Characterization and Utilization of Genetic Resources for Improvement and Management of Grassland Species

  • Roland Kölliker
  • Beat Boller
  • Mahdi Majidi
  • Madlaina K. I. Peter-Schmid
  • Seraina Bassin
  • Franco Widmer


Characterization and targeted utilisation of genetic diversity are crucial for any successful breeding program and may help to better understand ecological processes in complex multi-species grasslands. Molecular genetic markers allow for a rapid assessment of diversity at the genome level and highly informative, sequence-specific markers have become available for several grassland species. Although many grassland species are outbreeding and therefore require a large number of plants to be analysed per population, technical and statistical developments have enabled the molecular genetic characterisation of diversity for a broad range of purposes. Molecular markers allow for a targeted selection of parental plants in polycross breeding programs, which may lead to improved performance of the resulting progenies. Detailed characterisation of plant genetic resources existing in collections of ecotype populations, landraces or cultivars may enable breeders to specifically complement their breeding material. In addition, the identification and subsequent elimination of duplicate or highly similar accessions helps to reduce costs involved in maintaining large germplasm collections. The analysis of genetic diversity also allows to investigate the influence of management and environment on population structure or to determine the effect of in situ and ex situ conservation on genetic composition at the species or population level. Furthermore, molecular markers may be used to characterise the effect of environmental pollutants on genetic diversity within species present in permanent grassland. For several grassland species including ryegrasses, fescues and clovers, various studies have highlighted the benefit of detailed molecular genetic characterisation for a targeted utilisation of genetic resources.


Amplify Fragment Length Polymorphism Simple Sequence Repeat Marker White Clover Perennial Ryegrass Cleave Amplify Polymorphic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard R W (1999) Principles of plant breeding, Wiley, New YorkGoogle Scholar
  2. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560CrossRefPubMedGoogle Scholar
  3. Bolaric S, Barth S, Melchinger AE, Posselt UK (2005) Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breed 124:257–262CrossRefGoogle Scholar
  4. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758CrossRefPubMedGoogle Scholar
  5. Booy G, Hendriks RJJ, Smulders MJM, Groenendael JM, van Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395CrossRefGoogle Scholar
  6. Casler MD (1998) Genetic variation within eight populations of perennial forage grasses. Plant Breed 117:243–249CrossRefGoogle Scholar
  7. Cerna FJ, Cianzio SR, Rafalski A, Tingey S, Dyer D (1997) Relationship between seed yield heterosis and molecular marker heterozygosity in soybean. Theor Appl Genet 95:460–467CrossRefGoogle Scholar
  8. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefPubMedGoogle Scholar
  9. Charmet G, Ravel C, Balfourier F (1997) Phylogenetic analysis in the FestucaLolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94:1038–1046CrossRefGoogle Scholar
  10. Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2006) Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 276:101–112CrossRefPubMedGoogle Scholar
  11. Cogan NOI, Drayton MC, Ponting RC, Vecchies AC, Bannan NR, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2007) Validation of in silico-predicted genic SNPs in white clover (Trifolium repens L.), an outbreeding allopolyploid species. Mol Genet Genomics 277:413–425CrossRefPubMedGoogle Scholar
  12. Dias PMB, Julier B, Sampoux JP, Barre P, Dall'Agnol M. (2008)Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica 160:189–205CrossRefGoogle Scholar
  13. Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium – Leguminosae). Mol Phylogenet Evol 39:688–705CrossRefPubMedGoogle Scholar
  14. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  15. Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Phylogeographical history of the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478CrossRefGoogle Scholar
  16. Fjellheim S, Blomlie AB, Marum P, Rognli OA (2007) Phenotypic variation in local populations and cultivars of meadow fescue – potential for improving cultivars by utilizing wild germplasm. Plant Breed 126:279–286CrossRefGoogle Scholar
  17. Foster Hünneke L (1991) Ecological implications of genetic variation in plant populations. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 31–44Google Scholar
  18. Franco J, Crossa J, Ribaut JM, Betran J, Warburton ML, Khairallah M (2001) A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor Appl Genet 103:944–952CrossRefGoogle Scholar
  19. George J, Dobrowolski MP, de Jong EV, Cogan NOI, Smith KF, Forster JW (2006) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome 49:919–930CrossRefPubMedGoogle Scholar
  20. Grenier C, Bramel-Cox PJ, Noirot M, Rao KEP, Hamon P (2000a) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures A. Using morpho-agronomical and passport data. Theor Appl Genet 101:190–196CrossRefGoogle Scholar
  21. Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000b) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures. B. Using molecular markers. Theor Appl Genet 101:197–202CrossRefGoogle Scholar
  22. Hartmann M, Frey B, Kölliker R, Widmer F (2005) Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J Microbiol Methods 61:349–360CrossRefPubMedGoogle Scholar
  23. Herrmann D, Boller B, Widmer F, Kölliker R (2005) Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome 48:474–486CrossRefPubMedGoogle Scholar
  24. Herrmann D, Boller B, Studer B, Widmer F, Kölliker R (2008) Improving persistence in red clover – insight from QTL analysis and comparative phenotypic evaluation. Crop Sci 48:269–277CrossRefGoogle Scholar
  25. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  26. Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279CrossRefPubMedGoogle Scholar
  27. Humphreys MO (2005) Genetic improvement of forage crops – past, present and future. J Agric Sci 143:441–448CrossRefGoogle Scholar
  28. Ikeda S (2005) Isolation of disease resistance gene analogs from Italian Ryegrass (Lolium multiflorum Lam.). Grassl Sci 51:63–70CrossRefGoogle Scholar
  29. Jensen LB, Muylle H, Arens P, Andersen CH, Holm PB, Ghesquiere M, Julier B, Lubberstedt T, Nielsen KK, Riek JD, Roldan-Ruiz I, Roulund N, et al. (2005) Development and mapping of a public reference set of SSR markers in Lolium perenne L. Mol Ecol Notes 5:951–957CrossRefGoogle Scholar
  30. Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584CrossRefPubMedGoogle Scholar
  31. Joyce TA, Abberton MT, Michaelson-Yeates TPT, Forster JW (1999) Relationships between genetic distance measured by RAPD-PCR and heterosis in inbred lines of white clover (Trifolium repens L.). Euphytica 107:159–165CrossRefGoogle Scholar
  32. Kirwan L, Lüscher A, Sebastia MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, Dalmannsdottir S, Delgado I, et al. (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539CrossRefGoogle Scholar
  33. Kölliker R, Stadelmann FJ, Reidy B, Nösberger J (1998) Fertilization and defoliation frequency affect genetic variability of Festuca pratensis Huds. in permanent grasslands. Mol Ecol 7:1757–1768CrossRefGoogle Scholar
  34. Kölliker R, Jones ES, Drayton MC, Dupal MP, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424CrossRefGoogle Scholar
  35. Kölliker R, Herrmann D, Boller B, Widmer F (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theor Appl Genet 107:306–315CrossRefPubMedGoogle Scholar
  36. Kölliker R, Boller B, Widmer F (2005) Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perenne L.). Euphytica 146:55–65CrossRefGoogle Scholar
  37. Kölliker R, Enkerli J, Widmer F (2006) Characterization of novel microsatellite loci for red clover (Trifolium pratense L.) from enriched genomic libraries. Mol Ecol Notes 6:50–53CrossRefGoogle Scholar
  38. Kölliker R, Bassin S, Schneider D, Widmer F, Fuhrer J (2007) Elevated ozone affects the genetic composition of Plantago lanceolata L. populations. Environ Pollut 152:380–386CrossRefPubMedGoogle Scholar
  39. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424CrossRefPubMedGoogle Scholar
  40. McCann KS (2000) The diversity-stability debate. Nature 405:228–233CrossRefPubMedGoogle Scholar
  41. Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557CrossRefGoogle Scholar
  42. Miura Y, Hirata M, Fujimori M (2007) Mapping of EST-derived CAPS markers in Italian ryegrass (Lolium multiflorum Lam.). Plant Breed 126:353–360CrossRefGoogle Scholar
  43. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Sci 43:1235–1248Google Scholar
  44. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:356–364Google Scholar
  45. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  46. Oostermeijer JGB, Eijck MW, Van Leeuwen N, Van Den Nijs JCM (1995) Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. J Evol Biol 8:739–759CrossRefGoogle Scholar
  47. Primack RB, Kang H (1989) Measuring fitness and natural selection in wild plant populations. Annu Rev Ecol Syst 20:367–396CrossRefGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  49. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  50. Saha MC, Mian RMA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791CrossRefPubMedGoogle Scholar
  51. Sato S, Isobe S, Asamizu E, Ohmido N, Kataoka R, Nakamura Y, Kaneko T, Sakurai N, Okumura K, Klimenko I, Sasamoto S, Wada T, et al. (2005) Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res 12:301–364CrossRefPubMedGoogle Scholar
  52. Studer B, Widmer F, Enkerli J, Kölliker R (2006) Development of novel microsatellite markers for the grassland species Lolium multiflorum, L. perenne and Festuca pratensis. Mol Ecol Notes 6:1108–1110CrossRefGoogle Scholar
  53. Studer B, Boller B, Bauer E, Posselt UK, Widmer F, Kölliker R (2007) Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet 115:9–17CrossRefPubMedGoogle Scholar
  54. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5), Microcomputer power, Ithaca, New York, USAGoogle Scholar
  55. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decadelong grassland experiment. Nature 441:629–632CrossRefPubMedGoogle Scholar
  56. Ubi BE, Kölliker R, Fujimori M, Komatsu T (2003) Genetic diversity in diploid cultivars of rhodesgrass determined on the basis of amplified fragment length polymorphism markers. Crop Sci 43:1516–1522Google Scholar
  57. Treuren R, Van Bas N, Goossens PJ, Jansen J, Soest LJM Van (2005) Genetic diversity in perennial ryegrass and white clover among old Dutch grasslands as compared to cultivars and nature reserves. Mol Ecol 14:39–52CrossRefPubMedGoogle Scholar
  58. Velissariou D (1999) Toxic effects and losses of commercial value of lettuce and other vegetables due to photochemical air pollution in agricultural areas of Attica, Greece. In: Fuhrer J, Achermann B (eds) Critical Levels for Ozonoe – Level IISwiss Agency for Environment, Forest and Landscape, Berne, Switzerland, pp 253–256Google Scholar
  59. Vellend M, Geber MA (2005) Connection between species diversity and genetic diversity. Ecol Lett 8:767–781CrossRefGoogle Scholar
  60. Volk M, Bungener P, Contat F, Montani M, Fuhrer J (2006) Grassland yield declined by a quarter in 5 years of free-air ozone fumigation. Global Change Biol 12:74–83CrossRefGoogle Scholar
  61. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP – a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  62. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218CrossRefPubMedGoogle Scholar
  63. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci U S A 101:9915–9920CrossRefPubMedGoogle Scholar
  64. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res 18:6531–6535CrossRefPubMedGoogle Scholar
  65. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Roland Kölliker
    • 1
  • Beat Boller
    • 1
  • Mahdi Majidi
    • 2
  • Madlaina K. I. Peter-Schmid
    • 1
  • Seraina Bassin
    • 1
  • Franco Widmer
    • 1
  1. 1.Agroscope Reckenholz Tänikon ARTZurichSwitzerland
  2. 2.Isfahan University of Technology (IUT)IsfahanIran

Personalised recommendations