Advertisement

Development of Trifolium occidentale as a Plant Model System for Perennial Clonal Species

  • W. M. Williams
  • A. G. Griffiths
  • M. J. M. Hay
  • K. A. Richardson
  • N. W. Ellison
  • S. Rasmussen
  • I. M. Verry
  • V. Collette
  • S. W. Hussain
  • R. G. Thomas
  • C. S. Jones
  • C. Anderson
  • D. Maher
  • A. G. Scott
  • K. Hancock
  • M. L. Williamson
  • J. C. Tilbrook
  • M. Greig
  • A. Allan

Abstract

Trifolium occidentale D.E. Coombe is a diploid, clonal perennial clover that is very closely related to white clover (T. repens L.). It has been previously reported to be self-pollinating and lacking in genetic diversity. However, new collections, especially in Spain and Portugal, have revealed that cross-pollinating populations with substantial genetic diversity do exist. This has led to T. occidentale being investigated as a potential genetic model species to facilitate the application of genomic methods for the improvement of white clover. Investigations have shown that T. occidentale has many attributes that make it suitable as a genetic model for white clover. It forms hybrids with white clover and the chromosomes of the two species pair and recombine at meiosis. Phylogenetic research shows that it is a very close relative, and probably an ancestor, of white clover. A framework linkage map based on SSR markers has shown it to be highly syntenic with white clover. A protocol for efficient transformation has been developed. An effective EMS mutagenesis method has been demonstrated by the induction of a high frequency of condensed tannin negative mutants. The clonal nature of T. occidentale is not shared by other dicotyledonous model species. It may, therefore, be useful for the genomic characterisation of traits associated with clonal growth and perenniality in this wider class of plants.

Keywords

Condensed Tannin White Clover Flower Head Ammonium Glufosinate Substantial Genetic Diversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts RJ, Barry TN, McNabb WC (1999) Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agric Ecosyst Environ 75:1–12CrossRefGoogle Scholar
  2. Ansari HA, Ellison NW, Griffiths, AG, Williams WM (2004) A lineage-specific centromeric satellite sequence in the genus Trifolium. Chromosome Res 12:1–11CrossRefGoogle Scholar
  3. Caradus JR, Woodfield DR (1997) World checklist of white clover varieties II. N Z J Agric Res 40:115–206Google Scholar
  4. Chen C-C, Gibson PB (1970) Meiosis in two species of Trifolium. and their hybrids Crop Sci 10:188–189Google Scholar
  5. Coombe DE (1961) Trifolium occidentale, a new species related to T. repens L. Watsonia5:68–87Google Scholar
  6. Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium. – Leguminosae) Mol Phylogenet Evol 39:688–705CrossRefPubMedGoogle Scholar
  7. Géhu J-M (1972) Trifolium occidentale. D.E.Coombe espece noevelle pour le littoral du nord du Portugal Agron Lusitana 34:197–204Google Scholar
  8. Gibson PB, Beinhart G (1969) Hybridization of Trifolium occidentale. with two other species of clover J Hered 60:93–96Google Scholar
  9. Gleave A (1992) A versatile binary vector system with a T-DNA organisational structure conducive to cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207CrossRefPubMedGoogle Scholar
  10. Kakes P, Chardonnens AN (2000) Cyanotypic frequencies in adjacent and mixed populations of Trifolium occidentale. Coombe and Trifolium repens L. are regulated by different mechanisms. Biochem Syst Ecol 28:633–649CrossRefPubMedGoogle Scholar
  11. Kendall WA (1966) Factors affecting foams with forage legumes. Crop Sci 6:487–489Google Scholar
  12. Preston CD (1980) Trifolium occidentale. D.E. Coombe, new to Ireland. Ir Nat J 20:37–40Google Scholar
  13. Rivas-Martínez S (1976) Notes systématiques, chorologiques et écologiques sur des plantes d’Espagne, 1. Candollea 31:111–117Google Scholar
  14. Williams WM, Verry IM, Ellison NW (2006) A phylogenetic approach to germplasm use in clover breeding. In: Mercer CF (ed) Breeding for success: diversity in action. Proc 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, 18–21 April 2006, pp. 966–971Google Scholar
  15. Williams WM, Ansari HA, Hussain SW, Ellison NW, Williamson ML, Verry IM (2008) Hybridisation and introgression between two diploid wild relatives of white clover, Trifolium nigrescens. Viv and T. occidentale Coombe. Crop Sci48:139–148CrossRefGoogle Scholar
  16. Zohary M, Heller D (1984) The genus Trifolium. The Israel Academy of Sciences and Humanities, JerusalemGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • W. M. Williams
    • 1
  • A. G. Griffiths
    • 2
  • M. J. M. Hay
    • 1
  • K. A. Richardson
    • 1
  • N. W. Ellison
    • 1
  • S. Rasmussen
    • 2
  • I. M. Verry
    • 1
  • V. Collette
    • 2
  • S. W. Hussain
    • 1
  • R. G. Thomas
    • 1
  • C. S. Jones
    • 2
  • C. Anderson
    • 2
  • D. Maher
    • 2
  • A. G. Scott
    • 2
  • K. Hancock
    • 2
  • M. L. Williamson
    • 1
  • J. C. Tilbrook
    • 1
  • M. Greig
    • 2
  • A. Allan
    • 2
  1. 1.AgResearch GrasslandsPalmerston NorthNew Zealand
  2. 2.Pastoral Genomicsc/o AgResearch GrasslandsPalmerston NorthNew Zealand

Personalised recommendations