Blood and Brain Gene Expression in Major Psychiatric Disorders: A Search for Biomarkers

  • Gursharan Chana
  • Stephen J. Glatt
  • Ian P. Everall
  • Ming T. Tsuang


Microarray investigations in psychiatry have so far implicated a number of genes to be associated with major psychiatric disorders, in particular schizophrenia. In postmortem brain studies, alterations in the expression of transcripts encoding for oligodendrocyte functioning and myelination, mitochondrial-related genes, and energy metabolism, as well as synaptic structure and transmission, have been demonstrated. To a certain extent, these alterations reflect changes in associated mRNAs and proteins previously seen in neuropathological investigations of major psychiatric disorders and hence are of great interest. Assessing gene expression changes in the blood of patients with psychiatric disorders will aid in the characterization of their genetic profile. This, in turn, may eventually allow us to relate these findings to brain-related changes, and hence to potentially identify biomarkers for detection, intervention, and treatment. However, while microarray technology has opened the way for high-throughput gene expression analysis, a significant amount of methodological and technical variability still exists in their application. Therefore, it is necessary that a stringent approach be adopted by researchers in designing such experiments and precaution taken in the final analysis and interpretation of results. The aim of this chapter is to provide a balanced view of microarray investigations in the blood and brain in major psychiatric disorders by highlighting the strengths and weaknesses of such studies in identifying candidate genes. Strategies to overcome these weaknesses will be discussed in the context of advancing and improving future microarray investigations in psychiatry.


Bipolar Disorder Gene Expression Change Gene Expression Study Laser Capture Microdissection Gene Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acetylcholine receptor


2-Aminomethyl phenylacetic acid




Brain-derived neurotrophic factor


B-cell translocation gene 1




Cell differentiation 14


Cyclic nucleotide phosphodiesterase


Dorsolateral prefrontal cortex


Dopamine receptor D2


Epidermal-derived growth factor


Endoplasmic reticulum


Erythroblastic leukemia viral oncogene homolog 2


Fibroblast growth factor


Gamma-amino butyric acid


Growth associated protein-43


Glutamate decarboxylase-67


Glutamate receptor 1–2


Guanine nucleotide binding protein alpha 1


Gene ontology


Glycogen synthase kinase 3 alpha


Heat domain and rcc1-like domain 2) Giα1 (g-protein inhibitory alpha1)


Major histocompatibility complex DR beta 1




Human macrophage lectin 2


Heterogeneous nuclear ribonucleoprotein A3


Interferon-induced protein with tetratricopeptide repeats 1


Heat shock protein beta 1


Potassium channel inward rectifying 2.3


Leucyl-tRNA synthetase, mitochondrial


Laser capture microdissection


Myelin-associated glycoprotein


Myelin and lymphocyte protein


Myristolated alanine-rich C-kinase substrate


Myelin basic protein


Major depressive disorder


Malate dehydrogenase 1




Myelin-oligodendrocyte basic protein


Myelin-oligodendrocytic protein


Magnetic resonance imaging


Metallothionein 2A


Neurogenic differentiation 1


N-methyl-D-aspartate 1


Neuropeptide Y




N-ethylmaleimide sensitive fusion protein


Phosphodiesterase 4D


Phosphoprotein enriched in astrocytes 15


Prefrontal cortex


Proteolipid protein


Perfect match


Postmortem interval


Peripheral myelin protein 22


Quantitative real time polymerase chain reaction


Regulator of g-protein signalling-4


Robust multichip algorithm


Calcium-binding protein A1


Selenium binding protein-1


Alpha-1-antichymotrypsin A3


Splicing factor, arginine/serine rich 1


Sensory and motor neuron derived factor


Single nucleotide polymorphism


SRY-related homeobox gene 10


Sepiaterin reductase


Transforming growth factor-alpha

TGF-β 1

Transforming growth factor beta 1


Tumor necrosis factor receptor associated factor 4


X box binding protein 1



Thanks are due to Dr Sharon Doc Chandler for her assistance in revising this chapter.


  1. Achim, A. M. and M. Lepage (2005). “Episodic memory-related activation in schizophrenia: meta-analysis.” Br J Psychiatr 187: 500–9.CrossRefGoogle Scholar
  2. Aston, C., L. Jiang, et al. (2004). “Microrray analysis of postmortem temporal cortex from patients with schizophrenia.” J Neurosci Res 77(6): 858–66.PubMedCrossRefGoogle Scholar
  3. Aston, C., L. Jiang, et al. (2005). “Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.” Mol Psychiatr 10(3): 309–22.CrossRefGoogle Scholar
  4. Bertram, I., H. G. Bernstein, et al. (2007). “Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression.” Ann N Y Acad Sci 1096: 147–56.PubMedCrossRefGoogle Scholar
  5. Bosotti, R., G. Locatelli, et al. (2007). “Cross platform microarray analysis for robust identification of differentially expressed genes.” BMC Bioinformatics 8(Suppl 1): S5.PubMedCrossRefGoogle Scholar
  6. Bowden, N. A., J. Weidenhofer, et al. (2006). “Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia.” Schizophr Res 82(2–3): 175–83.PubMedCrossRefGoogle Scholar
  7. Bunney, W. E., B. G. Bunney, et al. (2003). “Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders.” Am J Psychiatr 160(4): 657–66.PubMedCrossRefGoogle Scholar
  8. Chana, G. L. J. E. I. P. (2007). “In vitro Gene Expression Changes Associated with Haloperidol and Clozapine in Human Fetal Brain Aggregates.” Biol Psychiatr 61(1S–266S): 205.Google Scholar
  9. Chen, M. L. and C. H. Chen (2005). “Microarray analysis of differentially expressed genes in rat frontal cortex under chronic risperidone treatment.” Neuropsychopharmacology 30(2): 268–77.PubMedCrossRefGoogle Scholar
  10. Davis, K. L., D. G. Stewart, et al. (2003). “White matter changes in schizophrenia: evidence for myelin-related dysfunction.” Arch Gen Psychiatr 60(5): 443–56.PubMedCrossRefGoogle Scholar
  11. Duan, J., M. Martinez, et al. (2005). “Neuregulin 1 (NRG1) and schizophrenia: analysis of a US family sample and the evidence in the balance.” Psychol Med 35(11): 1599–610.PubMedCrossRefGoogle Scholar
  12. Evans, S. J., P. V. Choudary, et al. (2004). “Dysregulation of the fibroblast growth factor system in major depression.” Proc Natl Acad Sci U S A 101(43): 15506–11.PubMedCrossRefGoogle Scholar
  13. Fan, J. B., M. S. Chee, et al. (2006). “Highly parallel genomic assays.” Nat Rev Genet 7(8): 632–44.PubMedCrossRefGoogle Scholar
  14. Fatemi, S. H., J. A. Earle, et al. (2001). “Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia.” Neuroreport 12(15): 3257–62.PubMedCrossRefGoogle Scholar
  15. Flynn, S. W., D. J. Lang, et al. (2003). “Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins.” Mol Psychiatr 8(9): 811–20.CrossRefGoogle Scholar
  16. Frederiksen, S. O., R. Ekman, et al. (1991). “Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not in the hypothalamus of brains from schizophrenics.” Acta Psychiatr Scand 83(4): 273–7.PubMedCrossRefGoogle Scholar
  17. Glatt, S. J., I. P. Everall, et al. (2005). “Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia.” Proc Natl Acad Sci U S A 102(43): 15533–8.PubMedCrossRefGoogle Scholar
  18. Goldberg, T. E., D. R. Weinberger, et al. (1987). “Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test.” Arch Gen Psychiatr 44(11): 1008–14.PubMedCrossRefGoogle Scholar
  19. Goldman-Rakic, P. S. (1994). “Working memory dysfunction in schizophrenia.” J Neuropsychiatr Clin Neurosci 6(4): 348–57.Google Scholar
  20. Guidotti, A., J. Auta, et al. (2000). “Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.” Arch Gen Psychiatr 57(11): 1061–9.PubMedCrossRefGoogle Scholar
  21. Hakak, Y., J. R. Walker, et al. (2001). “Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia.” Proc Natl Acad Sci U S A 98(8): 4746–51.PubMedCrossRefGoogle Scholar
  22. Hardiman, G. (2004). “Microarray platforms--comparisons and contrasts.” Pharmacogenomics 5(5): 487–502.PubMedCrossRefGoogle Scholar
  23. Harrison, P. J. and D. R. Weinberger (2005). “Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence.” Mol Psychiatr 10(1): 40–68; image 5.CrossRefGoogle Scholar
  24. Hashimoto, T., D. Arion, et al. (2007). “Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.” Mol Psychiatr.Google Scholar
  25. Hemby, S. E., S. D. Ginsberg, et al. (2002). “Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex.” Arch Gen Psychiatr 59(7): 631–40.PubMedCrossRefGoogle Scholar
  26. Hof, P. R., V. Haroutunian, et al. (2002). “Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia.” Neurochem Res 27(10): 1193–200.PubMedCrossRefGoogle Scholar
  27. Hollingshead, D., D. A. Lewis, et al. (2005). “Platform influence on DNA microarray data in postmortem brain research.” Neurobiol Dis 18(3): 649–55.PubMedCrossRefGoogle Scholar
  28. Honer, W. G., P. Falkai, et al. (1999). “Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness.” Neuroscience 91(4): 1247–55.PubMedCrossRefGoogle Scholar
  29. Iritani, S., N. Kuroki, et al. (2000). “Morphological changes in neuropeptide Y-positive fiber in the hippocampal formation of schizophrenics.” Prog Neuropsychopharmacol Biol Psychiatr 24(2): 241–9.CrossRefGoogle Scholar
  30. Iwamoto, K. and T. Kato (2006). “Gene expression profiling in schizophrenia and related mental disorders.” Neuroscientist 12(4): 349–61.PubMedCrossRefGoogle Scholar
  31. Iwamoto, K., M. Bundo, et al. (2005). “Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis.” Hum Mol Genet 14(2): 241–53.PubMedCrossRefGoogle Scholar
  32. Kakiuchi, C., K. Iwamoto, et al. (2003). “Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder.” Nat Genet 35(2): 171–5.PubMedCrossRefGoogle Scholar
  33. Kakiuchi, C., M. Ishiwata, et al. (2006). “XBP1 induces WFS1 through an endoplasmic reticulum stress response element-like motif in SH-SY5Y cells.” J Neurochem 97(2): 545–55.PubMedCrossRefGoogle Scholar
  34. Konradi, C. (2005). “Gene expression microarray studies in polygenic psychiatric disorders: applications and data analysis.” Brain Res Brain Res Rev 50(1): 142–55.PubMedCrossRefGoogle Scholar
  35. Konradi, C., M. Eaton, et al. (2004). “Molecular evidence for mitochondrial dysfunction in bipolar disorder.” Arch Gen Psychiatr 61(3): 300–8.PubMedCrossRefGoogle Scholar
  36. Kontkanen, O., M. Lakso, et al. (2000). “A functional genomic study of the effects of ****antipsychotic agent chlorpromazine in PC12 cells.” 38(9): 911–915.Google Scholar
  37. Kontkanen, O., M. Lakso, et al. (2002). “Chronic antipsychotic drug treatment induces long-lasting expression of fos and jun family genes and activator protein 1 complex in the rat prefrontal cortex.” Neuropsychopharmacology 27(2): 152–162.PubMedCrossRefGoogle Scholar
  38. Kuromitsu, J., A. Yokoi, et al. (2001). “Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder.” Brain Res Gene Expr Patterns 1(1): 17–21.PubMedCrossRefGoogle Scholar
  39. Li, D., D. A. Collier, et al. (2006). “Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia.” Hum Mol Genet 15(12): 1995–2002.PubMedCrossRefGoogle Scholar
  40. Michael, K. L., L. C. Taylor, et al. (1998). “Randomly ordered addressable high-density optical sensor arrays.” Anal Chem 70(7): 1242–8.PubMedCrossRefGoogle Scholar
  41. Mirnics, K., F. A. Middleton, et al. (2000). “Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.” Neuron 28(1): 53–67.PubMedCrossRefGoogle Scholar
  42. Mirnics, K., P. Levitt, et al. (2006). “Critical appraisal of DNA microarrays in psychiatric genomics.” Biol Psychiatr 60(2): 163–76.CrossRefGoogle Scholar
  43. Miyaguchi, K. (2004). “Localization of selenium-binding protein at the tips of rapidly extending protrusions.” Histochem Cell Biol 121(5): 371–6.PubMedCrossRefGoogle Scholar
  44. Munafo, M. R., D. L. Thiselton, et al. (2006). “Association of the NRG1 gene and schizophrenia: a meta-analysis.” Mol Psychiatr 11(6): 539–46.CrossRefGoogle Scholar
  45. Naydenov, A. V., M. L. MacDonald, et al. (2007). “Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress.” Arch Gen Psychiatr 64(5): 555–64.PubMedCrossRefGoogle Scholar
  46. Pongrac, J., F. A. Middleton, et al. (2002). “Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders.” Neurochem Res 27(10): 1049–63.PubMedCrossRefGoogle Scholar
  47. Prabakaran, S., J. E. Swatton, et al. (2004). “Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.” Mol Psychiatr 9(7): 684–97, 643.CrossRefGoogle Scholar
  48. Radich, J. P., M. Mao, et al. (2004). “Individual-specific variation of gene expression in peripheral blood leukocytes.” Genomics 83(6): 980–8.PubMedCrossRefGoogle Scholar
  49. Rosa, A., M. Gardner, et al. (2007). “Family-based association study of neuregulin-1 gene and psychosis in a Spanish sample.” Am J Med Genet B Neuropsychiatr Genet.Google Scholar
  50. Salaria, S., G. Chana, et al. (2006). “Microarray analysis of cultured human brain aggregates following cortisol exposure: implications for cellular functions relevant to mood disorders.” Neurobiol Dis 23(3): 630–6.PubMedCrossRefGoogle Scholar
  51. Schlingemann, J., N. Habtemichael, et al. (2005). “Patient-based cross-platform comparison of oligonucleotide microarray expression profiles.” Lab Invest 85(8): 1024–39.PubMedCrossRefGoogle Scholar
  52. Shippy, R., T. J. Sendera, et al. (2004). “Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations.” BMC Genom 5(1): 61.CrossRefGoogle Scholar
  53. Stewart, D. G. and K. L. Davis (2004). “Possible contributions of myelin and oligodendrocyte dysfunction to schizophrenia.” Int Rev Neurobiol 59: 381–424.PubMedCrossRefGoogle Scholar
  54. Sun, X., J. F. Wang, et al. (2006). “Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder.” J Psychiatry Neurosci 31(3): 189–96.PubMedGoogle Scholar
  55. Takahashi, Y., T. Kumanishi, et al. (2004). “Using a DNA microarray method to examine gene expression in brain from clozapine-injected mice.” Ann N Y Acad Sci 1025: 561–9.PubMedCrossRefGoogle Scholar
  56. Tan, P. K., T. J. Downey, et al. (2003). “Evaluation of gene expression measurements from commercial microarray platforms.” Nucleic Acids Res 31(19): 5676–84.PubMedCrossRefGoogle Scholar
  57. Thiselton, D. L., B. T. Webb, et al. (2004). “No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF).” Mol Psychiatr 9(8): 777–83; image 729.CrossRefGoogle Scholar
  58. Tkachev, D., M. L. Mimmack, et al. (2003). “Oligodendrocyte dysfunction in schizophrenia and bipolar disorder.” Lancet 362(9386): 798–805.PubMedCrossRefGoogle Scholar
  59. Tkachev, D., M. L. Mimmack, et al. (2007). “Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia.” Int J Neuropsychopharmacol 10(4): 557–63.PubMedCrossRefGoogle Scholar
  60. Tsuang, M. T., N. Nossova, et al. (2005). “Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report.” Am J Med Genet B Neuropsychiatr Genet 133(1): 1–5.Google Scholar
  61. Uranova, N., D. Orlovskaya, et al. (2001). “Electron microscopy of oligodendroglia in severe mental illness.” Brain Res Bull 55(5): 597–610.PubMedCrossRefGoogle Scholar
  62. Uranova, N. A., V. M. Vostrikov, et al. (2004). “Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium.” Schizophr Res 67(2–3): 269–75.PubMedCrossRefGoogle Scholar
  63. Vawter, M. P., T. Barrett, et al. (2001). “Application of cDNA microarrays to examine gene expression differences in schizophrenia.” Brain Res Bull 55(5): 641–50.PubMedCrossRefGoogle Scholar
  64. Vawter, M. P., E. Ferran, et al. (2004). “Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree.” Schizophr Res 67(1): 41–52.PubMedCrossRefGoogle Scholar
  65. Vawter, M. P., H. Tomita, et al. (2006). “Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders.” Mol Psychiatr 11(7): 615, 663–79.CrossRefGoogle Scholar
  66. Volk, D. W., M. C. Austin, et al. (2000). “Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia.” Arch Gen Psychiatr 57(3): 237–45.PubMedCrossRefGoogle Scholar
  67. Wang, Y., C. Barbacioru, et al. (2006). “Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays.” BMC Genom 7: 59.CrossRefGoogle Scholar
  68. Wible, C. G., J. Anderson, et al. (2001). “Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study.” Psychiatr Res 108(2): 65–78.CrossRefGoogle Scholar
  69. Wolf, D. H., R. C. Gur, et al. (2007). “Alterations of fronto-temporal connectivity during word encoding in schizophrenia.” Psychiatr Res 154(3): 221–32.CrossRefGoogle Scholar
  70. Woo, T. U., J. P. Walsh, et al. (2004). “Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder.” Arch Gen Psychiatr 61(7): 649–57.PubMedCrossRefGoogle Scholar
  71. Young, C. E., K. Arima, et al. (1998). “SNAP-25 deficit and hippocampal connectivity in schizophrenia.” Cereb Cortex 8(3): 261–8.PubMedCrossRefGoogle Scholar
  72. Zhao, Z., S. M. Nair, et al. (2000). “Expression and role of sulfoglucuronyl (HNK-1) carbohydrate and its binding protein SBP-1 in developing rat cerebral cortex.” J Neurosci Res 62(2): 186–205.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gursharan Chana
  • Stephen J. Glatt
  • Ian P. Everall
  • Ming T. Tsuang
    • 1
  1. 1.Center for Behavioral Genomics, Department of PsychiatryUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations