Metabolic Encephalopathies in Children

  • Joseph DiCarlo


Encephalopathies in children arise from an array of sources. Intoxication from accidental ingestion can produce a profound encephalopathy that clears almost as quickly as it appears. The encephalopathy of septic shock is under-appreciated, yet the brain should be counted among organs shut down, almost always temporarily, in children with multiple organ failure. The child’s brain is fairly resilient in the face of many of these entities, except rarely in the face of meningitis, but even here severe long-term damage seems to result only from the rare misdiagnosed or under-treated case.


Hepatic Encephalopathy Cerebral Edema Diabetic Ketoacidosis Fulminant Hepatic Failure Sodium Benzoate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albrecht, J. and M.D. Norenberg, Glutamine: A Trojan horse in ammonia neurotoxicity. Hepatology, 2006. 44(4): pp. 788–794PubMedCrossRefGoogle Scholar
  2. Als-Nielsen, B., L.L. Gluud, and C. Gluud, Non-absorbable disaccharides for hepatic encephalopathy: Systematic review of randomised trials. Bmj, 2004. 328(7447): p. 1046CrossRefGoogle Scholar
  3. Azzopardi, J., et al., Lack of evidence of cerebral oedema in adults treated for diabetic ketoacidosis with fluids of different tonicity. Diabetes Res Clin Pract, 2002. 57(2): pp. 87–92PubMedCrossRefGoogle Scholar
  4. Bachmann, C.,Mechanisms of hyperammonemia. Clin Chem Lab Med, 2002. 40(7): pp. 653–662PubMedCrossRefGoogle Scholar
  5. Bhowmick, S.K., K.L. Levens, and K.R. Rettig, Hyperosmolar hyperglycemic crisis: An acute life-threatening event in children and adolescents with type 2 diabetes mellitus. Endocr Pract, 2005. 11(1): pp. 23–29PubMedGoogle Scholar
  6. Biancofiore, G., et al., Combined twice-daily plasma exchange and continuous veno-venous hemodiafiltration for bridging severe acute liver failure. Transplant Proc, 2003. 35(8): pp. 3011–3014PubMedCrossRefGoogle Scholar
  7. Churchwell, K.B., et al., Intensive blood and plasma exchange for treatment of coagulopathy in meningococcemia. J Clin Apher, 1995. 10(4): pp. 171–177PubMedCrossRefGoogle Scholar
  8. Davis, J., et al., DKA, CVL and DVT. Increased risk of deep venous thrombosis in children with diabetic ketoacidosis and femoral central venous lines. Ir Med J, 2007. 100(1): p. 344Google Scholar
  9. Demetriou, A.A., Hepatic assist devices. Panminerva Med, 2005. 47(1): pp. 31–37PubMedGoogle Scholar
  10. Di Carlo, J.V. and S.R. Alexander, Hemofiltration for cytokine-driven illnesses: The mediator delivery hypothesis. Int J Artif Organs, 2005. 28(8): pp. 777–786PubMedGoogle Scholar
  11. Dunger, D.B., et al., ESPE/LWPES consensus statement on diabetic ketoacidosis in children and adolescents. Arch Dis Child, 2004. 89(2): pp. 188–194PubMedCrossRefGoogle Scholar
  12. Edge, J.A., et al., Conscious level in children with diabetic ketoacidosis is related to severity of acidosis and not to blood glucose concentration. Pediatr Diabetes, 2006a. 7(1): pp. 11–15CrossRefGoogle Scholar
  13. Edge, J.A., et al., The UK case-control study of cerebral oedema complicating diabetic ketoacidosis in children. Diabetologia, 2006b. 49(9): pp. 2002–2009CrossRefGoogle Scholar
  14. Festi, D., et al., Management of hepatic encephalopathy: Focus on antibiotic therapy. Digestion, 2006. 73(Suppl 1): pp. 94–101PubMedCrossRefGoogle Scholar
  15. Fourtner, S.H., S.A. Weinzimer, and L.E. Levitt Katz, Hyperglycemic hyperosmolar non-ketotic syndrome in children with type 2 diabetes. Pediatr Diabetes, 2005. 6(3): pp. 129–135PubMedCrossRefGoogle Scholar
  16. Glaser, N., et al., Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med, 2001. 344(4): pp. 264–269PubMedCrossRefGoogle Scholar
  17. Glaser, N.S., et al., Mechanism of cerebral edema in children with diabetic ketoacidosis. J Pediatr, 2004. 145(2): pp. 164–171PubMedCrossRefGoogle Scholar
  18. Glaser, N.S., et al., Frequency of sub-clinical cerebral edema in children with diabetic ketoacidosis. Pediatr Diabetes, 2006. 7(2): pp. 75–80PubMedCrossRefGoogle Scholar
  19. Gordon, N., Ornithine transcarbamylase deficiency: A urea cycle defect. Eur J Paediatr Neurol, 2003. 7(3): pp. 115–121PubMedCrossRefGoogle Scholar
  20. Halestrap, A.P., Calcium, mitochondria and reperfusion injury: A pore way to die. Biochem Soc Trans, 2006. 34(Pt 2): pp. 232–237PubMedGoogle Scholar
  21. Hammer, G.B., et al., Continuous venovenous hemofiltration with dialysis in combination with total hepatectomy and portocaval shunting. Bridge to liver transplantation. Transplantation, 1996. 62(1): pp. 130–132PubMedCrossRefGoogle Scholar
  22. Henter, J.I. and I. Nennesmo, Neuropathologic findings and neurologic symptoms in twenty-three children with hemophagocytic lymphohistiocytosis. J Pediatr, 1997. 130(3): pp. 358–365PubMedCrossRefGoogle Scholar
  23. Jones, M., Energy metabolism in the developing brain. Seminars in Perinatology, 1979. 3: pp. 121–129Google Scholar
  24. Jones, E.A., Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis, 2002. 17(4): pp. 275–281PubMedCrossRefGoogle Scholar
  25. Kawata, H., et al., The use of continuous hemodiafiltration in a patient with diabetic ketoacidosis. J Anesth, 2006. 20(2): pp. 129–131PubMedCrossRefGoogle Scholar
  26. Legras, A., et al., Late diagnosis of ornithine transcarbamylase defect in three related female patients: Polymorphic presentations. Crit Care Med, 2002. 30(1): pp. 241–244PubMedCrossRefGoogle Scholar
  27. Magee, M.F. and B.A. Bhatt, Management of decompensated diabetes. Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome. Crit Care Clin, 2001. 17(1): pp. 75–106PubMedCrossRefGoogle Scholar
  28. Mattarozzi, K., et al., Distinguishing between clinical and minimal hepatic encephalopathy on the basis of specific cognitive impairment. Metab Brain Dis, 2005. 20(3): pp. 243–249PubMedCrossRefGoogle Scholar
  29. Morales, A.E. and A.L. Rosenbloom, Death caused by hyperglycemic hyperosmolar state at the onset of type 2 diabetes. J Pediatr, 2004. 144(2): pp. 270–273PubMedCrossRefGoogle Scholar
  30. Muir, A., et al., Cerebral edema in childhood diabetic ketoacidosis: Natural history, radiographic findings and early identification. 2001Google Scholar
  31. Mustafa, A. and J.T. Clarke, Ornithine transcarbamoylase deficiency presenting with acute liver failure. J Inherit Metab Dis, 2006. 29(4): p. 586CrossRefGoogle Scholar
  32. Ogier de Baulny, H., Management and emergency treatments of neonates with a suspicion of inborn errors of metabolism. Semin Neonatol, 2002. 7(1): pp. 17–26PubMedCrossRefGoogle Scholar
  33. Ogier de Baulny, H. and J.M. Saudubray, Branched-chain organic acidurias. Semin Neonatol, 2002. 7(1): pp. 65–74PubMedCrossRefGoogle Scholar
  34. Ong, J.P., et al., Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med, 2003. 114(3): pp. 188–193PubMedCrossRefGoogle Scholar
  35. Puliyel, J.M. and V. Bhambhani, Ketoacid levels may alter osmotonicity in diabetic ketoacidosis and precipitate cerebral edema. Arch Dis Child, 2003. 88(4): p. 366CrossRefGoogle Scholar
  36. Roberts, J.S., et al., Cerebral hyperemia and impaired cerebral autoregulation associated with diabetic ketoacidosis in critically ill children. Crit Care Med, 2006. 34(8): pp. 2217–2223PubMedCrossRefGoogle Scholar
  37. Ryan, C.J., et al., Multisorbent plasma perfusion in fulminant hepatic failure: effects of duration and frequency of treatment in rats with grade III hepatic coma. Artif Organs, 2001. 25(2): pp. 109–118PubMedCrossRefGoogle Scholar
  38. Segura-Bruna, N., et al., Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand, 2006. 114(1): pp. 1–7PubMedCrossRefGoogle Scholar
  39. Smith, D.B. and J. Gulinson, Fatal cerebral edema complicating toxic shock syndrome. Neurosurgery, 1988. 22(3): pp. 598–599PubMedCrossRefGoogle Scholar
  40. Stange, J., et al., The molecular adsorbents recycling system as a liver support system based on albumin dialysis: A summary of preclinical investigations, prospective, randomized, controlled clinical trial, and clinical experience from 19 centers. Artif Organs, 2002. 26(2): pp. 103–110PubMedCrossRefGoogle Scholar
  41. Summar, M.L., et al., Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin, 2005. 21(Suppl 4): pp. S1–S8PubMedCrossRefGoogle Scholar
  42. Thakur, V., et al., Fatal cerebral edema from late-onset ornithine transcarbamylase deficiency in a juvenile male patient receiving valproic acid. Pediatr Crit Care Med, 2006. 7(3): pp. 273–276PubMedCrossRefGoogle Scholar
  43. Verrotti, A., et al., Valproate-induced hyperammonemic encephalopathy. Metab Brain Dis, 2002. 17(4): pp. 367–373PubMedCrossRefGoogle Scholar
  44. Wooton-Gorges, S., et al., Detection of cerebral beta-hydroxybutyrate, acetoacetate and lactate on proton MR spectroscopy in children with diabetic ketoacidosis. Am J Neuroradiol, 2005. 26: pp. 1286–1291Google Scholar
  45. Yorgin, P.D., et al., Concurrent centrifugation plasmapheresis and continuous venovenous hemodiafiltration. Pediatr Nephrol, 2000. 14(1): pp. 18–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joseph DiCarlo
    • 1
  1. 1.Pediatric Critical Care Medicine, Children’s Hospital Los AngelesLos AngelesUSA

Personalised recommendations