Hypoglycemic Brain Damage

  • Roland N. Auer


Although the prevalence of hypoglycemia is thought to be high, blood glucose levels rarely substantiate this (Anderson and Lev-Ran, 1985). This situation changes entirely in the context of diabetes, where hypoglycemic episodes occur with a frequency and severity determined by the intensity of insulin treatment. Indeed, diabetes treatment is a balance (The DCCT Research Group, 1993) between the desire to prevent retinopathy, neuropathy and nephrology and the desire to prevent severe hypoglycemia and permanent brain damage. Knowledge of hypoglycemic brain damage is thus important in the clinical management of diabetes. But profound hypoglycemia also occurs in the context of insulin overdose of either homicidal or suicidal nature. Other clinical contexts include medication error, where insulin is mistakenly given to the wrong, non-diabetic patient or when insulin dose is miscalculated for a diabetic. Oral hypoglycemic mediations releasing endogenous insulin can cause hypoglycemic brain damage. Lastly, tumors of the β-cells of the islets of Langerhans, so-called insulinomas, can cause hypoglycemic brain damage.


Krebs Cycle Brain Damage Cerebral Metabolic Rate Neuronal Necrosis Metabolic Insult 


  1. A, Abdul-Rahman BK. Siesjö 1980. Local cerebral glucose consumption during insulin-induced hypoglycemia, and in the recovery period following glucose administration. Acta Physiol Scand 110:149–159PubMedCrossRefGoogle Scholar
  2. A, Abdul-Rahman CD, Agardh BK. Siesjö Local cerebral blood flow in the rat during severe hypoglycemia and in the recovery period following glucose injection. Acta Physiol Scand 1980. 109:307–314PubMedCrossRefGoogle Scholar
  3. CD, Agardh BK. Siesjö Hypoglycemic brain injury: Phospholipids, free fatty acids, and cyclic nucleotides in the cerebellum of the rat after 30 and 60 minutes of severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab 1981. 1:267–275PubMedCrossRefGoogle Scholar
  4. CD, Agardh J, Folbergrová BK. Siesjö Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 1978. 31:1135–1142PubMedCrossRefGoogle Scholar
  5. CD, Agardh A, Carlsson M, Lindqvist BK. Siesjö The effect of pronounced hypoglycemia on monoamine metabolism in rat brain. Diabetes 1979. 28:804–809PubMedGoogle Scholar
  6. CD, Agardh H, Kalimo Y, Olsson BK. Siesjö Hypoglycemic brain injury. I. Metabolic and light microscopic findings in rat cerebral cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. Acta Neuropathol 1980. 50:31–41PubMedCrossRefGoogle Scholar
  7. CD, Agardh AG, Chapman B, Nilsson BK. Siesjö Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J Neurochem 1981a 36:490–500CrossRefGoogle Scholar
  8. CD, Agardh H, Kalimo Y, Olsson BK. Siesjö Hypoglycemic brain injury: Metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. J Cereb Blood Flow Metab 1981b. 1:71–84CrossRefGoogle Scholar
  9. CD, Agardh AG, Chapman D, Pelligrino BK. Siesjö Influence of severe hypoglycemia on mitochondrial and plasma membrane function in rat brain. J Neurochem 1982. 38:662–668PubMedCrossRefGoogle Scholar
  10. RW, Anderson A. Lev-Ran Hypoglycemia: the standard and the fiction. Psychosomatics 1985. 26:38–47PubMedCrossRefGoogle Scholar
  11. RN, Auer Y, Olsson BK. Siesjö Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 1984a 33:1090–1098CrossRefGoogle Scholar
  12. RN, Auer T, Wieloch Y, Olsson BK. Siesjö The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 1984b. 64:177–191CrossRefGoogle Scholar
  13. RN, Auer H, Kalimo Y, Olsson T. Wieloch The dentate gyrus in hypoglycemia: pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol (Berl) 1985. 67:279–288CrossRefGoogle Scholar
  14. AB. Baker Cerebral lesions in hypoglycemia. II. Some possibilities of irrevocable damage from insulin shock. Arch Pathol 1938. 26:765–776Google Scholar
  15. KL, Behar den Hollander JA, OAC, Petroff HP, Hetherington JW, Prichard RG. Shulman Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: Detection by sequential 1H and 31P NMR spectroscopy. J Neurochem 1985. 44:1045–1055PubMedCrossRefGoogle Scholar
  16. S, Eisenberg HS. Seltzer The cerebral metabolic effects of acutely induced hypoglycemia in human subjects. Metabolism 1962. 11:1162–1168Google Scholar
  17. JF, Fazekas RW, Alman AE. Parrish Irreversible posthypoglycemic coma. Am J Med Sci 1951. 222:640–643PubMedCrossRefGoogle Scholar
  18. G, Feise K, Kogure R, Busto P, Scheinberg O. Reinmuth Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat. Brain Res 1976. 126:263–280CrossRefGoogle Scholar
  19. RJ, Harris T, Wieloch L, Symon BK. Siesjö Cerebral extracellular calcium activity in severe hypoglycemia: Relation to extracellular potassium and energy state. J Cereb Blood Flow Metab 1984. 4:187–193PubMedCrossRefGoogle Scholar
  20. M, Kiessling RN, Auer P, Kleihues BK. Siesjö Cerebral protein synthesis during long-term recovery from severe hypoglycemia. J Cereb Blood Flow Metab 1986. 6:42–51PubMedCrossRefGoogle Scholar
  21. JC, LaManna SI. Harik Regional comparisons of brain glucose influx. Brain Res 1985. 326:299–305PubMedCrossRefGoogle Scholar
  22. W. Mayer-Gross Insulin coma therapy of schizophrenia: Some critical remarks on Dr. Sakel’s report. J Ment Sci 1951. 97:132–135PubMedGoogle Scholar
  23. H. McIlwain Glucose level, metabolism, and response to electrical impulses in cerebral tissues from man and laboratory animals. Biochem J 1953. 55:618–624PubMedGoogle Scholar
  24. JS, Meyer HD. Portnoy Localized cerebral hypoglycemia simulating stroke. Neurology 1958. 8:601–614PubMedCrossRefGoogle Scholar
  25. EM, Nemoto JT. Hoff Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia. Stroke 1974. 5:48–53PubMedCrossRefGoogle Scholar
  26. K, Norberg BK. Siesjö Oxidative metabolism of the cerebral cortex of the rat in severe insulin induced hypoglycemia. J Neurochem 1976. 26:345–352PubMedCrossRefGoogle Scholar
  27. D, Pelligrino BK. Siesjö Regulation of extra- and intracellular pH in the brain in severe hypoglycemia. J Cereb Blood Flow Metab 1981. 1:85–96PubMedCrossRefGoogle Scholar
  28. M. Sakel The methodical use of hypoglycemia in the treatment of psychoses. Am J Psychiat 1937. 94:111–129Google Scholar
  29. M, Sandberg B, Nyström A. Hamberger Metabolically derived aspartate – Elevated extracellular levels in vivo in iodoacetate poisoning. J Neurosci Res 1985. 13:489–495PubMedCrossRefGoogle Scholar
  30. M, Sandberg SP, Butcher H. Hagberg Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 1986. 47:178–184PubMedCrossRefGoogle Scholar
  31. HA, Sloviter P, Shimkin K. Suhara Glycerol as a substrate for brain metabolism. Nature 1966. 210:1334–1336PubMedCrossRefGoogle Scholar
  32. Sutherland GR, Tyson RL, Auer RN. 2008. Truncation of the Krebs cycle during hypoglycemic coma. Medicinal ChemistryGoogle Scholar
  33. A. Terbrüggen Anatomische Befunde bei spontaner Hypoglykämie infolge multipler Pankreasinseladenome. Beitr z path Anat u allg Path 1932. 88:37–59Google Scholar
  34. The DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993. 329:977–986CrossRefGoogle Scholar
  35. A, Weil E, Liebert G. Heilbrunn Histopathologic changes in the brain in experimental hyperinsulinism. Arch Neurol Psychiat 1938. 39:467–481CrossRefGoogle Scholar
  36. T, Wieloch RJ, Harris L, Symon BK. Siesjö Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy and phospholipid metabolism. J Neurochem 1984. 43:160–168PubMedCrossRefGoogle Scholar
  37. RN, Auer J, Hugh E, Cosgrove B. Curry Neuropathologic findings in three cases of profound hypoglycemia. Clin Neuropathol 1989. 8:63–68PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roland N. Auer
    • 1
  1. 1.Departments of Pathology and Clinical Neuroscience, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations