Skip to main content

Experimental Ischemia: Summary of Metabolic Encephalopathy

  • Chapter
  • First Online:
Metabolic Encephalopathy

Abstract

Cerebral ischemia refers to a lack of adequate blood flow to the brain, which may be the result of an embolism, blood clot, blood vessel constriction secondary to increased intracranial pressure or a hemorrhage. Why the brain is so susceptible to alterations in Cerebral Blood Flow (CBF) has been extensively studied. The brain is a very demanding organ requiring an uninterrupted supply of nutrients to feed the tens of billions of cells which make up the CNS, necessary for the processing and storing of information and for controlling many vital functions within the organism. Maintaining the structure and function of this complex tissue requires a disproportionately large amount of energy when compared to most other organs of the body. This is clearly demonstrated by the fact that the brain comprises about 2% of total body mass and yet consumes about 20% of the total basal O2 and receives approximately 15% of the resting cardiac output. An important concept in normal brain metabolism is that energy production is tightly coupled to energy consumption (i.e., work).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Almeida, A., Allen, K.L., Bates, T.E., and Clark, J.B. (1995): Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J. Neurochem., 65:1698–1703.

    PubMed  CAS  Google Scholar 

  • Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., and Martinou, J.C. (2000): Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J., 345(Pt 2):271–278.

    PubMed  CAS  Google Scholar 

  • Anderson GL and Whisnant JP. (1982): A comparison of trends in mortality from stroke in the United States and Rochester, Minnesota. Stroke. (6):804–9.

    Google Scholar 

  • Arai, H., Passonneau, J.V., and Lust, W.D. (1986): Energy metabolism in delayed neuronal death of CA1 neurons of the hippocampus following transient ischemia in the gerbil. Metab. Brain Dis., 1:263–278.

    PubMed  CAS  Google Scholar 

  • Astrup, J., Siesjö, B.K., and Symon, L. (1981): Thresholds in cerebral ischemia — The ischemic penumbra. Stroke, 12(6):723–725.

    PubMed  CAS  Google Scholar 

  • Astrup, J., Symon, L., Branston, N., and Lassen, N. (1977): Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 8:51–57.

    PubMed  CAS  Google Scholar 

  • Bazan, N.G. (2005): Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol., 31:219–230.

    PubMed  CAS  Google Scholar 

  • Berger, N.A. (1985): Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res., 101:4–15.

    PubMed  CAS  Google Scholar 

  • Betz, A.L., Randall, J., and Martz, D. (1991): Xanthine oxidase is not a major source of free radicals in focal cerebral ischemia. Am. J. Physiol., 260:H563–H568.

    PubMed  CAS  Google Scholar 

  • Branston, N.M., Hope, D.T., and Symon, L. (1979): Barbiturates in focal ischemia of primate cortex: Effects on blood flow distribution, evoked potential and extracellular potassium. Stroke, 10:647–653.

    PubMed  CAS  Google Scholar 

  • Branston, N.M., Symon, L., Crockard, H.A., and Pasztor, E. (1974): Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol., 45:195–208.

    PubMed  CAS  Google Scholar 

  • Camougrand, N., Grelaud-Coq, A., Marza, E., Priault, M., Bessoule, J.J., and Manon, S. (2003): The product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Mol. Microbiol., 47:495–506.

    Google Scholar 

  • Cardenas-Aguayo, M.C., Santa-Olalla, J., Baizabal, J.M., Salgado, L.M., and Covarrubias, L. (2003): Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells. J. Hematother. Stem Cell Res., 12:735–748.

    CAS  Google Scholar 

  • Carson, D.A., Seto, S., Wasson, D.B., and Carrera, C.J. (1986): DNA strand breaks, NAD metabolism, and programmed cell death. Exp. Cell Res., 164:273–281.

    PubMed  CAS  Google Scholar 

  • Churn, S.B. and DeLorenzo, R.J. (1998): Intracellular Messengers and Mediators. In:Cerebrovascular Disease: Pathophysiology, Diagnosis and Management, Ginsberg MD et-al. (eds), pp. 433–439. Blackwell, Malden MA.

    Google Scholar 

  • Cory, S. and Adams, J.M. (2002): The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2:647–656.

    PubMed  CAS  Google Scholar 

  • DeGracia, D.J. (2004): Acute and persistent protein synthesis inhibition following cerebral reperfusion. J. Neurosci. Res., 77:771–776.

    PubMed  CAS  Google Scholar 

  • Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., and Yuan, J. (2005): Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol., 1:112–119.

    PubMed  CAS  Google Scholar 

  • Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. (2003): A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell, 115:61–70.

    PubMed  CAS  Google Scholar 

  • Devin, A., Cook, A., Lin, Y., Rodriguez, Y., Kelliher, M., and Liu, Z. (2000): The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity, 12:419–429.

    PubMed  CAS  Google Scholar 

  • Devin, A., Lin, Y., and Liu, Z.G. (2003): The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep., 4:623–627.

    PubMed  CAS  Google Scholar 

  • Di Lisa, F. and Bernardi, P. (2005): Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc. Res., 66:222–232.

    PubMed  CAS  Google Scholar 

  • Dirnagl, U., Simon, R.P., and Hallenbeck, J.M. (2003): Ischemic tolerance and endogenous neuroprotection. Trends Neurosci., 26:248–254.

    PubMed  CAS  Google Scholar 

  • Eliasson, M.J., Huang, Z., Ferrante, R.J., Sasamata, M., Molliver, M.E., Snyder, S.H., and Moskowitz, M.A. (1999): Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J. Neurosci., 19:5910–5918.

    PubMed  CAS  Google Scholar 

  • Elmore, S.P., Qian, T., Grissom, S.F., and Lemasters, J.J. (2001): The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J., 15:2286–2287.

    PubMed  CAS  Google Scholar 

  • Erecinska, M. and Silver, I.A. (1989): ATP and brain function. J. Cereb. Blood Flow Metab., 9:2–19.

    PubMed  CAS  Google Scholar 

  • Festjens, N., Vanden Berghe, T., and Vandenabeele, P. (2006): Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta, 1757:1371–1387.

    PubMed  CAS  Google Scholar 

  • Flamm, E.S., Demopoulos, H.B., Seligman, M.L., Poser, R.G., and Ransohoff, J. (1978): Free radicals in cerebral ischemia. Stroke, 9:445–447.

    PubMed  CAS  Google Scholar 

  • Folbergrova, J., Li, P.A., Uchino, H., Smith, M.L., and Siesjo, B.K. (1997): Changes in the bioenergetic state of rat hippocampus during 2.5 min of ischemia, and prevention of cell damage by cyclosporin A in hyperglycemic subjects. Exp. Brain Res., 114:44–50.

    PubMed  CAS  Google Scholar 

  • Folbergrova, J., Memzawa, H., Smith, M.L., and Siesjo, B.K. (1992): Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyerglycemic rats. J. Cereb. Blood Flow Metab., 12:25–33.

    PubMed  CAS  Google Scholar 

  • Folbergrova, J., Zhao, Q., Katsura, K., and Siesjo, B. (1995): N-tert-Buryl-a-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc. Natl. Acad. Sci. U S A., 92:5057–5061.

    PubMed  CAS  Google Scholar 

  • Friberg, H. and Wieloch, T. (2002): Mitochondrial permeability transition in acute neurodegeneration. Biochimie, 84:241–250.

    PubMed  CAS  Google Scholar 

  • Giffard, R.G., Monyer, H., Christine, C.W., and Choi, D.W. (1990): Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res., 506:339–342.

    PubMed  CAS  Google Scholar 

  • Ginsberg, M.D. and Bogousslavsky, J. (1998): Cerebrovascular Disease: Pathophysiology, Diagnosis and Management. Blackwell, Malden, MA.

    Google Scholar 

  • Gozuacik, D. and Kimchi, A. (2007): Autophagy and cell death. Curr. Top. Dev. Biol., 78:217–245.

    PubMed  CAS  Google Scholar 

  • Graham, G.D. (2003): Tissue plasminogen activator for acute ischemic stroke in clinical practice: A meta-analysis of safety data. Stroke, 34:2847–2850.

    PubMed  CAS  Google Scholar 

  • Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999): BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 13:1899–1911.

    PubMed  CAS  Google Scholar 

  • Hamasaki, M., Noda, T., Baba, M., and Ohsumi, Y. (2005): Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic, 6:56–65.

    PubMed  CAS  Google Scholar 

  • Harper, N., Hughes, M., MacFarlane, M., and Cohen, G.M. (2003): Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem., 278:25534–25541.

    PubMed  CAS  Google Scholar 

  • Hata, R., Maeda, K., Hermann, D., Mies, G., and Hossmann, K.A. (2000): Evolution of brain infarction after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 20:937–946.

    PubMed  CAS  Google Scholar 

  • Heiss, W.D., Hayakawa, T., and Waltz, A.G. (1976): Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch. Neurol., 33:813–820.

    PubMed  CAS  Google Scholar 

  • Hoffman, T.L., LaManna, J.C., Pundik, S., Selman, W.R., Whittingham, T.S., Ratcheson, R.A., and Lust, W.D. (1994): Early reversal of acidosis and metabolic recovery following ischemia. J. Neurosurg., 81:567–573.

    PubMed  CAS  Google Scholar 

  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B., and Tschopp, J. (2000): Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol., 1:489–495.

    PubMed  CAS  Google Scholar 

  • Hossmann, K.A. (1998): Thresholds of Ischemic Injury. In: Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, Ginsberg, Met-al (eds), pp. 193–204. Blackwell, Malden.

    Google Scholar 

  • Hossmann, K.A. (2006): Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol., 26:1057–1083.

    PubMed  Google Scholar 

  • Iwata, J., Ezaki, J., Komatsu, M., Yokota, S., Ueno, T., Tanida, I., Chiba, T., Tanaka, K., and Kominami, E. (2006): Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem., 281:4035–4041.

    PubMed  CAS  Google Scholar 

  • Kagansky, N., Levy, S., and Knobler, H. (2001): The role of hyperglycemia in acute stroke. Arch. Neurol., 58:1209–1212.

    PubMed  CAS  Google Scholar 

  • Kelliher, M.A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B.Z., and Leder, P. (1998): The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity, 8:297–303.

    PubMed  CAS  Google Scholar 

  • Kempski, O., Otsuka, H., Seiwert, T., and Heimann, A. (2000): Spreading depression induces permanent cell swelling under penumbra conditions. Acta Neurochir. Suppl., 76:251–255.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H.K. (2005): Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia, 50:389–397.

    PubMed  Google Scholar 

  • King, M.A. (1997): Pocket companion to robbins pathologic basis of disease — Robbins, SL, Cotran, RS, Kumar, V. N&Hc-Perspectives on Community, 18:99.[R21]

    Google Scholar 

  • Kirino, T. (1982): Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res., 239:57–69.

    PubMed  CAS  Google Scholar 

  • Kirino, T. (2000): Delayed neuronal death. Neuropathology, 20 (Suppl):S95–S97

    PubMed  Google Scholar 

  • Kobayashi, M., Lust, W.D., and Passonneau, J.V. (1977): Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. J. Neurochem., 29:53–59.

    PubMed  CAS  Google Scholar 

  • Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A., and Wouters, B.G. (2002): Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell Biol., 22:7405–7416.

    PubMed  CAS  Google Scholar 

  • Lapchak, P.A. and Araujo, D.M. (2007): Advances in ischemic stroke treatment: Neuroprotective and combination therapies. Expert Opin. Emerg. Drugs, 12:97–112.

    PubMed  CAS  Google Scholar 

  • Leao, A.A.P. (1944): Spreading depression of activity in cerebral cortex. J. Neurophysiol., 7:359–390.

    Google Scholar 

  • Lee, C.K., Weindruch, R., and Prolla, T.A. (2000): Gene-expression profile of the ageing brain in mice. Nat. Genet., 25:294–297.

    PubMed  CAS  Google Scholar 

  • Lehninger, A.L., Nelson, D.L., and Cos, M.M. (1993):. Worth Publishers, New York.

    Google Scholar 

  • Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A., and Herman, B. (1998): The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta, 1366:177–196.

    PubMed  CAS  Google Scholar 

  • Levine, B. and Klionsky, D.J. (2004): Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell, 6:463–477.

    PubMed  CAS  Google Scholar 

  • Lewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., and Liu, Z.G. (2000): Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J. Biol. Chem., 275:10519–10526.

    PubMed  CAS  Google Scholar 

  • Li, P.A., Kristian, T., Shamloo, M., and Siesjo, K. (1996): Effects of preischemic hyperglycemia on brain damage incurred by rats subjected to 2.5 or 5 minutes of forebrain ischemia. Stroke, 27:1592–1601.

    PubMed  CAS  Google Scholar 

  • Lipton, P. (1999): Ischemic cell death in brain neurons. Physiol. Rev., 79:1431–1568.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Passonneau, J.V., Hasselberger, F.X., and Schulz, D.W. (1964): Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem., 239:18–30.

    PubMed  CAS  Google Scholar 

  • Lust, W.D. and Passonneau, J.V. (1976): Cyclic nucleotides in murine brain: Effect of hypothermia on adenosine 3?,5? monophosphate, glycogen phosphorylase, glycogen synthase and metabolites following maximal electroshock or decapitation. J. Neurochem., 26:11–16.

    PubMed  CAS  Google Scholar 

  • Lust, W.D., Taylor, C., Pundik, S., Selman, W.R., and Ratcheson, R.A. (2002): Ischemic cell death: Dynamics of delayed secondary energy failure during reperfusion following focal ischemia. Metab. Brain Dis., 17:113–121.

    PubMed  CAS  Google Scholar 

  • Margaill, I., Plotkine, M., and Lerouet, D. (2005): Antioxidant strategies in the treatment of stroke. Free Radic. Biol. Med., 39:429–443.

    PubMed  CAS  Google Scholar 

  • Martinez-Vila, E. and Irimia, P. (2005): Challenges of neuroprotection and neurorestoration in ischemic stroke treatment. Cerebrovasc. Dis., 20 (Suppl 2):148–158.

    PubMed  Google Scholar 

  • Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J.C., and Arkinstall, S. (1997): Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the ­presence of the constitutively active GTP-binding protein Rac1. J. Biol. Chem., 272:25238–25242.

    PubMed  CAS  Google Scholar 

  • Mehta, S.L., Manhas, N., and Raghubir, R. (2007): Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Rev., 54:34–66.

    PubMed  CAS  Google Scholar 

  • Mergenthaler, P., Dirnagl, U., and Meisel, A. (2004): Pathophysiology of stroke: Lessons from animal models. Metab. Brain Dis., 19:151–167.

    PubMed  CAS  Google Scholar 

  • Melov, S. (2002): Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. Int J Biochem Cell Biol., 34(11):1395–400.

    PubMed  CAS  Google Scholar 

  • Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004): RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol., 5:503–507.

    PubMed  CAS  Google Scholar 

  • Morawetz, R.B., Crowell, R.H., DeGirolami, U., Marcoux, F.W., Jones, T.H., and Halsey, J.H. (1979): Regional cerebral blood flow thresholds during cerebral ischemia. Fed. Proc., 38:2493–2494.

    PubMed  CAS  Google Scholar 

  • Morawetz, R.B., DeGirolami, U., Ojemann, R.G., Marcoux, F.W., and Crowell, R.M. (1978): Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys. Stroke, 9:143–149.

    PubMed  CAS  Google Scholar 

  • Mund, T., Gewies, A., Schoenfeld, N., Bauer, M.K., and Grimm, S. (2003): Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum. FASEB J., 17:696–698.

    PubMed  CAS  Google Scholar 

  • Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y. (1995): Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci., 15:1001–1011.

    PubMed  CAS  Google Scholar 

  • Nogawa, S., Zhang, F., Ross, M.E., and Iadecola, C. (1997): Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci., 17:2746–2755.

    PubMed  CAS  Google Scholar 

  • Oleinick, N.L. and Evans, H.H. (1985): Poly(ADP-ribose) and the response of cells to ionizing radiation. Radiat. Res., 101:29–46.

    PubMed  CAS  Google Scholar 

  • Pelligrino, D.A. and Wang, Q. (1998): Cyclic nucleotide crosstalk and the regulation of cerebral vasodilation. Prog. Neurobiol., 56:1–18.

    PubMed  CAS  Google Scholar 

  • Phillis, J.W., Diaz, F.G., O’Regan, M.H., and Pilitsis, J.G. (2002): Effects of immunosuppressants, calcineurin inhibition, and blockade of endoplasmic reticulum calcium channels on free fatty acid efflux from the ischemic/reperfused rat cerebral cortex. Brain Res., 957:12–24.

    PubMed  CAS  Google Scholar 

  • Pundik, S., Robinson, S., Lust, W.D., Zechel, J., Buczek, M., Selman, W.R. (2006): Regional metabolic status of the E-18 rat fetal brain following transient hypoxia/ischemia. Metab Brain Dis., 21(4):309–17.

    PubMed  CAS  Google Scholar 

  • Robins M, Baum HM. (1981) The National Survey of Stroke. Incidence. Stroke. (Suppl 1):I45–57.

    Google Scholar 

  • Sacco, R.L., Wolf, P.A., Kannel, W.B., McNamara, P.M. (1982): Survival and recurrence following stroke. The Framingham study. Stroke., 13(3):290–5.

    CAS  Google Scholar 

  • Saeki, K., Yuo, A., Okuma, E., Yazaki, Y., Susin, S.A., Kroemer, G., and Takaku, F. (2000): Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ., 7:1263–1269.

    PubMed  CAS  Google Scholar 

  • Sastre, J., Pallardo, F.V., and Vina, J. (2003): The role of mitochondrial oxidative stress in aging. Free Radic. Biol. Med., 35:1–8.

    PubMed  CAS  Google Scholar 

  • Selman, W.R., Crumrine, R.C., Ricci, A.J., LaManna, J.C., Ratcheson, R.A., and Lust, W.D. (1990): Impairment of metabolic recovery with increasing periods of middle cerebral artery occlusion in rats. Stroke, 21:467–471.

    PubMed  CAS  Google Scholar 

  • Selman, W.R., Lust, W.D., Pundik, S., Zhou, Y., and Ratcheson, R.A. (2004): Compromised metabolic recovery following spontaneous spreading depression in the penumbra. Brain Res., 999:167–174.

    PubMed  CAS  Google Scholar 

  • Selman, W.R., Zhou, Y., Pundik, S., Ratcheson, R.A., and Lust, W.D. (1999): A role for secondary energy failure in the evolution of ischemic cell death following reversible focal ischemia. J. Cereb. Blood Flow Metab., 19:S618.(Abstract)

    Google Scholar 

  • Shen, H.M., Lin, Y., Choksi, S., Tran, J., Jin, T., Chang, L., Karin, M., Zhang, J., and Liu, Z.G. (2004): Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol. Cell Biol., 24:5914–5922.

    PubMed  CAS  Google Scholar 

  • Siesjo, B.K. (1978): Brain Energy Metabolism. Wiley, Chichester.

    Google Scholar 

  • Siesjo, B.K. (1992a): Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg., 77:337–354.

    CAS  Google Scholar 

  • Siesjo, B.K. (1992b): Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J. Neurosurg., 77:169–184.

    CAS  Google Scholar 

  • Siesjo, B.K. and Bengtsson, F. (1989): Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J. Cereb. Blood Flow Metab., 9:127–140.

    PubMed  CAS  Google Scholar 

  • Siesjo, B.K., Elmer, E., Janelidze, S., Keep, M., Kristian, T., Ouyang, Y.B., and Uchino, H. (1999): Role and mechanisms of secondary mitochondrial failure. Acta Neurochir. Suppl. (Wien), 73:7–13.

    CAS  Google Scholar 

  • Siesjo, B.K., Kristian, T., and Katsura, K. (1998): Overview of Bioenergetic Failure and Metabolic Cascades in Brain Ischemia. In: Cerebrovascular Disease: Pathophysiology, Diagnosis and Management, Ginsberg M.D. et-al. (eds), pp.3–13. Blackwell, Malden, MA.

    Google Scholar 

  • Siesjo, B.K. and Siesjo, P. (1996): Mechanisms of secondary brain injury. Anasethesiology, 13:247–268.

    CAS  Google Scholar 

  • Sims, N.R. and Pulsinelli, W.A. (1987): Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J. Neurochem., 49:1367–1374.

    PubMed  CAS  Google Scholar 

  • Strong, A.J. and Dardis, R. (2005): Depolarisation phenomena in traumatic and ischaemic brain injury. Adv. Tech. Stand. Neurosurg., 30:3–49.

    PubMed  CAS  Google Scholar 

  • Symon, L., Pasztor, E., and Branston, N.M. (1974): The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons. Stroke, 5:355–364.

    PubMed  CAS  Google Scholar 

  • Takizawa, S., Fukuyama, N., Hirabayashi, H., Nakazawa, H., and Shinohara, Y. (1999): Dynamics of nitrotyrosine formation and decay in rat brain during focal ischemia-reperfusion. J. Cereb. Blood Flow Metab., 19:667–672.

    PubMed  CAS  Google Scholar 

  • Talloczy, Z., Jiang, W., Virgin, H.W., Leib, D.A., Scheuner, D., Kaufman, R.J., Eskelinen, E.L., and Levine, B. (2002): Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc. Natl. Acad. Sci. U S A, 99:190–195.

    PubMed  CAS  Google Scholar 

  • Tanveer, A., Virji, S., Andreeva, L., Totty, N.F., Hsuan, J.J., Ward, J.M., and Crompton, M. (1996): Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2− and oxidant stress. Eur. J. Biochem., 238:166–172.

    PubMed  CAS  Google Scholar 

  • Ting, A.T., Pimentel-Muinos, F.X., and Seed, B. (1996): RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J., 15:6189–6196.

    PubMed  CAS  Google Scholar 

  • Trivedi, B. and Danforth, W.H. (1966): Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem., 241:4110–4112.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, Y. and Shimizu, S. (2000): VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ., 7:1174–1181.

    PubMed  CAS  Google Scholar 

  • Vande, V.C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., and Greenberg, A.H. (2000): BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell Biol., 20:5454–5468.

    Google Scholar 

  • Vanden Berghe, T., Kalai, M., Denecker, G., Meeus, A., Saelens, X., and Vandenabeele, P. (2006): Necrosis is associated with IL-6 production but apoptosis is not. Cell Signal., 18:328–335.

    PubMed  CAS  Google Scholar 

  • Veech, R.L., Lawson, J.W., Cornell, N.W., and Krebs, H.A. (1979): Cytosolic phosphorylation potential. J. Biol. Chem., 254:6538–6547.

    PubMed  CAS  Google Scholar 

  • Walker, G. and Marx, J.L. (1981): The national surveyof stroke: Clinical findings. Stroke, 12(supp 1):1–13.

    Google Scholar 

  • Wallace, D. (2001): A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp., 235:247–63.

    PubMed  CAS  Google Scholar 

  • Welsch, K.M., Caplan, L., Reis, D., Siesjo, B.K., and Weir, R. (1997): Primer on Cerebrovascular Disease. Academic Press, San Diego, CA.

    Google Scholar 

  • Xu, Y., Huang, S., Liu, Z.G., and Han, J. (2006): Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J. Biol. Chem., 281:8788–8795.

    PubMed  CAS  Google Scholar 

  • Xu, K., Puchowicz, M.A., Lust, W.D., and LaManna, J.C. (2006): Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats. Brain Res., 1071:208–217.

    PubMed  CAS  Google Scholar 

  • Yang, H. and Smith, D.L. (1997): Kinetics of cytochrome c folding examined by hydrogen exchange and mass spectrometry. Biochemistry, 36:14992–14999.

    PubMed  CAS  Google Scholar 

  • Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E.H., and Lenardo, M.J. (2004): Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 304:1500–1502.

    PubMed  CAS  Google Scholar 

  • Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., and Lenardo, M. (2006): Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. U S A, 103:4952–4957.

    PubMed  CAS  Google Scholar 

  • Zaidan, E. and Sims, N.R. (1994): The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J. Neurochem., 63:1812–1819.

    PubMed  CAS  Google Scholar 

  • Zhang, S.Q., Kovalenko, A., Cantarella, G., and Wallach, D. (2000): Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity, 12:301–311.

    PubMed  CAS  Google Scholar 

  • Zhu, C., Wang, X., Xu, F., Bahr, B.A., Shibata, M., Uchiyama, Y., Hagberg, H., and Blomgren, K. (2005): The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death. Differ., 12:162–176.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lust, W.D., Zechel, J., Pundik, S. (2009). Experimental Ischemia: Summary of Metabolic Encephalopathy. In: McCandless, D. (eds) Metabolic Encephalopathy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79112-8_4

Download citation

Publish with us

Policies and ethics