Advertisement

The Role of Animal Models in the Study of Epileptogenesis

  • Kate Chandler
  • Pi-Shan Chang
  • Matthew Walker
Chapter

Abstract

Epileptogenesis is the process that leads to the development of epilepsy: the propensity to have recurrent, spontaneous seizures. During epileptogenesis, brain excitability increases due to molecular, cellular and network alterations. These changes are thought to be initiated by one or more brain insults which may be naturally occurring events such as traumatic brain injury, but can also be modeled in animals, using insults such as chemically induced status epilepticus (SE: a prolonged seizure). The study of epileptogenesis is critical for (a) identifying patients who are at risk of developing epilepsy and (b) targeting drugs that can modify the epileptogenic process and could therefore prevent the development of the disease.

Keywords

Dentate Gyrus GABAA Receptor Temporal Lobe Epilepsy Mossy Fibre Febrile Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, B, Sazgar, M, Osehobo, P, Van der Zee, CE, Diamond, J, Fahnestock, M, Racine, RJ. (1997) Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting, and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsy. J Neurosci, 17:5288–5296.PubMedGoogle Scholar
  2. Alexander, GM, Godwin, DW. (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res, 71:1–22.PubMedCrossRefGoogle Scholar
  3. Altman, J. (1962) Are new neurons formed in the brains of adult mammals. Science, 135:1127–1128.PubMedCrossRefGoogle Scholar
  4. Altman, J, Das, GD. (1965) Post-natal origin of microneurones in the rat brain. Nature, 207:953–956.PubMedCrossRefGoogle Scholar
  5. Andre, V, Ferrandon, A, Marescaux, C, Nehlig, A. (2001) Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res, 47:99–117.PubMedCrossRefGoogle Scholar
  6. Arruda, F, Cendes, F, Andermann, F, Dubeau, F, Villemure, JG, Jones-Gotman, M, Poulin, N, Arnold, DL, Olivier, A. (1996) Mesial atrophy and outcome after amygdalohippocampectomy or temporal lobe removal. Ann Neurol, 40:446–450.PubMedCrossRefGoogle Scholar
  7. Artemowicz, B, Sobaniec, W. (2005) Neuroprotection possibilities in epileptic children. Rocz Akad Med Bialymst, 50 (Suppl 1):91–95.PubMedGoogle Scholar
  8. Arzimanoglou, A, Hirsch, E, Nehlig, A, Castelnau, P, Gressens, P, Pereira de Vasconcelos, A. (2002) Epilepsy and neuroprotection: an illustrated review. Epileptic Disord, 4:173–182.PubMedGoogle Scholar
  9. Asprodini, EK, Rainnie, DG, Shinnick-Gallagher, P. (1992) Epileptogenesis reduces the sensitivity of presynaptic γ-aminobutyric acidB receptors on glutamatergic afferents in the amygdala. J Pharmacol Exp Ther, 262:1011–1021.PubMedGoogle Scholar
  10. Babb, TL, Brown, WJ. (1986) Neuronal, dendritic, and vascular profiles of human temporal lobe epilepsy correlated with cellular physiology in vivo. Adv Neurol, 44:949–966.PubMedGoogle Scholar
  11. Babb, TL, Brown, WJ, Pretorius, J, Davenport, C, Lieb, JP, Crandall, PH. (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia, 25:729–740.PubMedCrossRefGoogle Scholar
  12. Baulac, S, Huberfeld, G, Gourfinkel-An, I, Mitropoulou, G, Beranger, A, Prud'homme, JF, Baulac, M, Brice, A, Bruzzone, R, LeGuern, E. (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet, 28:46–48.PubMedGoogle Scholar
  13. Behr, J, Heinemann, U, Mody, I. (2001) Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus. J Neurophysiol, 85:2195–2202.PubMedGoogle Scholar
  14. Bekenstein, JW, Lothman, EW. (1993) Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science, 259:97–100.PubMedCrossRefGoogle Scholar
  15. Ben-Ari, Y. (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience, 14:375–403.PubMedCrossRefGoogle Scholar
  16. Bengzon, J, Kokaia, Z, Elmer, E, Nanobashvili, A, Kokaia, M, Lindvall, O. (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A, 94:10432–10437.PubMedCrossRefGoogle Scholar
  17. Bernard, C, Anderson, A, Becker, A, Poolos, NP, Beck, H, Johnston, D. (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science, 305:532–535.PubMedCrossRefGoogle Scholar
  18. Bernard, C, Cossart, R, Hirsch, JC, Esclapez, M, Ben-Ari, Y. (2000) What is GABAergic inhibition? How is it modified in epilepsy. Epilepsia, 41 (Suppl 6):S90–S95.PubMedCrossRefGoogle Scholar
  19. Bezzi, P, Gundersen, V, Galbete, JL, Seifert, G, Steinhauser, C, Pilati, E, Volterra, A. (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 7:613–620.PubMedCrossRefGoogle Scholar
  20. Billinton, A, Baird, VH, Thom, M, Duncan, JS, Upton, N, Bowery, NG. (2001) GABA(B) receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy. Br J Pharmacol, 132:475–480.PubMedCrossRefGoogle Scholar
  21. Brandt, C, Gastens, AM, Sun, M, Hausknecht, M, Loscher, W. (2006) Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology, 51:789–804.PubMedCrossRefGoogle Scholar
  22. Brandt, C, Glien, M, Potschka, H, Volk, H, Loscher, W. (2003) Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res, 55:83–103.PubMedCrossRefGoogle Scholar
  23. Brandt, C, Potschka, H, Loscher, W, Ebert, U. (2003) N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience, 118:727–740.PubMedCrossRefGoogle Scholar
  24. Briellmann, RS, Newton, MR, Wellard, RM, Jackson, GD. (2001) Hippocampal sclerosis following brief generalized seizures in adulthood. Neurology, 57:315–317.PubMedCrossRefGoogle Scholar
  25. Brooks-Kayal, AR, Shumate, MD, Jin, H, Rikhter, TY, Coulter, DA. (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med, 4:1166–1172.PubMedCrossRefGoogle Scholar
  26. Buckmaster, PS, Dudek, FE. (1997a) Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J Neurophysiol, 77:2685–2696.Google Scholar
  27. Buckmaster, PS, Dudek, FE. (1997b) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol, 385:385–404.CrossRefGoogle Scholar
  28. Buckmaster, PS, Jongen-Relo, AL. (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci, 19:9519–9529.PubMedGoogle Scholar
  29. Buckmaster, PS, Zhang, GF, Yamawaki, R. (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci, 22:6650–6658.PubMedGoogle Scholar
  30. Buhl, EH, Otis, TS, Mody, I. (1996) Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science, 271:369–373.PubMedCrossRefGoogle Scholar
  31. Cain, DP, Boon, F, Hargreaves, EL. (1992) Evidence for different neurochemical contributions to long-term potentiation and to kindling and kindling-induced potentiation: role of NMDA and urethane-sensitive mechanisms. Exp Neurol, 116:330–338.PubMedCrossRefGoogle Scholar
  32. Capella, HM, Lemos, T. (2002) Effect on epileptogenesis of carbamazepine treatment during the silent period of the pilocarpine model of epilepsy. Epilepsia, 43(Suppl 5):110–111.PubMedCrossRefGoogle Scholar
  33. Cartmell, J, Schoepp, DD. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 75:889–907.PubMedCrossRefGoogle Scholar
  34. Cavazos, JE, Das, I, Sutula, TP. (1994) Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci, 14:3106–3121.PubMedGoogle Scholar
  35. Chandler, KE, Princivalle, AP, Fabian-Fine, R, Bowery, NG, Kullmann, DM, Walker, MC. (2003) Plasticity of GABA(B) receptor-mediated heterosynaptic interactions at mossy fibers after status epilepticus. J Neurosci, 23:11382–11391.PubMedGoogle Scholar
  36. Chen, K, Aradi, I, Thon, N, Eghbal-Ahmadi, M, Baram, TZ, Soltesz, I. (2001) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med, 7:331–337.PubMedCrossRefGoogle Scholar
  37. Clarke, VR, Ballyk, BA, Hoo, KH, Mandelzys, A, Pellizzari, A, Bath, CP, Thomas, J, Sharpe, EF, Davies, CH, Ornstein, PL, Schoepp, DD, Kamboj, RK, Collingridge, GL, Lodge, D, Bleakman, D. (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature, 389:599–603.PubMedCrossRefGoogle Scholar
  38. Clifford, DB, Olney, JW, Maniotis, A, Collins, RC, Zorumski, CF. (1987) The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 23:953–968.PubMedCrossRefGoogle Scholar
  39. Cohen, I, Navarro, V, Clemenceau, S, Baulac, M, Miles, R. (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science, 298:1418–1421.PubMedCrossRefGoogle Scholar
  40. Cole, AJ, Dichter, M. (2002) Neuroprotection and antiepileptogenesis: overview, definitions, and context. Neurology, 59:S1–S2.PubMedCrossRefGoogle Scholar
  41. Colwell, CS, Levine, MS. (1999) Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels. Brain Res, 833:234–241.PubMedCrossRefGoogle Scholar
  42. D'Arcangelo, G, Tancredi, V, Avoli, M. (2001) Intrinsic optical signals and electrographic seizures in the rat limbic system. Neurobiol Dis, 8:993–1005.PubMedCrossRefGoogle Scholar
  43. Davies, KG, Hermann, BP, Dohan, FCJ, Foley, KT, Bush, AJ, Wyler, AR. (1996) Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients. Epilepsy Res, 24:119–126.PubMedCrossRefGoogle Scholar
  44. de Curtis, M, Avanzini, G. (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol, 63:541–567.PubMedCrossRefGoogle Scholar
  45. De Fusco, M, Becchetti, A, Patrignani, A, Annesi, G, Gambardella, A, Quattrone, A, Ballabio, A, Wanke, E, Casari, G. (2000) The nicotinic receptor β 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet, 26:275–276.PubMedCrossRefGoogle Scholar
  46. DeGiorgio, CM, Tomiyasu, U, Gott, PS, Treiman, DM. (1992) Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia, 33:23–27.PubMedCrossRefGoogle Scholar
  47. Delorenzo, RJ, Sun, DA, Deshpande, LS. (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther, 105:229–266.PubMedCrossRefGoogle Scholar
  48. Denslow, MJ, Eid, T, Du, F, Schwarcz, R, Lothman, EW, Steward, O. (2001) Disruption of inhibition in area CA1 of the hippocampus in a rat model of temporal lobe epilepsy. J Neurophysiol, 86:2231–2245.PubMedGoogle Scholar
  49. Dingledine, R, Borges, K, Bowie, D, Traynelis, SF. (1999) The glutamate receptor ion channels. Pharmacol Rev, 51:7–61.PubMedGoogle Scholar
  50. Doherty, J, Dingledine, R. (2001) Reduced excitatory drive onto interneurons in the dentate gyrus after status epilepticus. J Neurosci, 21:2048–2057.PubMedGoogle Scholar
  51. Doi, T, Ueda, Y, Tokumaru, J, Mitsuyama, Y, Willmore, LJ. (2001) Sequential changes in AMPA and NMDA protein levels during Fe(3 + )-induced epileptogenesis. Brain Res Mol Brain Res, 92:107–114.PubMedCrossRefGoogle Scholar
  52. Draguhn, A, Traub, RD, Schmitz, D, Jefferys, JG. (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394:189–192.PubMedCrossRefGoogle Scholar
  53. Ebert, U, Brandt, C, Loscher, W. (2002) Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia, 43(Suppl 5):86–95.PubMedCrossRefGoogle Scholar
  54. Ellerkmann, RK, Remy, S, Chen, J, Sochivko, D, Elger, CE, Urban, BW, Becker, A, Beck, H. (2003) Molecular and functional changes in voltage-dependent Na( + ) channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience, 119:323–333.PubMedCrossRefGoogle Scholar
  55. Elmer, E, Kokaia, M, Kokaia, Z, Ferencz, I, Lindvall, O. (1996) Delayed kindling development after rapidly recurring seizures: relation to mossy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression. Brain Res, 712:19–34.PubMedCrossRefGoogle Scholar
  56. Engel, JJ. (2006) Report of the ILAE classification core group. Epilepsia, 47:1558–1568.PubMedCrossRefGoogle Scholar
  57. Esclapez, M, Hirsch, JC, Khazipov, R, Ben-Ari, Y, Bernard, C. (1997) Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proc Natl Acad Sci USA, 94:12151–12156.PubMedCrossRefGoogle Scholar
  58. Eunson, LH, Rea, R, Zuberi, SM, Youroukos, S, Panayiotopoulos, CP, Liguori, R, Avoni, P, McWilliam, RC, Stephenson, JB, Hanna, MG, Kullmann, DM, Spauschus, A. (2000) Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol, 48:647–656.PubMedCrossRefGoogle Scholar
  59. Faber, DS, Korn, H. (1989) Electrical field effects: their relevance in central neural networks. Physiol Rev, 69:821–863.PubMedGoogle Scholar
  60. Fish, DR, Spencer, SS. (1995) Clinical correlations: MRI and EEG. Magn Reson Imaging, 13:1113–1117.PubMedCrossRefGoogle Scholar
  61. Fisher, A, Wang, X, Cock, HR, Thom, M, Patsalos, PN, Walker, MC. (2004) Synergism between topiramate and budipine in refractory status epilepticus in the rat. Epilepsia, 45:1300–1307.PubMedCrossRefGoogle Scholar
  62. Fisher, PD, Sperber, EF, Moshe, SL. (1998) Hippocampal sclerosis revisited. Brain Dev, 20:563–573.PubMedCrossRefGoogle Scholar
  63. Frotscher, M, Soriano, E, Misgeld, U. (1994) Divergence of hippocampal mossy fibers. Synapse, 16:148–160.PubMedCrossRefGoogle Scholar
  64. Gage, FH. (2002) Neurogenesis in the adult brain. J Neurosci, 22:612–613.PubMedGoogle Scholar
  65. Gajda, Z, Gyengesi, E, Hermesz, E, Ali, KS, Szente, M. (2003) Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo. Epilepsia, 44:1596–1600.PubMedCrossRefGoogle Scholar
  66. Gajda, Z, Szupera, Z, Blazso, G, Szente, M. (2005) Quinine, a blocker of neuronal cx36 channels, suppresses seizure activity in rat neocortex in vivo. Epilepsia, 46:1581–1591.PubMedCrossRefGoogle Scholar
  67. Gardiner, M. (2005) Genetics of idiopathic generalized epilepsies. Epilepsia, 46(Suppl 9):15–20.PubMedCrossRefGoogle Scholar
  68. Ghai, RS, Bikson, M, Durand, DM. (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol, 84:274–280.PubMedGoogle Scholar
  69. Gibbs, JWr, Shumate, MD, Coulter, DA. (1997) Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. J Neurophysiol, 77:1924–1938.PubMedGoogle Scholar
  70. Goddard, GV. (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature, 214:1020–1021.PubMedCrossRefGoogle Scholar
  71. Gray, WP, Sundstrom, LE. (1998) Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res, 790:52–59.PubMedCrossRefGoogle Scholar
  72. Gupta, YK, Veerendra Kumar, MH, Srivastava, AK. (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav, 74:579–585.PubMedCrossRefGoogle Scholar
  73. Gutierrez, R. (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci, 28:297–303.PubMedCrossRefGoogle Scholar
  74. Haas, KZ, Sperber, EF, Moshe, SL, Stanton, PK. (1996) Kainic acid-induced seizures enhance dentate gyrus inhibition by downregulation of GABA(B) receptors. J Neurosci, 16:4250–4260.PubMedGoogle Scholar
  75. Halassa, MM, Fellin, T, Haydon, PG. (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med, 13:54–63.PubMedCrossRefGoogle Scholar
  76. Hattiangady, B, Rao, MS, Shetty, AK. (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis, 17:473–490.PubMedCrossRefGoogle Scholar
  77. Haug, K, Warnstedt, M, Alekov, AK, Sander, T, Ramirez, A, Poser, B, Maljevic, S, Hebeisen, S, Kubisch, C, Rebstock, J, Horvath, S, Hallmann, K, Dullinger, JS, Rau, B, Haverkamp, F, Beyenburg, S, Schulz, H, Janz, D, Giese, B, Muller-Newen, G, Propping, P, Elger, CE, Fahlke, C, Lerche, H, Heils, A. (2003) Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet, 33:527–532.PubMedCrossRefGoogle Scholar
  78. Heinemann, U, Beck, H, Dreier, JP, Ficker, E, Stabel, J, Zhang, CL. (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl, 7:273–280.PubMedGoogle Scholar
  79. Henshall, DC, Simon, RP. (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab, 25:1557–1572.PubMedCrossRefGoogle Scholar
  80. Henze, DA, Urban, NN, Barrionuevo, G. (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience, 98:407–427.PubMedCrossRefGoogle Scholar
  81. Hesdorffer, DC, Logroscino, G, Cascino, G, Annegers, JF, Hauser, WA. (1998) Risk of unprovoked seizure after acute symptomatic seizure: effect of status epilepticus. Ann Neurol, 44:908–912.PubMedCrossRefGoogle Scholar
  82. Hochman, DW, Baraban, SC, Owens, JW, Schwartzkroin, PA. (1995) Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science, 270:99–102.PubMedCrossRefGoogle Scholar
  83. Hochman, DW, D'Ambrosio, R, Janigro, D, Schwartzkroin, PA. (1999) Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices. J Neurophysiol, 81:49–59.PubMedGoogle Scholar
  84. Houser, CR, Esclapez, M. (1996) Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res, 26:207–218.PubMedCrossRefGoogle Scholar
  85. Jefferys, JG, Evans, BJ, Hughes, SA, Williams, SF. (1992) Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in rat: preservation of pyramidal cells and incidence of dark cells. Neuropathol Appl Neurobiol, 18:53–70.PubMedCrossRefGoogle Scholar
  86. Jefferys, JG, Traub, RD. (1998) 'Dormant' inhibitory neurons: do they exist and what is their functional impact. Epilepsy Res, 32:104–113.PubMedCrossRefGoogle Scholar
  87. Jensen, MS, Yaari, Y. (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol, 77:1224–1233.PubMedGoogle Scholar
  88. Jouvenceau, A, Eunson, LH, Spauschus, A, Ramesh, V, Zuberi, SM, Kullmann, DM, Hanna, MG. (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet, 358:801–807.PubMedCrossRefGoogle Scholar
  89. Jung, KH, Chu, K, Kim, M, Jeong, SW, Song, YM, Lee, ST, Kim, JY, Lee, SK, Roh, JK. (2004) Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci, 19:3219–3226.PubMedCrossRefGoogle Scholar
  90. Khalilov, I, Hirsch, J, Cossart, R, Ben-Ari, Y. (2002) Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol, 88:523–527.PubMedGoogle Scholar
  91. Khurgel, M, Switzer, RCr, Teskey, GC, Spiller, AE, Racine, RJ, Ivy, GO. (1995) Activation of astrocytes during epileptogenesis in the absence of neuronal degeneration. Neurobiol Dis, 2:23–35.PubMedCrossRefGoogle Scholar
  92. Kodama, M, Yamada, N, Sato, K, Kitamura, Y, Koyama, F, Sato, T, Morimoto, K, Kuroda, S. (1999) Effects of YM90K, a selective AMPA receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in the rat. Eur J Pharmacol, 374:11–19.PubMedCrossRefGoogle Scholar
  93. Kohling, R, Gladwell, SJ, Bracci, E, Vreugdenhil, M, Jefferys, JG. (2001) Prolonged epileptiform bursting induced by 0-Mg(2 + ) in rat hippocampal slices depends on gap junctional coupling. Neuroscience, 105:579–587.PubMedCrossRefGoogle Scholar
  94. Kokaia, Z, Kokaia, M. (2001) Changes in GABA(B) receptor immunoreactivity after recurrent seizures in rats. Neurosci Lett, 315:85–88.PubMedCrossRefGoogle Scholar
  95. Konnerth, A, Heinemann, U, Yaari, Y. (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J Neurophysiol, 56:409–423.PubMedGoogle Scholar
  96. Kotti, T, Riekkinen, PJS, Miettinen, R. (1997) Characterization of target cells for aberrant mossy fiber collaterals in the dentate gyrus of epileptic rat. Exp Neurol, 146:323–330.PubMedCrossRefGoogle Scholar
  97. Kunz, WS. (2002) The role of mitochondria in epileptogenesis. Curr Opin Neurol, 15:179–184.PubMedCrossRefGoogle Scholar
  98. Lauri, SE, Bortolotto, ZA, Bleakman, D, Ornstein, PL, Lodge, D, Isaac, JT, Collingridge, GL. (2001) A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron, 32:697–709.PubMedCrossRefGoogle Scholar
  99. Lewis, DV. (1999) Febrile convulsions and mesial temporal sclerosis. Curr Opin Neurol, 12:197–201.PubMedCrossRefGoogle Scholar
  100. Lieberman, DN, Mody, I. (1999) Properties of single NMDA receptor channels in human dentate gyrus granule cells. J Physiol, 518:55–70.PubMedGoogle Scholar
  101. Liou, AK, Clark, RS, Henshall, DC, Yin, XM, Chen, J. (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol, 69:103–142.PubMedCrossRefGoogle Scholar
  102. Longo, BM, Mello, LE. (1997) Blockade of pilocarpine- or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Lett, 226:163–166.PubMedCrossRefGoogle Scholar
  103. Loscher, W. (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 50:105–123.PubMedCrossRefGoogle Scholar
  104. Lothman, EW, Bertram, EH, Kapur, J, Stringer, JL. (1990) Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res, 6:110–118.PubMedCrossRefGoogle Scholar
  105. Lothman, EW, Stringer, JL, Bertram, EH. (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl, 7:301–313.PubMedGoogle Scholar
  106. Lux, HD, Heinemann, U, Dietzel, I. (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol, 44:619–639.PubMedGoogle Scholar
  107. Mangan, PS, Rempe, DA, Lothman, EW. (1995) Changes in inhibitory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. J Neurophysiol, 74:829–840.PubMedGoogle Scholar
  108. Mathern, GW, Pretorius, JK, Mendoza, D, Lozada, A, Leite, JP, Chimelli, L, Fried, I, Sakamoto, AC, Assirati, JA, Adelson, PD. (1998) Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. J Neuropathol Exp Neurol, 57:615–634.PubMedCrossRefGoogle Scholar
  109. Mazarati, AM, Wasterlain, CG, Sankar, R, Shin, D. (1998) Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res, 801:251–253.PubMedCrossRefGoogle Scholar
  110. McIntyre, DC, Nathanson, D, Edson, N. (1982) A new model of partial status epilepticus based on kindling. Brain Res, 250:53–63.PubMedCrossRefGoogle Scholar
  111. McNamara, JO, Bonhaus, W, Shin, C. The kindling model of epilepsy. In: Schwartzkroin PA, editor. Epilepsy: models, mechanisms, and concepts. Cambridge: Cambridge University Press, 1993:21–47Google Scholar
  112. Mellanby, J, George, G, Robinson, A, Thompson, P. (1977) Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry, 40:404–414.PubMedCrossRefGoogle Scholar
  113. Miles, R, Wong, RK. (1983) Single neurones can initiate synchronized population discharge in the hippocampus. Nature, 306:371–373.PubMedCrossRefGoogle Scholar
  114. Munoz, A, Arellano, JI, DeFelipe, J. (2002) GABABR1 receptor protein expression in human mesial temporal cortex: changes in temporal lobe epilepsy. J Comp Neurol, 449:166–179.PubMedCrossRefGoogle Scholar
  115. Munoz, A, Mendez, P, DeFelipe, J, Alvarez-Leefmans, FJ. (2007) Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia, 48:663–673.PubMedCrossRefGoogle Scholar
  116. Nicoll, RA, Malenka, RC. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 377:115–118.PubMedCrossRefGoogle Scholar
  117. Norman, RM. (1964) The neuropathology of status epilepticus. Med Sci Law, 14:46–51.Google Scholar
  118. Notenboom, RG, Hampson, DR, Jansen, GH, van Rijen, PC, van Veelen, CW, van Nieuwenhuizen, O, de Graan, PN. (2006) Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain, 129:96–107.PubMedCrossRefGoogle Scholar
  119. Nusser, Z, Hajos, N, Somogyi, P, Mody, I. (1998) Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature, 395:172–177.PubMedCrossRefGoogle Scholar
  120. Okazaki, MM, Evenson, DA, Nadler, JV. (1995) Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J Comp Neurol, 352:515–534.PubMedCrossRefGoogle Scholar
  121. Orkand, RK, Nicholls, JG, Kuffler, SW. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol, 29:788–806.Google Scholar
  122. Otis, TS, De Koninck, Y, Mody, I. (1994) Lasting potentiation of inhibition is associated with an increased number of γ-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci USA, 91:7698–7702.PubMedCrossRefGoogle Scholar
  123. Penfield, W. (1927) The mechanism of cicatricial contraction in the brain. Brain, 50:499–517.CrossRefGoogle Scholar
  124. Perez Velazquez, JL, Carlen, PL. (2000) Gap junctions, synchrony and seizures. Trends Neurosci, 23:68–74.PubMedCrossRefGoogle Scholar
  125. Pinel, JP, Rovner, LI. (1978) Experimental epileptogenesis: kindling-induced epilepsy in rats. Exp Neurol, 58:190–202.PubMedCrossRefGoogle Scholar
  126. Pitkänen, A. (2002) Drug-mediated neuroprotection and antiepileptogenesis: animal data. Neurology, 59(9Suppl5):S27–33.PubMedCrossRefGoogle Scholar
  127. Pitkanen, A, Kharatishvili, I, Narkilahti, S, Lukasiuk, K, Nissinen, J. (2005) Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res, 63:27–42.PubMedCrossRefGoogle Scholar
  128. Pitkanen, A, Narkilahti, S, Bezvenyuk, Z, Haapalinna, A, Nissinen, J. (2004) Atipamezole, an α(2)-adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Res, 61:119–140.PubMedCrossRefGoogle Scholar
  129. Porter, BE, Cui, XN, Brooks-Kayal, AR. (2006) Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons. Eur J Neurosci, 23:2857–2863.PubMedCrossRefGoogle Scholar
  130. Prasad, A, Williamson, JM, Bertram, EH. (2002) Phenobarbital and MK-801, but not phenytoin, improve the long-term outcome of status epilepticus. Ann Neurol, 51:175–181.PubMedCrossRefGoogle Scholar
  131. Prince, HK, Conn, PJ, Blackstone, CD, Huganir, RL, Levey, AI. (1995) Down-regulation of AMPA receptor subunit GluR2 in amygdaloid kindling. J Neurochem, 64:462–465.PubMedCrossRefGoogle Scholar
  132. Princivalle, AP, Duncan, JS, Thom, M, Bowery, NG. (2002) Studies of GABA(B) receptors labelled with [(3)H]-CGP62349 in hippocampus resected from patients with temporal lobe epilepsy. Br J Pharmacol, 136:1099–1106.PubMedCrossRefGoogle Scholar
  133. Rashid, K, Van der Zee, CE, Ross, GM, Chapman, CA, Stanisz, J, Riopelle, RJ, Racine, RJ, Fahnestock, M. (1995) A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy. Proc Natl Acad Sci USA, 92:9495–9499.PubMedCrossRefGoogle Scholar
  134. Ratzliff, AH, Howard, AL, Santhakumar, V, Osapay, I, Soltesz, I. (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci, 24:2259–2269.PubMedCrossRefGoogle Scholar
  135. Raza, M, Blair, RE, Sombati, S, Carter, DS, Deshpande, LS, DeLorenzo, RJ. (2004) Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci USA, 101:17522–17527.PubMedCrossRefGoogle Scholar
  136. Riedel, G, Reymann, KG. (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand, 157:1–19.PubMedCrossRefGoogle Scholar
  137. Rigoulot, MA, Koning, E, Ferrandon, A, Nehlig, A. (2004) Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther, 308:787–795.PubMedCrossRefGoogle Scholar
  138. Santhakumar, V, Bender, R, Frotscher, M, Ross, ST, Hollrigel, GS, Toth, Z, Soltesz, I. (2000) Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J Physiol, 524(Pt 1):117–134.PubMedCrossRefGoogle Scholar
  139. Sato, M, Racine, RJ, McIntyre, DC. (1990) Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol, 76:459–472.PubMedCrossRefGoogle Scholar
  140. Scharfman, HE, Goodman, JH, Sollas, AL. (2000) Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci, 20:6144–6158.PubMedGoogle Scholar
  141. Scharfman, HE, Gray, WP. (2007) Relevance of seizure-induced neurogenesis in animal models of epilepsy to the etiology of temporal lobe epilepsy. Epilepsia, 48(Suppl 2):33–41.PubMedCrossRefGoogle Scholar
  142. Scheibel, ME, Crandall, PH, Scheibel, AB. (1974) The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15:55–80.CrossRefGoogle Scholar
  143. Scimemi, A, Schorge, S, Kullmann, DM, Walker, MC. (2006) Epileptogenesis is associated with enhanced glutamatergic transmission in the perforant path. J Neurophysiol, 95:1213–1220.PubMedCrossRefGoogle Scholar
  144. Seifert, G, Huttmann, K, Schramm, J, Steinhauser, C. (2004) Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon's horn sclerosis. J Neurosci, 24:1996–2003.PubMedCrossRefGoogle Scholar
  145. Shah, MM, Anderson, AE, Leung, V, Lin, X, Johnston, D. (2004) Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron, 44:495–508.PubMedCrossRefGoogle Scholar
  146. Simonato, M, Molteni, R, Bregola, G, Muzzolini, A, Piffanelli, M, Beani, L, Racagni, G, Riva, M. (1998) Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat. Eur J Neurosci, 10:955–963.PubMedCrossRefGoogle Scholar
  147. Sloviter, RS. (1983) “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res Bull, 10:675–697.PubMedCrossRefGoogle Scholar
  148. Sloviter, RS. (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science, 235:73–76.PubMedCrossRefGoogle Scholar
  149. Sloviter, RS. (1991a) Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus, 1:31–40.CrossRefGoogle Scholar
  150. Sloviter, RS. (1991b) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus, 1:41–66.CrossRefGoogle Scholar
  151. Sloviter, RS. (1992) Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett, 137:91–96.PubMedCrossRefGoogle Scholar
  152. Sloviter, RS, Damiano, BP. (1981) Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci Lett, 24:279–284.PubMedCrossRefGoogle Scholar
  153. Stefan, H, Lopes da Silva, FH, Loscher, W, Schmidt, D, Perucca, E, Brodie, MJ, Boon, PA, Theodore, WH, Moshe, SL. (2006) Epileptogenesis and rational therapeutic strategies. Acta Neurol Scand, 113:139–155.PubMedCrossRefGoogle Scholar
  154. Strasser, A, O'Connor, L, Dixit, VM. (2000) Apoptosis signaling. Annu Rev Biochem, 69:217–245.PubMedCrossRefGoogle Scholar
  155. Su, H, Sochivko, D, Becker, A, Chen, J, Jiang, Y, Yaari, Y, Beck, H. (2002) Upregulation of a T-type Ca2 + channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci, 22:3645–3655.PubMedGoogle Scholar
  156. Sutula, TP, Pitkanen, A. (2001) More evidence for seizure-induced neuron loss: is hippocampal sclerosis both cause and effect of epilepsy. Neurology, 57:169–170.PubMedCrossRefGoogle Scholar
  157. Tarkka, R, Paakko, E, Pyhtinen, J, Uhari, M, Rantala, H. (2003) Febrile seizures and mesial temporal sclerosis: no association in a long-term follow-up study. Neurology, 60:215–218.PubMedCrossRefGoogle Scholar
  158. Tauck, DL, Nadler, JV. (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci, 5:1016–1022.PubMedGoogle Scholar
  159. Theodore, WH, Gaillard, WD. (1999) Association between hippocampal volume and epilepsy duration. Ann Neurol, 46:800.PubMedCrossRefGoogle Scholar
  160. Tian, GF, Azmi, H, Takano, T, Xu, Q, Peng, W, Lin, J, Oberheim, N, Lou, N, Wang, X, Zielke, HR, Kang, J, Nedergaard, M. (2005) An astrocytic basis of epilepsy. Nat Med, 11:973–981.PubMedGoogle Scholar
  161. Traub, RD, Pais, I, Bibbig, A, LeBeau, FE, Buhl, EH, Hormuzdi, SG, Monyer, H, Whittington, MA. (2003) Contrasting roles of axonal. (pyramidal cell) and dendritic. (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci USA, 100:1370–1374.PubMedCrossRefGoogle Scholar
  162. Tuff, LP, Racine, RJ, Adamec, R. (1983) The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Res, 277:79–90.Google Scholar
  163. Turski, L, Ikonomidou, C, Turski, WA, Bortolotto, ZA, Cavalheiro, EA. (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse, 3:154–171.PubMedCrossRefGoogle Scholar
  164. Turski, WA, Cavalheiro, EA, Schwarz, M, Czuczwar, SJ, Kleinrok, Z, Turski, L. (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res, 9:315–335.PubMedCrossRefGoogle Scholar
  165. Tuunanen, J, Pitkanen, A. (2000) Do seizures cause neuronal damage in rat amygdala kindling. Epilepsy Res, 39:171–176.PubMedCrossRefGoogle Scholar
  166. Upton, N, Stratton, S. (2003) Recent developments from genetic mouse models of seizures. Curr Opin Pharmacol, 3:19–26.PubMedCrossRefGoogle Scholar
  167. Van Paesschen, W, Duncan, JS, Stevens, JM, Connelly, A. (1998) Longitudinal quantitative hippocampal magnetic resonance imaging study of adults with newly diagnosed partial seizures: one-year follow-up results. Epilepsia, 39:633–639.PubMedCrossRefGoogle Scholar
  168. van Praag, H, Schinder, AF, Christie, BR, Toni, N, Palmer, TD, Gage, FH. (2002) Functional neurogenesis in the adult hippocampus. Nature, 415:1030–1034.PubMedCrossRefGoogle Scholar
  169. Vignes, M, Collingridge, GL. (1997) The synaptic activation of kainate receptors. Nature, 388:179–182.PubMedCrossRefGoogle Scholar
  170. Vissel, B, Royle, GA, Christie, BR, Schiffer, HH, Ghetti, A, Tritto, T, Perez-Otano, I, Radcliffe, RA, Seamans, J, Sejnowski, T, Wehner, JM, Collins, AC, O'Gorman, S, Heinemann, SF. (2001) The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron, 29:217–227.PubMedCrossRefGoogle Scholar
  171. Vollmar, W, Gloger, J, Berger, E, Kortenbruck, G, Kohling, R, Speckmann, EJ, Musshoff, U. (2004) RNA editing. (R/G site) and flip-flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis, 15:371–379.PubMedCrossRefGoogle Scholar
  172. Walker, MC, Perry, H, Scaravilli, F, Patsalos, PN, Shorvon, SD, Jefferys, JG. (1999) Halothane as a neuroprotectant during constant stimulation of the perforant path. Epilepsia, 40:359–364.PubMedCrossRefGoogle Scholar
  173. Walker, MC, White, HS, Sander, JW. (2002) Disease modification in partial epilepsy. Brain, 125:1937–1950.PubMedCrossRefGoogle Scholar
  174. Wallace, RH, Scheffer, IE, Barnett, S, Richards, M, Dibbens, L, Desai, RR, Lerman-Sagie, T, Lev, D, Mazarib, A, Brand, N, Ben-Zeev, B, Goikhman, I, Singh, R, Kremmidiotis, G, Gardner, A, Sutherland, GR, George, ALJ, Mulley, JC, Berkovic, SF. (2001) Neuronal sodium-channel α1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet, 68:859–865.PubMedCrossRefGoogle Scholar
  175. Wasterlain, CG, Shirasaka, Y, Mazarati, AM, Spigelman, I. (1996) Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Res, 26:255–265.PubMedCrossRefGoogle Scholar
  176. Williams, PA, Wuarin, JP, Dou, P, Ferraro, DJ, Dudek, FE. (2002) Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the pilocarpine model of temporal lobe epilepsy. J Neurophysiol, 88:2075–2087.PubMedGoogle Scholar
  177. Wong, RK, Bianchi, R, Chuang, SC, Merlin, LR. (2005) Group I mGluR-induced epileptogenesis: distinct and overlapping roles of mGluR1 and mGluR5 and implications for antiepileptic drug design. Epilepsy Curr, 5:63–68.PubMedCrossRefGoogle Scholar
  178. Wu, C, Leung, LS. (1997) Partial hippocampal kindling decreases efficacy of presynaptic GABAB autoreceptors in CA1. J Neurosci, 17:9261–9269.PubMedGoogle Scholar
  179. Zhang, N, Houser, CR. (1999) Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: a study of reorganized mossy fiber synapses. J Comp Neurol, 405:472–490.PubMedCrossRefGoogle Scholar
  180. Zhu, LJ, Chen, Z, Zhang, LS, Xu, SJ, Xu, AJ, Luo, JH. (2004) Spatiotemporal changes of the N-methyl-D-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures. Neurosci Lett, 356:53–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kate Chandler
    • 1
  • Pi-Shan Chang
    • 1
  • Matthew Walker
    • 1
  1. 1.Department of Veterinary Clinical SciencesRoyal Veterinary CollegeHatfieldUK

Personalised recommendations