Advertisement

Transgenesis in Forage Crops

  • Zeng-Yu Wang
  • Jeremey Bell
  • Xiaofei Cheng
  • Yaxin Ge
  • Xuefeng Ma
  • Elane Wright
  • Yajun Xi
  • Xirong Xiao
  • Jiyi Zhang
  • Joseph Bouton
Conference paper

Abstract

We have established genetic transformation systems for a number of important forage species including tall fescue, switchgrass, bermudagrass, zoysiagrass, alfalfa, white clover and Medicago truncatula. The target agronomic traits are forage quality, drought tolerance and phosphate uptake. This chapter summarizes our efforts in improving major forage grasses and legumes by transgenic approaches.

Keywords

White Clover Tall Fescue Cinnamyl Alcohol Dehydrogenase Phytase Gene Festuca Arundinacea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen L, Auh C, Chen F, Cheng XF, Aljoe H, Dixon RA, Wang Z-Y (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50: 5558–5565CrossRefPubMedGoogle Scholar
  2. Chen L, Auh C, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang Z-Y (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase Plant Biotechnol J 1: 437–449CrossRefPubMedGoogle Scholar
  3. Chen L, Auh C, Dowling P, Bell J, Lehmann D, Wang Z-Y (2004) Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea) Funct Plant Biol 31: 235–245CrossRefGoogle Scholar
  4. Crane C, Wright E, Dixon RA, Wang Z-Y (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots Planta 223: 1344–1354CrossRefPubMedGoogle Scholar
  5. Dixon RA, Bouton JH, Narasimhamoorthy B, Saha M, Wang Z-Y, May GD (2007) Beyond structural genomics for plant science. Adv Agron 95: 77–161CrossRefGoogle Scholar
  6. Ge Y, Norton T, Wang Z-Y (2006) Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation Plant Cell Rep 25: 792–798CrossRefPubMedGoogle Scholar
  7. Ge Y, Cheng X-F, Hopkins A, Wang Z-Y (2007) Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation Plant Cell Rep 26: 783–789CrossRefPubMedGoogle Scholar
  8. Wang Z-Y, Ge Y (2005a) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.) J Plant Physiol 162: 103–113CrossRefGoogle Scholar
  9. Wang Z-Y, Ge Y (2005b) Rapid and efficient production of transgenic bermudagrass and creeping bentgrass bypassing the callus formation phase. Funct Plant Biol 32: 769–776CrossRefGoogle Scholar
  10. Wang Z-Y, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42: 1–18Google Scholar
  11. Wang Z-Y, Bell J, Ge YX, Lehmann D (2003a) Inheritance of transgenes in transgenic tall fescue (Festuca arundinacea Schreb.) In Vitro Cell Dev Biol Plant 39: 277–282CrossRefGoogle Scholar
  12. Wang Z-Y, Scott M, Bell J, Hopkins A, Lehmann D (2003b) Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies Theor Appl Genet 107: 406–412CrossRefGoogle Scholar
  13. Wang Z-Y, Bell J, Lehmann D (2004a) Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells Plant Cell Rep 22: 903–909Google Scholar
  14. Wang Z-Y, Ge YX, Scott M, Spangenberg G (2004b) Viability and longevity of pollen from transgenic and non-transgenic tall fescue (Festuca arundinacea) (Poaceae) plants Am J Bot 91: 523–530CrossRefGoogle Scholar
  15. Wang Z-Y, Ge Y, Mian R, Baker J (2005) Development of highly tissue culture responsive lines of Lolium temulentum by anther culture Plant Sci 168: 203–211CrossRefGoogle Scholar
  16. Wright E, Dixon RA, Wang Z-Y (2006) Medicago truncatula: transformation using cotyledon explants. InWang K (ed) Agrobacterium protocols2Humana Press: Totowa, NJ, pp 129–135(nd edition)Google Scholar
  17. Xiao K, Harrison M, Wang Z-Y (2005a) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis Planta 222: 27–36CrossRefGoogle Scholar
  18. Xiao K, Zhang C, Harrison M, Wang Z-Y (2005b) Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breed 15: 221–231CrossRefGoogle Scholar
  19. Xiao K, Katagi H, Harrison M, Wang Z-Y (2006a) Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula . Plant Sci170: 191–202CrossRefGoogle Scholar
  20. Xiao K, Liu J, Dewbre G, Harrison M, Wang Z-Y (2006b) Isolation and characterization of root-specific phosphate transporter promoters from Medicago truncatula. Plant Biol 8: 439–449CrossRefGoogle Scholar
  21. Xie D-Y, Sharma SB, Wright E, Wang Z-Y, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45: 895–907CrossRefPubMedGoogle Scholar
  22. Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus Plant Physiol 137: 1174–1181CrossRefPubMedGoogle Scholar
  23. Zhang J-Y, Broeckling CD, Blancaflor EB, Sledge M, Sumner LW, Wang Z-Y (2005) Overexpression of WXP1 , a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa) Plant J, 42: 689–707CrossRefGoogle Scholar
  24. Zhang J-Y, Broeckling C, Sumner LW, Wang Z-Y (2006) Heterologous expression of two putative Medicago truncatula ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance Plant Mol Biol 64: 265–278CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Zeng-Yu Wang
    • 1
  • Jeremey Bell
    • 1
  • Xiaofei Cheng
    • 1
  • Yaxin Ge
    • 1
  • Xuefeng Ma
    • 1
  • Elane Wright
    • 1
  • Yajun Xi
    • 1
  • Xirong Xiao
    • 1
  • Jiyi Zhang
    • 1
  • Joseph Bouton
    • 1
  1. 1.Forage Improvement DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations