Advertisement

Understanding the Genetic Basis of Flowering and Fertility in the Ryegrasses (Lolium spp.)

  • Ian Armstead
  • Bicheng Yang
  • Susanne Barth
  • Lesley Turner
  • Leif Skøt
  • Athole Marshall
  • Mervyn Humphreys
  • Ian King
  • Danny Thorogood

Abstract.

Ryegrasses and fescues of the Lolium/Festuca complex form the basis of many temperate grassland agricultural and turf systems and the ability to manipulate flowering and fertility within these grasses is of considerable importance. Genetic studies can identify multiple quantitative trait loci affecting these traits which can be used in the development of marker-assisted selection protocols for combining favourable alleles. By applying a knowledge of plant comparative genetics and genomics, it is possible to increase the information content of these studies by ‘cross-referencing’ between the Lolium/Festuca grasses and other crop and model species (e.g. rice, Triticeae cereals, Arabidopsis). Syntenic genomic regions, new genetic markers and candidate genes can, thus, be identified.

Keywords

Quantitative Trait Locus Perennial Ryegrass Lolium Perenne Quantitative Trait Locus Study Multiple Quantitative Trait Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstead IP, Turner LB, Farrell M, SkøtL, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004). Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828CrossRefGoogle Scholar
  2. Armstead IP, SkøtL, Turner LB, SkøtK, Donnison IS, Humphreys MO, King IP (2005) Identification of perennial ryegrass (Lolium perenne L.) and meadow fescue (Festuca pratensis Huds.) candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167:239–247CrossRefPubMedGoogle Scholar
  3. Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244CrossRefPubMedGoogle Scholar
  4. Ergon Å, Fang C, Jørgensen Ø, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds). Theor Appl Genet 112:232–242CrossRefPubMedGoogle Scholar
  5. Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65CrossRefPubMedGoogle Scholar
  6. Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lübberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536CrossRefPubMedGoogle Scholar
  7. Ji Q, Lu JF, Chao Q, Gu MH, Xu ML (2005) Delimiting a rice wide-compatibility gene S-5 n to a 50 kb region. Theor Appl Genet 111:1495–1503CrossRefPubMedGoogle Scholar
  8. Jing W, Zhang W, Jiang L, Chen L, Zhai H, Wan J (2007) Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the Japonica variety Akihikari of rice (Oryza sativa L.). Theor Appl Genet 114:915–925CrossRefPubMedGoogle Scholar
  9. Shinozuka H, Hisano H, Ponting RC, Cogan NOI, Jones ES, Forster JW, Yamada T (2005) Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 alpha-subunit genes. Theor Appl Genet 112:167–177CrossRefPubMedGoogle Scholar
  10. Skøt L, Humphreys MO, Armstead I, Heywood S, SkøtKP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed 15:233–245CrossRefGoogle Scholar
  11. Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead I, Thomas I (2007) Association of candidate genes with flowering time and water soluble carbohydrate content in Lolium perenne. Genetics 177:535–547CrossRefPubMedGoogle Scholar
  12. Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity88:385–390CrossRefPubMedGoogle Scholar
  13. Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363CrossRefPubMedGoogle Scholar
  14. Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44:925–935Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Ian Armstead
    • 1
  • Bicheng Yang
    • 1
    • 2
    • 3
  • Susanne Barth
    • 2
  • Lesley Turner
    • 1
  • Leif Skøt
    • 1
  • Athole Marshall
    • 1
  • Mervyn Humphreys
    • 1
  • Ian King
    • 1
  • Danny Thorogood
    • 1
  1. 1.Institute of Grassland and Environmental ResearchAberystwythUK
  2. 2.Teagasc, Crops Research CentreOak ParkCarlowIreland
  3. 3.School of BiosciencesUniversity of BirminghamUK

Personalised recommendations