Pathophysiology of Hepatic Encephalopathy: Studies in Animal Models

  • Roger F. Butterworth


Hepatic Encephalopathy (HE) is a serious neuropsychiatric complication of both acute and chronic liver failure. A study group concluded in 2002 that “HE is a spectrum of neuropsychiatric abnormalities seen in patients with liver dysfunction after exclusion of other known brain diseases” (Ferenci et al., 2002). A multiaxial definition of HE was proposed that defines both the type of hepatic abnormality and the characteristics of the neurological manifestations. Three types of hepatic abnormalities were defined, namely:


Glial Fibrillary Acidic Protein Hepatic Encephalopathy Cirrhotic Patient Acute Liver Failure Hepatic Coma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams RD, Foley JM. The neurological disorder associated with liver disease. In: Metabolic and Toxic Diseases of the Nervous System. (H.H. Merritt, and C.C. Hare, eds.)Vol. 32. Williams and Wilkins, Baltimore, USA, pp. 198-237, 1953Google Scholar
  2. Ahboucha S, Butterworth RF. The neurosteroid system: Implication in the pathophysiology of hepatic encephalopathy. Neurochem. Int., 52, 575-587, 2008PubMedCrossRefGoogle Scholar
  3. Ahboucha S, Pomier-Layrargues G, Mamer O, Butterworth RF. Increased brain concentrations of a neuroinhibitory steroid in human hepatic encephalopathy. Ann. Neurol., 58, 169-170, 2005PubMedCrossRefGoogle Scholar
  4. Ahboucha S, Coyne L, Hirakawa R, Butterworth RF, Halliwell RF. An interaction between benzodiazepines and neuroactive steroids at GABAA receptors in cultured hippocampal neurons. Neurochem. Int., 48, 703-707, 2006PubMedCrossRefGoogle Scholar
  5. Bates TE, Williams SR, Kauppinen RA, Godian DG. Observation of cerebral metabolites in an animal model of ALF in vivo: 1H and 31P nuclear magnetic resonance study. J. Neurochem., 53, 102-110, 1989PubMedCrossRefGoogle Scholar
  6. Bélanger M, Desjardins P, Chatauret N, Butterworth RF. Loss of expression of glial fibrillary acidic protein in acute hyperammonemia. Neurochem. Int., 41(2-3), 155-160, 2002PubMedCrossRefGoogle Scholar
  7. Bélanger M, Ahboucha S, Desjardins P, Butterworth RF. Upregulation of peripheral-type (mitochondrial) benzodiazepine receptors in hyperammonemic syndromes: Consequences for neuronal excitability. Adv. Mol. Cell Biol., 31(3), 983-997, 2004Google Scholar
  8. Bélanger M, Desjardins P, Chatauret N, Butterworth RF. Selectively increased expression of the astrocytic/endothelial glucose transporter protein GLUT1 in acute liver failure (p NA). Glia, 53(5), 557-562, 2006PubMedCrossRefGoogle Scholar
  9. Bender AS, Schousboe A, Reichelt W, Norenberg MD. Ionic mechanisms in glutamate-induced astrocyte swelling: Role of K+ influx. J. Neurosci. Res., 52, 307-321, 1998PubMedCrossRefGoogle Scholar
  10. Bengtsson F, Bugge M, Johansen KH, Butterworth RF. Brain tryptophan hydroxylation in the portacaval shunted rat: A hypothesis for the regulation of serotonin turnover in vivo. J. Neurochem., 56, 1069-1074, 1991PubMedCrossRefGoogle Scholar
  11. Bergeron M, Reader TA, Pomier Layrargues G, Butterworth RF. Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurochem. Res., 14, 853-859, 1989PubMedCrossRefGoogle Scholar
  12. Bergeron M, Swain MS, Reader TA, Grondin L, Butterworth RF. Effect of ammonia on brain serotonin metabolism in relation to function in the portacaval shunted rat. J. Neurochem., 55, 222-229, 1990PubMedCrossRefGoogle Scholar
  13. Bergeron M, Reader TA, Pomier Layrargues G, Butterworth RF. Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurochem. Res., 20, 79-86, 1995PubMedCrossRefGoogle Scholar
  14. Blei AT. Infection, inflammation and hepatic encephalopathy, synergism redefined. J. Hepatol., 40, 327-330, 2004PubMedCrossRefGoogle Scholar
  15. Bosman DK, van den Buijs CA, de Haan JG, Maas MA, Chamuleau RA. The effects of benzodiazepine-receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat. Gastroenterology, 101, 772-781, 1991PubMedGoogle Scholar
  16. Bosman DK, Deutz NEP, Maas MAW, van Eijk MHH, Smit JJH, de Haan JG, Chamuleau RAFM. Amino acid release from cerebral cortex in experimental ALF, studied by in vivo cerebral cortex microdialysis. J. Neurochem., 59, 591-599, 1992PubMedCrossRefGoogle Scholar
  17. Butterworth RF. Hepatic encephalopathy and brain edema in acute hepatic failure: Does glutamate play a role. Hepatology, 25, 1032-1034, 1997PubMedCrossRefGoogle Scholar
  18. Butterworth RF. Neurotransmitter dysfunction in hepatic encephalopathy: New approaches and new findings. Metab. Brain Dis., 16, 55-65, 2001PubMedCrossRefGoogle Scholar
  19. Butterworth RF. Neuronal cell death in hepatic encephalopathy. Metab. Brain Dis., 22, 309-320, 2007PubMedCrossRefGoogle Scholar
  20. Butterworth RF, Giguère JF. Cerebral amino acids in portal-systemic encephalopathy: Lack of evidence for altered γ-aminobutyric acid (GABA) function. Metab. Brain Dis., 1, 221-228, 1986CrossRefGoogle Scholar
  21. Butterworth RF, Giguère JF, Michaud J, Lavoie J, Pomier Layrargues G. Ammonia: Key factor in the pathogenesis of hepatic encephalopathy. Neurochem. Pathol., 6, 1-12, 1987PubMedCrossRefGoogle Scholar
  22. Butterworth RF, Lavoie J, Giguère JF, Pomier Layrargues G. Affinities and densities of high affinity 3H-muscimol (GABA-A) binding sites and central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Hepatology, 8, 1084-1088, 1988PubMedCrossRefGoogle Scholar
  23. Butterworth RF, Tonon MC, Désy L, Giguère JF, Vaudry H, Pelletier G. Increased brain content of the endogenous benzodiazepine receptor ligand octadecaneuropeptide (ODN) following portacaval anastomosis in the rat. Peptides, 12, 119-125, 1991PubMedCrossRefGoogle Scholar
  24. Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB. In vivo quantification of cerebral “peripheral benzodiazepine binding site” in minimal hepatic encephalopathy: A [11C]R-PK11195 positron emission tomography study. J. Hepatol., 34, 58, 2001Google Scholar
  25. Chamuleau RA, Poyck PP, van de Kerkhove MP. Bioartificial liver: Its pros and cons. Ther. Apher. Dial., 10(2), 168-174, 2006PubMedCrossRefGoogle Scholar
  26. Chan H, Hazell AS, Desjardins P, Butterworth RF. Effects of ammonia on glutamate transporter (GLAST) protein and mRNA in cultured rat cortical astrocytes. Neurochem. Int., 37, 243-248, 2000PubMedCrossRefGoogle Scholar
  27. Chatauret N, Butterworth RF. Effects of liver failure on inter-organ trafficking of ammonia: Implications for the treatment of encephalopathy. J. Gastroenterol. Hepatol., 19, S219-S223, 2004CrossRefGoogle Scholar
  28. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P. Cerebral herniation in patients with ALF is correlated with arterial ammonia concentration. Hepatology, 29, 648-653, 1999PubMedCrossRefGoogle Scholar
  29. Cordoba J, Cabrera J, Lataif L, Penev P, Zee P, Blei AT. High prevalence of sleep disturbance in cirrhosis. Hepatology, 27(2), 339-345, 1998PubMedCrossRefGoogle Scholar
  30. Desjardins P, Butterworth RF. The “peripheral-type” benzodiazepine (ω 3) receptor in hyperammonemic disorders. Neurochem. Int., 41, 109-114, 2002PubMedCrossRefGoogle Scholar
  31. Desjardins P, Bandeira P, Raghavendra Rao VL, Ledoux S, Butterworth RF. Increased expression of the peripheral-type benzodiazepine receptor-isoquinoline carboxamide binding protein in mRNA brain following portacaval anastomosis. Brain Res., 758, 255-258, 1997PubMedCrossRefGoogle Scholar
  32. Desjardins P, RamaRao VK, Michalak A, Rose C, Butterworth RF. Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab. Brain Dis., 14, 273-282, 1999PubMedCrossRefGoogle Scholar
  33. Devenyi AG, Barron TF, Mamourian AC. Dystonia, hyperintense basal ganglia, and high whole blood manganese levels in Alagilles’s syndrome. Gastroenterology, 106, 1068-1071, 1994PubMedGoogle Scholar
  34. DeWaele JP, Audet RM, Leong DK, Butterworth RF. Portacaval anastomosis results in region-selective changes of β-endorphin content and of μ and δopiod receptor densities in rat brain. Hepatology, 24, 895-901, 1996CrossRefGoogle Scholar
  35. DeWaele JP, Audet RM, Rose C, Butterworth RF. The portacaval-shunted rat: A new model for the study of the mechanisms controlling voluntary ethanol consumption and ethanol dependence. Alcohol Clin. Exp. Res., 21, 305-310, 1997CrossRefGoogle Scholar
  36. Felipo V, Butterworth RF. Neurobiology of ammonia. Prog. Neurobiol., 67, 259-279, 2002PubMedCrossRefGoogle Scholar
  37. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT, and the Members of the Working Party. Hepatic encephalopathy - definition, nomenclature, diagnosis and quantification: Final report of the working party at the 11th World Congress of Gastroenterology, Vienna 1998. Hepatology, 35, 716-721, 2002Google Scholar
  38. Gabuzda G Jr., Philips GB, Davidson CS. Reversible toxic manifestations in patients with cirrhosis of the liver given cation-exchange resins. New Engl. J. Med., 246, 124-130, 1952PubMedCrossRefGoogle Scholar
  39. Ganda OP, Ruderman NB. Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism, 25(4), 427-435, 1976PubMedCrossRefGoogle Scholar
  40. Gentile S, Guarino G, Romano M, Alagia IA, Fierro M, Annunziata S, Magliano PL, Gravina AG, Torella R. A randomized controlled trial of acarbose in hepatic encephalopathy. Clin. Gastroenterol. Hepatol., 3, 184-191, 2005PubMedCrossRefGoogle Scholar
  41. Giguère JF, Hamel E, Butterworth RF. Increased densities of binding sites for the “peripheral-type” benzodiazepine receptor ligand 3H-PK11195 in rat brain following portacaval anastomosis. Brain Res., 585, 295-298, 1992PubMedCrossRefGoogle Scholar
  42. Girard G, Giguère JF, Butterworth RF. Effect of portacaval anastomosis on ammonia metabolism in brain and liver. In: Hepatic Encephalopathy: Pathophysiology and Treatment. (R.F. Butterworth, and G. Pomier Layrargues, eds.), Humana Press, New Jersey., pp. 79-89, 1989CrossRefGoogle Scholar
  43. Gyr K, Meier R Haussler J, Bouletreau P, Fleig WE, Gatta A, Holstege A, Pomier Layrargues G, Schalm SW, Groeneweg M, Scollo-Lavizzari G, Ventura E, Zeneroli ML, Williams R, Yoo Y, Amrein R. Evaluation of the efficacy and safety of flumazenil in the treatment of portal systemic encephalopathy: A double blind, randomised, placebo controlled multicentre study. Gut, 39, 319-324, 1996PubMedCrossRefGoogle Scholar
  44. Haefely WE. Allosteric modulation of the GABAA receptor channel: A mechanism for interaction with a multitude of central nervous system function. In: The Challenge of Neuropharmacology. (H. Möhler, and M. Da Prada, eds.), F. Hoffman-La Roche , Basel, Switzerland, pp. 15-40, 1994Google Scholar
  45. Hindfelt B, Plum F, Duffy TE. Effects of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest., 59, 386-396, 1977PubMedCrossRefGoogle Scholar
  46. Huet PM, Pomier Layrargues G, Duguay L, Du Souich P. Blood—brain barrier transport of tryptophan and phenylalanine: Effect of portacaval shunt in dogs. Am. J. Physiol., 4, 163-169, 1981Google Scholar
  47. Jacobs EH, Yamatodani A, Timmerman H. Is histamine the final neurotransmitter in the entrainment of circadian rhythms in mammals. Trends Pharmacol. Sci., 21(8), 293-298, 2000PubMedCrossRefGoogle Scholar
  48. Jalan R, Damink SW, Deutz NE, Lee A, Hayes PC. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet, 354(9185), 1164-1168, 1999PubMedCrossRefGoogle Scholar
  49. Jalan R, Pollok A, Shah SH, Madhavan K, Simpson KJ. Liver derived pro-inflammatory cytokines may be important in producing intracranial hypertension in ALF. J. Hepatol., 37, 536-538, 2002PubMedCrossRefGoogle Scholar
  50. Keiding S, SØrensen M, Bender D, Munk OL, Ott P, Vilstrup H. Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology, 43, 42-50, 2006PubMedCrossRefGoogle Scholar
  51. Kircheis G, Nilius R, Held C, Berndt H, Buchner M, Gortelmeyer R, Hendricks R, Kruger B, Kuklinski B, Meister H, Otto HJ, Rink C, Rosch W, Stauch S. Therapeutic efficacy of l-ornithine-l-aspartate infusions in patients with cirrhosis and hepatic encephalopathy: Results of a placebo-controlled, double-blind study. Hepatology, 25(6), 1351-1360, 1997PubMedCrossRefGoogle Scholar
  52. Knecht K, Michalak A, Rose C, Rothstein JD, Butterworth RF. Decreased glutamate transporter (GLT-1) expression in frontal cortex of rats with ALF. Neurosci. Lett., 229, 201-203, 1997PubMedCrossRefGoogle Scholar
  53. Kosenko E, Kaminsky Y, Grau E, Minana MD, Grisolia S, Felipo V. Nitroarginine an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem. Res., 20(4), 451-456, 1995PubMedCrossRefGoogle Scholar
  54. Kril JJ, Butterworth RF. Diencephalic and cerebellar pathology in alcoholic and non-alcoholic patients with end-stage liver disease. Hepatology, 24(4), 1303, 1996Google Scholar
  55. Lai JCK, Cooper AJL. Brain α-ketoglutarate dehydrogenase: Kinetic properties, regional distribution and effects of inhibitors. J. Neurochem., 47, 1376-1386, 1986PubMedCrossRefGoogle Scholar
  56. Larsen FS, Gottstein J, Blei AT. Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J. Hepatol., 34(4), 548-554, 2001PubMedCrossRefGoogle Scholar
  57. Laubenberger J, Haussinger D, Boyer S, Guffer H, Henning J, Lange M. Proton magnetic resonance spectroscopy of brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology, 112, 1610-1616, 1997PubMedCrossRefGoogle Scholar
  58. Lavoie J, Giguère JF, Pomier Layrargues G, Butterworth RF. Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy. Metab. Brain Dis., 2, 283-290, 1987aCrossRefGoogle Scholar
  59. Lavoie J, Giguère JF, Pomier Layrargues G, Butterworth RF. Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J. Neurochem., 49, 692-697, 1987bCrossRefGoogle Scholar
  60. Lavoie J, Pomier Layrargues G, Butterworth RF. Increased densities of “peripheral-type” benzodiazepine receptors in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Hepatology, 11, 874-878, 1990PubMedCrossRefGoogle Scholar
  61. Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora: Effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology, 39(5), 1441-1449, 2004PubMedCrossRefGoogle Scholar
  62. Lockwood AH, Yap EWH, Wong W-H. Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J. Cereb. Blood Flow Metab., 11, 337-341, 1991PubMedCrossRefGoogle Scholar
  63. Lockwood AH, Weissenborn K, Butterworth RF. An image of the brain in patients with liver disease. Curr. Opin. Neurol., 10, 525-533, 1997PubMedCrossRefGoogle Scholar
  64. Lockwood AH, Weissenborn K, Bokemeyer M, Tietge U, Burchert W. Correlations between cerebral glucose metabolism and neuropsychological test performance in non-alcoholic cirrhotics. Metab. Brain Dis., 17, 29-40, 2002PubMedCrossRefGoogle Scholar
  65. Lozeva V, Valjakka A, Lecklin A, Olkkonen H, Hippelainen M, Itkonen M, Plumed C, Tuomisto L. Effects of the histamine H(1) receptor blocker, pyrilamine, on spontaneous locomotor activity of rats with long-term portacaval anastomosis. Hepatology, 31(2), 336-344, 2000PubMedCrossRefGoogle Scholar
  66. Lozeva V, Montgomery JA, Tuomisto L, Rochelean B, Pannunzio M, Huet PM, Butterworth RF. Increased brain serotonin turnover correlates with the degree of shunting and hyperammonemia in rats following variable portal vein stenosis. J. Hepatol., 40, 742-748, 2004PubMedCrossRefGoogle Scholar
  67. Lozeva-Thomas V, Ahonen P, Chatauret N, Tuomisto L, Butterworth RF. Brain histamine in experimental acute liver failure: Effects of l-histidine loading. Inflamm. Res., 53(Suppl. 1), S55-S56, 2004PubMedGoogle Scholar
  68. Maddison JE, Watson WEJ, Dodd PR, Johnston GAR. Alterations in cortical 3H-kainate and α-3H-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding in a spontaneous canine model of chronic hepatic encephalopathy. J. Neurochem., 56, 1881-1888, 1991PubMedCrossRefGoogle Scholar
  69. Malaguarnera M, Pistone G, Elvira R, Leotta C, Scarpello L, Liborio R. Effects of l-carnitine in patients with hepatic encephalopathy. World J. Gastroenterol., 11(45), 7197-7202, 2005PubMedGoogle Scholar
  70. Mans AM, Kukulka KM, McAvoy KJ, Rokosz NC. Regional distribution and kinetics of three sites on the GABAA receptor: Lack of effect of portacaval shunting. J. Cereb. Blood Flow Metab 12, 334-346, 1992PubMedCrossRefGoogle Scholar
  71. Mans AM, De Joseph MR, Hawkins RA. Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J. Neurochem., 63, 1829-1838, 1994PubMedCrossRefGoogle Scholar
  72. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA, 89, 3170-3174, 1992CrossRefGoogle Scholar
  73. Mena EE, Cotman CW. Pathologic concentrations of ammonium ions block l-glutamate uptake. Exp. Neurol., 59, 259-263, 1985CrossRefGoogle Scholar
  74. Michalak A, Butterworth RF. Selective loss of binding sites for the glutamate receptor ligands [3H]kainate and (S)-[3H]5-fluorowillardiine in the brains of rats with acute liver failure. Hepatology, 24, 631-635, 1997CrossRefGoogle Scholar
  75. Michalak A, Rose C, Butterworth J, Butterworth RF. Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology, 24, 908-913, 1996PubMedCrossRefGoogle Scholar
  76. Mirowitz SA, Westrich TJ, Hirsch JD. Hyperintense basal ganglia on T1-weighted MR images in patients receiving parenteral nutrition. Radiology, 191, 117-120, 1991Google Scholar
  77. Mollace V, Colasanti M, Rodino P, Lauro GM, Rotiroti D, Nistico G. NMDA-dependent prostaglandin E2 release by human cultured astroglial cells is driven by nitric oxide. Biochem. Biophys. Res. Commun., 215, 793-799, 1995PubMedCrossRefGoogle Scholar
  78. Moroni F, Lombardi G, Carla V, Pellegrini D, Carassale GL, Cortesini C. Content of quinolinic acid and other tryptophan metabolites increases in brain regions of rats used as experimental models of hepatic encephalopathy. J. Neurochem., 46, 869-874, 1986aCrossRefGoogle Scholar
  79. Moroni F, Lombardi G, Carla V, Lal S, Etienne P, Nair NPV. Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure. J. Neurochem., 47, 1667-1671, 1986bCrossRefGoogle Scholar
  80. Mossakowski MJ, Renkawek K, Krasnicka Z, Smialek M, Pronaszko A. Morphology and histochemistry of Wilsonian and hepatogenic gliopathy in tissue culture. Acta Neuropathol., 16, 1-16, 1970PubMedCrossRefGoogle Scholar
  81. Mousseau DD, Perney P, Pomier Layrargues G, Butterworth RF. Selective loss of pallidal dopamine D2 receptor density in hepatic encephalopathy. Neurosci. Lett., 162, 192-196, 1993PubMedCrossRefGoogle Scholar
  82. Mousseau DD, Pomier Layrargues G, Butterworth RF. Region-selective decreases in densities of [3H]-tryptamine binding sites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J. Neurochem., 61, 621-625, 1994Google Scholar
  83. Mousseau DD, Baker GB, Butterworth RF. Increased density of catalytic sites and expression of brain monoamine oxidase A in humans with hepatic encephalopathy. J. Neurochem., 68, 1200-1208, 1997PubMedCrossRefGoogle Scholar
  84. Mullen KD, Szauter KM, Kaminsky-Russ K. “Endogenous” benzodiazepine activity in body fluids of patients with hepatic encephalopathy. Lancet, 336, 81-83, 1990PubMedCrossRefGoogle Scholar
  85. Nagaki M, Iwai H, Naiki T, Ohnishi H, Muto Y, Moriwaki H. High levels of serum interleukin-10 and tumor necrosis factor-α are associated with fatality in fulminant hepatitis. J. Infect. Dis., 182, 1103-1108, 2000PubMedCrossRefGoogle Scholar
  86. Neary JT, Whittemore SR, Zhu Q, Norenberg MD. Destabilization of glial fibrillary acidic protein mRNA in astrocytes by ammonia and protection by extracellular ATP. J. Neurochem., 63(6), 2021-2027, 1994PubMedCrossRefGoogle Scholar
  87. Norenberg MD. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol., 6, 13-33, 1987PubMedCrossRefGoogle Scholar
  88. Norenberg MD, Lapham LW. The astrocyte response in experimental portal-systemic encephalopathy: An electron microscope study. J. Neuropathol. Exp. Neurol., 33, 422-435, 1974PubMedCrossRefGoogle Scholar
  89. Norenberg MD, Huo Z, Neary JT, Roig-Cantesano A. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: Relation to energy metabolism and glutamatergic neurotransmission. Glia, 21(1), 124-133, 1997PubMedCrossRefGoogle Scholar
  90. Olasmaa M, Rothstein JD, Guidotti A, Weber RJ, Paul SM, Spector S, Zeneroli ML, Baraldi M, Costa E. Endogenous benzodiazepine receptor ligands in human and animal hepatic encephalopathy. J. Neurochem., 55, 2015-2023, 1990PubMedCrossRefGoogle Scholar
  91. Olde Damink SW, Deutz NE, Dejong CH, Soeters PB, Jalan R. Interorgan ammonia metabolism in liver failure. Neurochem. Int., 41(2-3), 177-188, 2002PubMedCrossRefGoogle Scholar
  92. Oppong KNW, Bartlett K, Record CO, Al Mardini H. Synaptosomal glutamate transport in thioacetamide-induced hepatic encephalopathy in the rat. Hepatology, 22, 553-558, 1995PubMedGoogle Scholar
  93. Panerai AE, Salerno F, Baldissera F, Martini A, Di Giulio AM, Mantegazza P. Brain β-endorphin concentrations in experimental chronic liver failure. Brain Res., 247, 188-190, 1982PubMedCrossRefGoogle Scholar
  94. Peterson C, Giguère JF, Cotman CW, Butterworth RF. Selective loss of N-methyl-D-aspartate-sensitive l-3H-glutamate binding sites in rat brain following portacaval anastomosis. J. Neurochem., 55, 386, 1990PubMedCrossRefGoogle Scholar
  95. Pomier Layrargues G, Giguère JF, Lavoie J, Perney P, Gagnon S, D'Amour M, Wells J, Butterworth RF. Clinical efficacy of benzodiazepine antagonist RO 15—1788 (flumazenil) in cirrhotic patients with hepatic coma: Results of a randomized double-blind placebo-controlled cross-over trial. Hepatology, 19, 32-37, 1994PubMedGoogle Scholar
  96. Pomier Layrargues G, Spahr L, Butterworth RF. Increased manganese concentrations in pallidum of cirrhotic patients: Cause of magnetic resonance hyperintensity. Lancet, 345, 735, 1995PubMedCrossRefGoogle Scholar
  97. Porter JT, McCarthy KD. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia, 13, 101-112, 1995PubMedCrossRefGoogle Scholar
  98. Raabe W. Synaptic transmission in ammonia intoxication. Neurochem. Pathol., 6, 145-166, 1987PubMedCrossRefGoogle Scholar
  99. Raghavendra Rao VL, Butterworth RF. Alterations of [3H]8-OH-DPAT and [3H]-ketanserin binding sites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurosci. Lett., 182, 69-72, 1994CrossRefGoogle Scholar
  100. Raghavendra Rao VL, Audet RM, Butterworth RF. Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: Results of an in vivo microdialysis study. J. Neurochem., 65, 1221-1228, 1995CrossRefGoogle Scholar
  101. Raghavendra Rao VL, Audet RM, Butterworth RF. Increased neuronal nitric oxide synthase expression in brain following portacaval anastomosis. Brain Res., 765, 169-172, 1997CrossRefGoogle Scholar
  102. Rama Rao VK, Desjardins P, Rose C, Therrien G, Butterworth RF. Increased glutamine synthetase expression in skeletal muscle: An important alternative pathway for ammonia removal in liver failure. Hepatology, 30(4), 162A, #7, 1999Google Scholar
  103. Rose C, Michalak A, Pannunzio P, Therrien G, Quack G, Kircheis G, Butterworth RF. L-ornithine-L-aspartate in experimental portal-systemic encephalopathy: Therapeutic efficacy and mechanism of action. Metab. Brain Dis., 13(2), 24-32, 1998CrossRefGoogle Scholar
  104. Rose C, Butterworth RF, Zayed J, Normandin L, Todd K, Spahr L, Huet P-M, Pomier Layrargues G. Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology, 117, 640-644, 1999PubMedCrossRefGoogle Scholar
  105. Rose C, Kresse W, Kettenmann H. Acute ammonia insult results in calcium-dependent glutamate release from cultured astrocytes: An effect of pH. J. Biol. Chem., 280(22), 20937-20944, 2005PubMedCrossRefGoogle Scholar
  106. Rothstein JD, McKhann G, Guarneri P, Barbaccia ML, Guidotti A, Costa E. Hepatic encephalopathy and cerebrospinal fluid content of diazepam binding inhibitor (DBI). Ann. Neurol., 26, 57-62, 1989PubMedCrossRefGoogle Scholar
  107. Rovira A, Cordoba J, Sanpedro F, Grive E, Rovira-Gols A, Alonso J. Normalization of T2 signal abnormalities in hemispheric white matter with liver transplant. Neurology, 59, 335-341, 2002PubMedCrossRefGoogle Scholar
  108. Roy S, Pomier Layrargues G, Butterworth RF, Huet PM. Hepatic encephalopathy in cirrhotic and portacaval shunted dogs: Lack of changes in brain GABA uptake, brain GABA levels, brain glutamic acid decarboxylase and brain postsynaptic GABA receptors. Hepatology, 8, 845-849, 1988PubMedCrossRefGoogle Scholar
  109. Schafer DF, Jones EA. Hepatic encephalopathy and the γ-aminobutyric acid system. Lancet, 1, 18-20, 1982PubMedCrossRefGoogle Scholar
  110. Schliess F, Görg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Häussinger D. Ammonia induces MK-801 sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J., 16(7), 739-741, 2002PubMedGoogle Scholar
  111. Schmidt W, Wolf G, Grungreiff K, Meier M, Reum T. Hepatic encephalopathy influences high affinity uptake of transmitter glutamate and aspartate into the hippocampal formation. Metab. Brain Dis., 5, 19-32, 1990PubMedCrossRefGoogle Scholar
  112. Sharief MK, Thompson EJ. In vivo relationship of tumor necrosis factor-α to blood—brain barrier damage in patients with active multiple sclerosis. J. Neuroimmunol., 38(1-2), 27-33, 1992PubMedCrossRefGoogle Scholar
  113. Shiraishi T, Black KL, Ikesaki K. Peripheral benzodiazepine receptor ligands induce morphological changes in mitochondria of cultured glioma cells. Soc. Neurosci. Abs., 16, 214-216, 1990Google Scholar
  114. Sobel RA, De Armond SJ, Forno LS, Eng LF. Glial fibrillary acidic protein in hepatic encephalopathy: An immunohistochemical study. J. Neuropathol. Exp. Neurol., 40, 625-632, 1981PubMedCrossRefGoogle Scholar
  115. Sonnewald U, Therrien G, Butterworth RF. Portal-systemic encephalopathy, disorder of neuron-astrocytic metabolic trafficking: Evidence from 13C-NMR studies. J. Neurochem., 67, 1711-1717, 1996PubMedCrossRefGoogle Scholar
  116. Spahr L, Butterworth RF, Fontaine S, Bui L, Therrien G, Millette P, Lebrun L-H, Zayed J, Leblanc A, Pomier Layrargues G. Increased blood manganese in cirrhotic patients: Relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology, 24, 1116-1120, 1996PubMedCrossRefGoogle Scholar
  117. Spahr L, Coeytaux A, Giostra E, Hadengue A, Annoni JM. Histamine H1 blocker hydroxyzine improves sleep in patients with cirrhosis and minimal hepatic encephalopathy: A randomized controlled pilot trial. Am. J. Gastroenterol., 202, 744-753, 2007CrossRefGoogle Scholar
  118. Staub F, Baethmann A, Peters J, Weight H, Keupski O. Effects of lactacidosis on glial cell volume and viability. J. Cereb. Blood Flow Metab., 10, 866-876, 1990PubMedCrossRefGoogle Scholar
  119. Swain MS, Bergeron M, Audet R, Blei AT, Butterworth RF. Monitoring of neurotransmitter amino acids by means of an indwelling cisterna magna catheter. A comparison of two rodent models of fulminant hepatic failure. Hepatology, 16, 1028-1035, 1992PubMedCrossRefGoogle Scholar
  120. Szerb JC, Butterworth RF. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog. Neurobiol., 39, 135-153, 1992PubMedCrossRefGoogle Scholar
  121. Tasaka K. New advances in histamine research. Spinger, Tokyo, 1994CrossRefGoogle Scholar
  122. Therrien G, Giguère JF, Butterworth RF. Increased cerebrospinal fluid lactate reflects deterioration of neurological status in experimental portal-systemic encephalopathy. Metab. Brain Dis., 6, 225-231, 1991PubMedCrossRefGoogle Scholar
  123. Therrien G, Butterworth J, Rose C, Butterworth RF. Protective effect of l-carnitine in ammonia-precipitated encephalopathy in portacaval shunted rats: Evidence for a central mechanism of action. Hepatology, 25, 551-556, 1997PubMedCrossRefGoogle Scholar
  124. Thornton JR, Losowsky MS. Plasma methionine enkephalin concentration and prognosis in primary biliary cirrhosis. Br. Med. J., 297, 1241-1242, 1988CrossRefGoogle Scholar
  125. Tominaga S, Watanabe A, Tsuji T. Synergistic effect of bile acid, endotoxin, and ammonia on brain edema. Metab. Brain Dis., 6(2), 93-105, 1991PubMedCrossRefGoogle Scholar
  126. Vaquero J, Polson J, Chung C, Helenowski I, Schiodt FV, Reisch J, et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology, 125, 755-764, 2003PubMedCrossRefGoogle Scholar
  127. Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: Rationale for the use of mild hypothermia. J. Hepatol., 43, 1067-1077, 2005PubMedCrossRefGoogle Scholar
  128. Vaquero J, Bélanger M, James L, Herrero R, Desjardins P, Cote J, Blei AT, Butterworth RF. Mild hypothermia attenuates liver injury and improves survival in mice with acetaminophen toxicity. Gastroenterology, 132(1), 372-383, 2007PubMedCrossRefGoogle Scholar
  129. Verkhratsky A, Kirchhoff F. NMDA receptors in glia. The Neuroscientist, 13(1), 28-37, 2007PubMedCrossRefGoogle Scholar
  130. Vogels BA, Maas MA, Daalhuisen J, Quack G, Chamuleau RA. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology, 25, 820-827, 1997PubMedCrossRefGoogle Scholar
  131. Weber FL Jr, Veach GL. The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology, 77, 235-240, 1979PubMedGoogle Scholar
  132. Wendon JA, Harrison PM, Keays R, Williams R. Cerebral blood flow and metabolism in fulminant liver failure. Hepatology, 19, 1407-1413, 1994PubMedCrossRefGoogle Scholar
  133. Yao H, Sadoshima S, Fujii K, Kusada K, Ishitsuka T, Tamaki K, Fujishima M. Cerebrospinal fluid lactate in patients with hepatic encephalopathy. Eur. Neurol., 27, 182-187, 1987PubMedCrossRefGoogle Scholar
  134. Young SN, Lal S. CNS tryptamine metabolism in hepatic coma. J. Neural. Transm., 47, 153-161, 1980PubMedCrossRefGoogle Scholar
  135. Young SN, Lal S, Feldmuller F, Aranoff A, Martin JB. Relationships between tryptophan in serum and CSF and 5-hydroxyindoleacetic acid in CSF of man: Effects of cirrhosis of the liver and probenecid administration. J. Neurol. Neurosurg. Psychiat., 38, 322-330, 1975PubMedCrossRefGoogle Scholar
  136. Yurdaydin C, Gu ZQ, Nowak G, Fromm C, Holt AG, Basile AS. Benzodiazepine receptor ligands are elevated in an animal model of hepatic encephalopathy: Relationship between brain concentration and severity of encephalopathy. J. Pharmacol. Exp. Ther., 265, 565-571, 1993PubMedGoogle Scholar
  137. Zwingmann C, Desjardins P, Chatauret N, Michalak A, Hazell AS, Butterworth RF. Reduced astrocytic glycine transporter Glyt-1 in acute liver failure. Metab. Brain Dis., 17(4), 263-274, 2002PubMedCrossRefGoogle Scholar
  138. Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF. Selective increase of brain lactate synthesis in experimental acute liver failure: Results of a [1H-13C] nuclear magnetic resonance study. Hepatology, 37, 420-428, 2003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roger F. Butterworth
    • 1
  1. 1.Neuroscience Research Unit, Hopital Saint-Luc, University of MontrealMontrealCanada

Personalised recommendations