogle Scholar
  37. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray A, Zarate CA, Jr and Charney DS (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatr 53:707–742CrossRefGoogle Scholar
  38. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37:413–417PubMedCrossRefGoogle Scholar
  39. Mathews A MacLeod C (2005) Cognitive vulnerability to emotional disorders. Annu Rev Clin Psychol 1:167–195PubMedCrossRefGoogle Scholar
  40. McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232PubMedCrossRefGoogle Scholar
  41. McEwen BS, Magarinos AM, Reagan LP (2002) Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatr 17:(Suppl 3)318–330CrossRefGoogle Scholar
  42. Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagne B, Laprise C, Bouchard G, Plante M, Gobeil L, Shink E, Weissenbach J, Barden N (1999) Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in quebec points to a locus of major effect on chromosome 12q23-q24. Am J Med Genet 88:567–587PubMedCrossRefGoogle Scholar
  43. Muller N and Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol PsychiatrGoogle Scholar
  44. Muller N, Riedel M, Schwarz MJ (2004a) Psychotropic effects of COX-2 inhibitors--a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37:266–269CrossRefGoogle Scholar
  45. Muller N, Strassnig M, Schwarz MJ, Ulmschneider M, Riedel M (2004b) COX-2 inhibitors as adjunctive therapy in schizophrenia. Expert Opin Investig Drugs 13:1033–1044CrossRefGoogle Scholar
  46. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatr 11:680–684CrossRefGoogle Scholar
  47. Nacher J McEwen BS (2006) The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus 16:267–270PubMedCrossRefGoogle Scholar
  48. Nakamura T, Ebihara I, Shimada N, Koide H (1998) Elevated levels of erythropoietin in cerebrospinal fluid of depressed patients. Am J Med Sci 315:199–201PubMedCrossRefGoogle Scholar
  49. Nemeroff CB (1988) The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry 21:76–82PubMedCrossRefGoogle Scholar
  50. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (28–3–2002) Neurobiology of depression. Neuron 34:13–25CrossRefGoogle Scholar
  51. Noll R (2006) The blood of the insane. Hist Psychiatr 17:395–418CrossRefGoogle Scholar
  52. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, and Fananas L (2007) Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect DisordGoogle Scholar
  53. Pien HH, Fischman AJ, Thrall JH, Sorensen AG (15–2–2005) Using imaging biomarkers to accelerate drug development and clinical trials. Drug Discov Today 10:259–266CrossRefGoogle Scholar
  54. Politi P, Minoretti P, Piaggi N, Brondino N, Emanuele E (2007) Elevated plasma N-terminal ProBNP levels in unmedicated patients with major depressive disorder. Neurosci Lett 417:322–325PubMedCrossRefGoogle Scholar
  55. Pollmacher T, Haack M, Schuld A, Reichenberg A, Yirmiya R (2002) Low levels of circulating inflammatory cytokines–do they affect human brain functions? Brain Behav Immun 16:525–532PubMedCrossRefGoogle Scholar
  56. Prange AJ, Jr and Loosen PT (1980) Some endocrine aspects of affective disorders. J Clin Psychiatr 41:29–34Google Scholar
  57. Rafnsson SB, Deary IJ, Smith FB, Whiteman MC, Rumley A, Lowe GD, Fowkes FG (2007) Cognitive decline and markers of inflammation and hemostasis: the Edinburgh Artery Study. J Am Geriatr Soc 55:700–707PubMedCrossRefGoogle Scholar
  58. Rubin RT, Poland RE, Lesser IM, Martin DJ (1987) Neuroendocrine aspects of primary endogenous depression–IV. Pituitary-thyroid axis activity in patients and matched control subjects. Psychoneuroendocrinology 12:333–347PubMedCrossRefGoogle Scholar
  59. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809PubMedCrossRefGoogle Scholar
  60. Sequeira A Turecki G (2006) Genome wide gene expression studies in mood disorders. OMICS 10:444–454PubMedCrossRefGoogle Scholar
  61. Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303PubMedCrossRefGoogle Scholar
  62. Shimbo D, Chaplin W, Crossman D, Haas D, Davidson KW (2005) Role of depression and inflammation in incident coronary heart disease events. Am J Cardiol 96:1016–1021PubMedCrossRefGoogle Scholar
  63. Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, Parry B, Cardinali DP (2006) Melatonin in mood disorders. World J Biol Psychiatr 7:138–151CrossRefGoogle Scholar
  64. Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, Shyu KG, Glatt SJ, Liew CC (2005) Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 133:1–5Google Scholar
  65. van WD Maes M (1999) Activation of the inflammatory response system: a new look at the etiopathogenesis of major depression. Neuro Endocrinol Lett 20:11–17Google Scholar
  66. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W (2004) Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 67:41–52PubMedCrossRefGoogle Scholar
  67. Yao Y, Schroder J, and Karlsson H (2007) Verification of proposed peripheral biomarkers in mononuclear cells of individuals with schizophrenia. J Psychiatr ResGoogle Scholar
  68. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12PubMedCrossRefGoogle Scholar
  69. Zarate CA, Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatr 63:856–864PubMedCrossRefGoogle Scholar
  70. Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, Schwartz DA, Krishnan KR, Caron MG (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16PubMedCrossRefGoogle Scholar
  71. Zvara A, Szekeres G, Janka Z, Kelemen JZ, Cimmer C, Santha M, Puskas LG (2005) Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers. Dis Markers 21:61–69PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Affectis PharmaceuticalsKraepelinstrasse 2Germany

Personalised recommendations