Retracted: Brain Damage in Phenylalanine, Homocysteine and Galactose Metabolic Disorders

  • Kleopatra H. Schulpis
  • Stylianos Tsakiris


Inherited metabolic diseases have become a major cause of neonatal pathology, as the classical causes of neonatal distress have been markedly diminished by advances in obstetrical, prenatal, and perinatal management. Their incidence may well be underestimated, since diagnostic errors are frequent. Nevertheless, accurate diagnosis is essential to provide genetic counseling and prenatal diagnosis of ­subsequent pregnancies, particularly because some of these conditions have an excellent response to therapy.

Inborn errors of metabolism are individually rare but are collectively numerous. Many of them present early in the neonatal period, have a rapid fatal course and, as a whole, cannot be recognized through systematic screening tests which are too slow, too expensive, and unreliable. This makes it an absolute necessity to teach primary care physicians a simple method of clinical screening before making decisions about sophisticated biochemical investigations. Clinical...


Homocysteine Level tHcy Level Phenylalanine Level tHcy Concentration Tyrosine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are highly indebted to Mrs. Anna Stamatis and Mrs. Kalliopi Tassopoulou for their carefull typing of this manuscript. Many thanks are extended to Alexios Mentis, a medical student, for his significant help in preparing this work.


  1. Acosta PB, Gross KC. Hidden sources of galactose in the environment. Eur J Pediatr 1995; 154:S87–S92.PubMedCrossRefGoogle Scholar
  2. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M. “ Vascular depression ” hypothesis. Arch Gen Psychiatr 1997; 54:915–922.PubMedCrossRefGoogle Scholar
  3. Allan JD, Holt KS, Hudson FP, Ireland JT. Phenylketonuria. Br Med J 1963; 2:498.PubMedCrossRefGoogle Scholar
  4. Allen RH, Stabler SP, Savage DG, Lindenbaum J. Diagnosis of cobalamin deficiency I Usefulness of serum methylmalonic acid and total homocysteine concentrations. Am J Hematol 1990; 34:90–98.PubMedCrossRefGoogle Scholar
  5. Anonym. Galactose toxicity in the chick: hyperosmolality or depressed brain energy reserves? Science 1972; 176:815–817.Google Scholar
  6. Antshel KM, Epstein IO, Waisbren SE. Cognitive strengths and weaknesses in children and adolescents homozygous for the galactosemia Q188R mutation: a descriptive study. Neuropsychology 2004; 18:658–664.PubMedCrossRefGoogle Scholar
  7. Arnadottir M, Brattstrom L, Simonsen O, Thysell H, Hultberg B, Andersson A, Nilsson-Ehle P. The effect of high dose pyridoxine and folic acid supplementation on serum lipid and plasma homocysteine concentrations in dialysis patients. Clin Nephrol 1993; 40:236–240.PubMedGoogle Scholar
  8. Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR. Serum creatinine levels correlate with plasma amyloid B protein. Alzheimer Dis Assoc Disord 2002; 16:187–190.PubMedCrossRefGoogle Scholar
  9. Baumeister AA, Baumeister AA. Dietary treatment of destructive behavior associated with hyperphenylalaninemia. Clin Neuropharmacol 1998; 21:18–27.PubMedGoogle Scholar
  10. Baydas G, Gursu MF, Cikim G, Campolat S, Yasar A, Canatan H, Kelestimur H. Effects of pinealectomy on the levels and the circadian rhythm of plasma homocysteine in rats. J Pineal Res 2002a; 33:151–155.CrossRefGoogle Scholar
  11. Baydas G, Nedzvetsky VS, Nerush PA, Kirichen SV, Demchenko HM, Reiter RJ. A novel role for melatonin: regulation of the expression of cell adhesion molecules in the rat hippocampus and cortex. Neurosci Lett 2002b; 326:109–112.CrossRefGoogle Scholar
  12. Baydas G, Yilmaz O, Celik S, Yasar A, Gursu MF. Effects of certain micronutrients and melatonin on plasma lipid, lipid peroxidation, and homocysteine levels in rats. Arch Med Res 2002c; 33:515–519.CrossRefGoogle Scholar
  13. Baydas G, Kutlu S, Naziroglu M, Canpolat S, Sandal S, Ozcan M, Kelestimur H. Inhibitory effects of melatonin on neural lipid peroxidation induced by intracerebroventricularly administered homocysteine. J Pineal Res 2003; 34:36–39.PubMedCrossRefGoogle Scholar
  14. Beasley MG, Costello PM, Smith I. Outcome of treatment in young adults with phenylketonuria detected by routine neonatal screening between 1964 and 1971. Q J Med 1994; 87:155–160.PubMedGoogle Scholar
  15. Belman AL, Moshe SL, Zimmerman RD. Compute tomographic demonstration of cerebral edema in a child with galactosemia. Pediatrics 1986; 78:606–609.PubMedGoogle Scholar
  16. Berry GT, Palmieri M, Gross KC, Acosta PB, Hestenburg JA, Mazur A, Reynolds R, Segal S. The effect of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyltransferase deficiency. J Inherit Metab Dis 1993; 16:91–100.PubMedCrossRefGoogle Scholar
  17. Berry GT, Nissim I, Lin Z, Mazur AT, Gibson JB, Segal S. Endogenous synthesis of galactose in normal men and patients with hereditary galactosemia. Lancet 1995; 346:1073–1074.PubMedCrossRefGoogle Scholar
  18. Berry GT, Moate PJ, Reynolds RA, Yager CT, Ning C, Boston RΨ, Segal S. The rate of de novo galactose synthesis in patients with galactose-1-phosphate uridyltransferase deficiency. Mol Genet Metab 2004; 81:22–30.PubMedCrossRefGoogle Scholar
  19. Bick U, Ullrich K, Stober U, Moller H, Schuierer G, Ludolph AC, Oberwittler C, Weglage J, Wendel U. White matter abnormalities in patients with treated hyperphenylalaninemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr 1993; 152:1012–1020.PubMedCrossRefGoogle Scholar
  20. Bjelland I, Tell GS, Vollset SE, Refsun H, Ueland PM. Folate, vitamin B12, homocysteine and the MTHFR 677C -> T polymorphism in anxiety and depression: the Hordaland Homocysteine Study. Arch Gen Psychiatr 2003; 60:618–626.CrossRefGoogle Scholar
  21. Blandini F, Fancellu R, Martignoni E, Mangiagalli A, Pacchetti C, Samuelle A, Nappi G. Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 2001; 47:1102–1104.PubMedGoogle Scholar
  22. Bosch AM, Bakker HD, Wenniger-Prick LJ, Wanders RJ, Wijburg FA. High tolerance for oral galactose in classical galactosemia: dietary implications. Arch Dis Child 2004a; 89:1034–1036.CrossRefGoogle Scholar
  23. Bosch AM, Grootenhuis MA, Bakker HD, Heijmans HS, Wijburg FA, Last BF. Living with classical galactosemia: health-related quality of life consequences. Pediatrics 2004b; 113:e423–e428.CrossRefGoogle Scholar
  24. Bostom AG, Jacques PF, Nadeau MR, Williams RR, Ellison RC, Selhub J. Post-methionine load hyperhomocysteinemia in persons with normal fasting total plasma homocysteine: initial results from the NHLBI Family Heart Study. Atherosclerosis 1995; 116:147–151.PubMedCrossRefGoogle Scholar
  25. Bottiglieri T, Hyland K, Reynolds EH. The clinical potential of ademethionine (S-adenosylmethionine) in neurological disorders. Drugs 1994; 48:137–152.PubMedCrossRefGoogle Scholar
  26. Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatr 2000; 69:228–232.PubMedCrossRefGoogle Scholar
  27. Brenton DP, Gardiner RM. Transport of L-phenylalanine and related amino acids at the ovine blood-brain barrier. J Physiol 1988; 402:497–514.PubMedGoogle Scholar
  28. Brody BA, Kinney HC, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy I: an autopsy study of myelination. J Neuropathol Exp Neurol 1987; 46:283–301.PubMedCrossRefGoogle Scholar
  29. Burgard P, Rey F, Rupp A, Abadie V, Rey J. Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatric Res 1997; 41:368–374.CrossRefGoogle Scholar
  30. Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, Miller BL. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 1998; 29:1177–1181.PubMedCrossRefGoogle Scholar
  31. Cervilla J, Prince M, Joels S, Russ C, Lovestone S. Genes related to vascular disease (APOE, VLDL-R, DCP-1) and other vascular factors in late-life depression. Am J Geriatr Psychiatr 2004; 12:202–210.Google Scholar
  32. Chauveau P, Chadefaux B, Coude M, Aupetit J, Kamoun P, Jungers P. Long-term folic acid (but not pyridoxine) supplementation lowers elevated plasma homocysteine level in chronic renal failure. Miner Electrolyte Metab 1996; 22:106–109.PubMedGoogle Scholar
  33. Chern CJ, Beutler E. Pyridoxal kinase: decreased activity in red blood cells of Afro-Americans. Science 1975; 187:1084–1086.PubMedCrossRefGoogle Scholar
  34. Chishty M, Reichel A, Begley DJ, Abbott NJ. Glial induction of blood-brain barrier-like L-system amino acid transport in the EC304 cell line. Glia 2002; 39:99–104.PubMedCrossRefGoogle Scholar
  35. Choi TB, Pardidge WM. Phenylalanine transport at the human blood-brain barrier. Studies with isolated human brain capillaries. J Biol Chem 1986; 261:6536–6541.PubMedGoogle Scholar
  36. Christie LA, Riedel G, Algaidi SA, Whalley LJ, Platt B. Enhanced hippocampal long-term potentiation in rats after chronic exposure to homocysteine. Neurosci. Lett. 2005; 373:119–124.PubMedCrossRefGoogle Scholar
  37. Clarke JT, Gates RD, Hogan SE, Barrett M, MacDonald G. Neuropsychological studies on adolescents with phenylketonuria returned to phenylalanine-restricted diets. Am J Ment Ret 1987; 92:255–262.Google Scholar
  38. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991; 324:1149–1155.PubMedCrossRefGoogle Scholar
  39. Clarke R, Woodhouse P, Ulvik A, Frost C, Sherliker P, Refsum H, Ueland PM, Khaw KT. Variability and determinants of total homocysteine concentrations in plasma in an elderly population. Clin Chem 1998a; 44:102–107.Google Scholar
  40. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol 1998b; 55:1449–1455.CrossRefGoogle Scholar
  41. Cleary MA, Walter JH, Wraith JE, Whiter F, Tyler K, Jenkins JP. Magnetic resonance imaging in phenylketonuria: reversal of cerebral white matter change. J Pediatr 1995; 127:251–255.PubMedCrossRefGoogle Scholar
  42. Cohn RM, Roth KS. Metabolic Diseases: a guide to early recognition. WB Saunders, Philadelphia, 1983, pp 221–226.Google Scholar
  43. Colello RJ, Pott U, Schwab ME. The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway. J Neurosci 1994; 14:2594–2605.PubMedGoogle Scholar
  44. Crome L. A case of galactosemia with the pathological and neuropathological findings. Arch Dis Child 1962; 37:415–421.PubMedCrossRefGoogle Scholar
  45. Cuatrecasas P, Segal S. Galactose conversion to D-xylulose: an alternate route of galactose metabolism. Science 1966; 153:549–551.PubMedCrossRefGoogle Scholar
  46. de Jongh S, Vreken P. IJst L, Wanders RJ, Jakobs C, Bakker HD. Spontaneous pregnancy in a patient with classical galactosemia. J Inher Metab Dis 1999; 22:754–755.PubMedCrossRefGoogle Scholar
  47. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM. A follow-up study of blood pressure and cerebral white matter lesions. Ann Neurol 1999; 46:827–833.PubMedCrossRefGoogle Scholar
  48. de Sonneville LM, Schmidt E, Michel U, Batzler U. Preliminary neuropsychological test results. Eur J Pediatr 1990; 149:S39–S44.PubMedCrossRefGoogle Scholar
  49. DeCarli C, Mungas D, Harvey D, Reed B, Weiner M, Chui H, Jagust W. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology 2004; 63:220–227.PubMedCrossRefGoogle Scholar
  50. Dent C. Discussion of Armstrong MD: relation of biochemical abnormality to development of mental defect in phenyletonuria. In: Etiologic Factors in Mental Retardation: Report of Twenty-Third Ross Pediatric Research Conference November 8–9, 1956. Ross Laboratories, Columbus OH, 1957, pp. 32–33.Google Scholar
  51. DePietro FR, Fernstrom JD. The relative roles of phenylalanine and tyrosine as substrates for DOPA synthesis in PC12 cells. Brain Res 1999; 831:72–84.PubMedCrossRefGoogle Scholar
  52. Diamond A. Phenylalanine levels of 6–10 mg/dl may not be as benign as once thought. Acta Paediatr. 1994; 407(Suppl.):89–91.CrossRefGoogle Scholar
  53. Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB. An animal model of early-treated PKU. J Neurosci 1994; 14:3072–3082.PubMedGoogle Scholar
  54. Doscherholmen A, Hagen PS. A dual mechanism of vitamin B12 plasma absorption. J Clin Invest 1957; 36:1551–1557.PubMedCrossRefGoogle Scholar
  55. Dudman NP, Wilcken DE, Wang J, Lynch JF, Macey D, Lundberg P. Disordered methionine/homocysteine metabolism in premature vascular disease. Its occurrence, cofactor therapy and enzymology. Arterioscler Thromb 1993; 13:1253–1260.PubMedCrossRefGoogle Scholar
  56. Dufouil C, Alperovitch A, Ducros V, Tzourio C. Homocysteine, white-matter hyperintensities and cognition in healthy elderly people. Ann Neurol 2003; 53:214–221.PubMedCrossRefGoogle Scholar
  57. Dyer CA. Comments on the neuropathology of phenylketonuria. Eur J Pediatr 2000; 159(Suppl. 2):S107–S108.PubMedCrossRefGoogle Scholar
  58. Dyer CA, Philibotte T. A clone of the MOCH-1 glial tumor in culture: multiple phenotypes expressed under different environmental conditions. J Neuropath Exp Neurol 1995; 54:852–863.PubMedCrossRefGoogle Scholar
  59. Dyer CA, Kendler A, Philibotte T, Gardiner P, Cruz J, Levy HL. Evidence for central nervous system glial cell plasticity in phenylketonuria. J Neuropath Exp Neurol 1996; 55:795–814.PubMedCrossRefGoogle Scholar
  60. Dyer CA, Kendler A, Jean-Guillaume D, Awatramani R, Lee A, Mason LM, Kamholz J. GFAPpositive and myelin marker-positive glia in normal and pathologic environments. J Neurosci Res 2000; 60:412–426.PubMedCrossRefGoogle Scholar
  61. Ellenbogen L, Cooper BA. Vitamin B12. In Machlin LJ, (ed) Handbook of Vitamins. Marcel Dekker, New York, 1991, pp. 491–536.Google Scholar
  62. Elsas LJ 2nd, Lai K. The molecular biology of galactosemia. Genet Med 1998; 1:40–48.PubMedCrossRefGoogle Scholar
  63. Elsas L, Fridovich-Keil JL, Leslie ND. Galactosemia: a molecular approach to the enigma. Internat Pediatr 1993; 8:101–108.Google Scholar
  64. Elsas LJ 2nd, Langley S, Paulk EM, Hjelm LN, Dembure PP. A molecular approach to galactosemia. Eur J Pediatr 1995; 154:S21–S27.PubMedCrossRefGoogle Scholar
  65. El-Sherif Y, Tesoriero J, Hogan MV, Wieraszko A. Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res 2003; 72:454–460.PubMedCrossRefGoogle Scholar
  66. Engbersen AM, Franken DG, Boers GH, Stevens EM, Trijbels FJ, Blom HJ. Thermolabile 5, 10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet 1995; 56:142–150.PubMedGoogle Scholar
  67. Faust D, Libon D. Pueschel S Neuropsychological functioning in treated phenylketonuria. Int J Psychiatr Med 1986–1987; 16:169–177.CrossRefGoogle Scholar
  68. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43:1683–1689.PubMedCrossRefGoogle Scholar
  69. Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 1998; 157(Suppl. 2):S40–S44.PubMedCrossRefGoogle Scholar
  70. Fishler K, Koch R, Donnell GN, Wenz E. Developmental aspects of galactosemia from infancy to childhood. Clin Pediatr (Phila) 1980; 19:38–44.CrossRefGoogle Scholar
  71. Fitzpatrick PF. The aromatic amino acid hydroxylases. Adv Enzymol Relat Areas Mol Biol 2000; 74:235–294.PubMedGoogle Scholar
  72. Flanagan JM, Tighe O, O’Neill C, Naughten E, Mayne PD, Croke DT. Identification of sequence variation in the galactose-1-phosphate uridyl transferase gene by dHPLC. Mol Genet Metab 2004; 81:133–136.PubMedCrossRefGoogle Scholar
  73. Franken DG, Boers GH, Blom HJ, Trijbels JM. Effect of various regiments of vitamin B6 and folic acid on mild hyperhomocysteinemia in vascular patients. J Inher Metab Dis 1994; 17:159–162.PubMedCrossRefGoogle Scholar
  74. Fridovich-Keil JL, Langley SD, Mazur LA, Lennon JC, Dembure PP, Elsas JL 2nd. Identification and functional analysis of three distinct mutations in the human galactose-1-phosphate uridyltransferase gene associated with galactosemia in a single family. Am J Hum Genet 1995; 56:640–646.PubMedGoogle Scholar
  75. Friedman JH, Levy HL, Boustany RM. Late onset of distinct neurologic syndromes in galactosemic siblings. Neurology 1989; 39:741–742.PubMedCrossRefGoogle Scholar
  76. Fukami MH, Haavik J, Flatmark T. Phenylalanine as substrate for tyrosine hydroxylase in bovine adrenal chromaffin cells. Biochem J 1990; 268:525–528.PubMedGoogle Scholar
  77. Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann NY Acad Sci 2002; 959:275–284.PubMedCrossRefGoogle Scholar
  78. Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005; 28:195–204.PubMedCrossRefGoogle Scholar
  79. Garcia AA, Haron Y, Evans LR, Smith MG, Freedman M, Roman GC. Metabolic markers of cobalamin deficiency and cognitive function in normal older adults. J Am Geriatr Soc 2004; 52:66–71.PubMedCrossRefGoogle Scholar
  80. Gardiner RM. Transport of amino acids across the blood-brain barrier: implication for treatment of maternal phenylketonuria. J Inherit Metab Dis 1990; 13:627–633.PubMedCrossRefGoogle Scholar
  81. Gibson JB. Gonadal function in galactosemics and in galactose-intoxicated animals. Eur J Pediatr 1995; 154:S14–S20.PubMedCrossRefGoogle Scholar
  82. Gourovitch ML, Craft S, Dowton SB, Ambrose R, Sparta S. Interhemispheric transfer in children with early-treated phenylketonuria. J Clin Exp Neuropsychol 1994; 16:393–404.PubMedCrossRefGoogle Scholar
  83. Greenberg SM, Cho HS, O’Donnell HC, Rosand J, Segal AZ, Younkin LH, Younkin SG, Rebeck GW. Plasma beta-amyloid peptide, transforming growth factor-beta 1, and risk for cerebral amyloid angiopathy. Ann NY Acad Sci 2000; 903:144–149.PubMedCrossRefGoogle Scholar
  84. Greenwald BS, Kramer-Ginsberg E, Krishnan RR, Ashtari M, Aupperle PM, Patel M. MRI signal hyperintensities in geriatric depression. Am J Psychiatr 1996; 153:1212–1215.PubMedGoogle Scholar
  85. Griffiths P, Paterson L, Harvie A. Neuropsychological effect of subsequent exposure to phenylalanine in adolescents and young adults with early-treated phenylketonuria. J Intellect Disabil Res 1995; 39:365–372.PubMedCrossRefGoogle Scholar
  86. Guttler F, Lou H. Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 1986; 9(Suppl. 2):169–177.PubMedCrossRefGoogle Scholar
  87. Haberland C, Perou M, Brunngraber EG, Hof H. The neuropathology of galactosemia. A histopathological and biochemical study. J Neuropathol Exp Neurol 1971; 30:431–447.CrossRefGoogle Scholar
  88. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999; 354:407–413.PubMedCrossRefGoogle Scholar
  89. Hassan A, Hunt BJ, O’sullivan M, Bell R, D’Souza R, Jeffery S, Bamford JM, Markus HS. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain 2004; 127:212–219.PubMedCrossRefGoogle Scholar
  90. Heinecke JW. Superoxide-mediated oxidation of low density lipoprotein by thiols. In: Cerruti PA, Fridovich I, McCord JM (eds) Oxy-Radicals in Molecular Biology and Pathology. Alan R. Liss, New York, 1988, pp. 443–457.Google Scholar
  91. Hirokawa H, Okano Y, Asada M, Fujimoto A, Suyama I, Isshiki G. Molecular basis for phenotypic heterogeneity in galactosemia: prediction of clinical phenotype from genotype in Japanese patients. Eur J Hum Genet 1999; 7:757–764.PubMedCrossRefGoogle Scholar
  92. Ho PI, Collins SC, Dhitavat S, Ortiz D, Ashline D, Rogers E, Shea TB. Homocysteine potentiates beta-Amyloid neurotoxicity: role of oxidative stress. J Neurochem 2001; 78:249–253.PubMedCrossRefGoogle Scholar
  93. Hogervorst E, Ribeiro HM, Molyneux A, Budge M, Smith AD. Plasma homocysteine levels, cerebrovascular risk factors, and cerebral white matter changes (leukoaraiosis) in patients with Alzheimer disease. Arch Neurol 2002; 59:787–793.PubMedCrossRefGoogle Scholar
  94. Holton JB. Effects of galactosemia in utero. Eur J Pediatr 1995; 154:S77–S81.PubMedCrossRefGoogle Scholar
  95. Holtzman D, Mulkern R, Tsuji M, Cook C and Meyers R (1996). Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ. Dev Neurosci. 18:535–541.PubMedCrossRefGoogle Scholar
  96. Hommes FA, Matsuo K. On a possible mechanism of abnormal brain development in experimental hyperphenylalaniemia. Neurochem Int 1987; 11:1–10PubMedCrossRefGoogle Scholar
  97. Huttenlocher PR. The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 2000; 159(Suppl. 2):S102–S106.PubMedCrossRefGoogle Scholar
  98. Huttenlocher PR, Hillman RE, Hsia YE. Pseudotumor cerebri in galactosemia. J Pediatr 1970; 76:902–905.PubMedCrossRefGoogle Scholar
  99. Ikeda M, Levitt M, Udenfriend S. Phenylalanine as substrate and inhibitor of tyrosine hydroxylase. Arch Biochem Biophys 1967; 120:420–427.PubMedCrossRefGoogle Scholar
  100. Irons M, Levy HL, Pueschel S, Castree K. Accumulation of galactose-1-phosphate in the galactosemic fetus despite maternal milk avoidance. J Pediatr 1985; 107:261–263.PubMedCrossRefGoogle Scholar
  101. Jakobs C, Kleijer WJ, Bakker HD, Van Gennip A, Przyrembel H, Niermeijer MF. Dietary restriction of maternal lactose intake does not prevent accumulation of galactitol in the amniotic fluid of fetuses affected with galactosemia. Prenat Diagn 1988; 8:641–645.PubMedCrossRefGoogle Scholar
  102. Jakobs C, Kleijer WJ, Allen J, Holton JB. Prenatal diagnosis of galactosemia. Eur J Pediatr 1995; 154:S33–S36.PubMedCrossRefGoogle Scholar
  103. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, DeCarli C. Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 2004; 35:1857–1861.PubMedCrossRefGoogle Scholar
  104. Jorm AF. Is depression a risk factor for dementia or cognitive decline? A review. Gerontology 2000; 46:219–227.PubMedCrossRefGoogle Scholar
  105. Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 1991; 48:536–545.PubMedGoogle Scholar
  106. Katz I, Lloyd T, Kaufman S. Studies on phenylalanine and tyrosine by hydroxylation by rat brain tyrosine hydroxylase. Biochim Biophys Acta 1976; 445:567–578.PubMedCrossRefGoogle Scholar
  107. Kaufman FR, Reichardt JK, Ng WG, Xu YK, Manis FR, McBride-Chang C, Wolff JA. Correlation of cognitive, neurologic, and ovarian outcome with the Q188R mutation of the galactose-1-phosphate uridyltransferase gene. J Pediatr 1994; 125:225–227.PubMedCrossRefGoogle Scholar
  108. Kaufman FR, Horton EJ, Gott P, Wolff JA, Nelson MD Jr, Azen C, Manis FR. Abnormal somatosensory evoked potentials in patients with classic galactosemia: correlation with neurologic outcome. J Child Neurol 1995a; 10:32–36.CrossRefGoogle Scholar
  109. Kaufman FR, McBride-Chang C, Manis FR, Wolff JA, Nelson MD. Cognitive functioning, neurologic status and brain imaging in classical galactosemia. Eur J Pediatr 1995b; 154:S2–S5.CrossRefGoogle Scholar
  110. Kelley RI, Segal S. Evaluation of reduced activity galactose-1-phosphate uridyl transferase by combined radioisotopic assay and high-resolution isoelectric focusing. J Lab Clin Med 1989; 114:152–156.PubMedGoogle Scholar
  111. Kelly PJ, Rosand J, Kistler JP, Shin VE, Silveira S, Plomaritoglou A, Furie KL. Homocysteine, MTHFR 677C -> T polymorphism, and risk of ischemic stroke: results of a meta-analysis. Neurology 2002; 59:529–536.PubMedCrossRefGoogle Scholar
  112. Kim WK, Pae YS. Involvement of N-methyl-d-aspartate receptor and free radical in homocysteinemediated toxicity on rat cerebellar granule cells in culture. Neurosci Lett 1996; 216:117–120.PubMedGoogle Scholar
  113. Kirkpatarick LL, Brady ST. Modulation of the axonal microtubule cytoskeleton by myelinating Schwann cells. J Neurosci 1994; 14:7440–7455.Google Scholar
  114. Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Shouten EG. MTHFR Studies Collaboration Group. MTHFR 677C -> T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 2002; 288:2023–2031.PubMedCrossRefGoogle Scholar
  115. Koch R, Levy HL, Matalon R, Rouse B, Hanley WB, Trefz F, Azen C, Friedman EG, de la Cruz F, Guttler F, Acosta PB. The international collaborative study of maternal phenylketonuria: status report 1994. Acta Paediatr Suppl 1994; 407:111–119.PubMedCrossRefGoogle Scholar
  116. Kokame K, Kato H, Miyata T. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis, GRP78/BiP and novel genes. J Biol Chem 1996; 271:29659–29665.PubMedCrossRefGoogle Scholar
  117. Kornguth S, Gilbert-Barness E, Langer E, Hegstrand L. Golgi-Kopsch silver study of the brain of a patient with untreated phenylketonuria, seizures, and cortical blindness. Am J Med Genet 1992; 44:443–448.PubMedCrossRefGoogle Scholar
  118. Krause W, Halminski M, McDonald L, Dembure P, Salvo R, Freides D, Elsas L. Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria: a model for the study of phenylalanine and brain function in man. J Clin Invest 1985; 75:40–48.PubMedCrossRefGoogle Scholar
  119. Krishnan KR, Hays JC, Blazer DG. MRI-defined vascular depression. Am J Psychiatr 1997; 154:497–501.PubMedGoogle Scholar
  120. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 2000; 20:6920–6926.PubMedGoogle Scholar
  121. Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J, Evans M, Mattson MP. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 2002; 22:1752–1762.PubMedGoogle Scholar
  122. Kunugi H, Fukuda R, Hattori M, Kato T, Tatsumi M, Sakai T, Hirose T, Nanko S. C677T polymorphism in methylenetetrahydrofolate reductase gene and psychoses. Mol Psychiatr 1998; 3:435–437.CrossRefGoogle Scholar
  123. Kure S, Hou DC, Ohura T, Iwamoto H, Suzuki S, Sugiyama N, Sakamoto O, Fujii K, Matsubara Y, Narisawa K. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 1999; 135:375–378.PubMedCrossRefGoogle Scholar
  124. Lai K, Langley SD, Singh RH, Dembure PP, Hjelm LN, Elsas LJ 2nd. A prevalent mutation for galactosemia among black Americans. J Pediatr 1996; 128:89–95.PubMedCrossRefGoogle Scholar
  125. Ledley FD, Grennet JE, Woo LC. Structure of aromatic amino acid hydroxylases. In: Kaufman S (ed) Amino Acids in Health and Disease: New Prospectives. Alan R. Liss, New York, 1987, pp. 267–284.Google Scholar
  126. Lee PJ, Ridout D, Walter JH, Cockburn F. Maternal phenylketonuria: report from the United Kingdom Registry 1978–1997. Arch Dis Child 2005; 90:143–146.PubMedCrossRefGoogle Scholar
  127. Lee PJ, Lilburn M, Baudin J. Maternal phenylketonuria: experiences from the United Kingdom. Pediatrics 2003a; 112:1553–1556.Google Scholar
  128. Lee PJ, Lilburn M, Wendel U, Schadewaldt P. A woman with untreated galactosemia. Lancet 2003b; 362:446.CrossRefGoogle Scholar
  129. Legido A, Tonyes L, Carter D, Schoemaker A, Di George A, Grover WD. Treatment variables and intellectual outcome in children with classic phenylketonuria. Clin Pediatrics (Phila) 1993; 32:417–425.CrossRefGoogle Scholar
  130. Lenke RR, Levy HL. Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 1980; 30::1202–1208.CrossRefGoogle Scholar
  131. Lenze E, Cross D, McKeel D, Neuman RJ, Shelina YI. White-matter hyperintensities and graymatter lesions in physically healthy depressed subjects. Am J Psychiatr 1999; 1602–1607.Google Scholar
  132. Leslie ND, Immerman EB, Flach JE, Florez M, Fridovich-Keil JL, Elsas LJ. The human galactose-1-phosphate uridyltransferase gene. Genomics 1992; 14:474–480.PubMedCrossRefGoogle Scholar
  133. Leslie ND, Yager KL, McNamara PD, Segal S. A mouse model of galactose-1-phosphate uridyl transferase deficiency. Biochem Mol Med 1996; 59:7–12.PubMedCrossRefGoogle Scholar
  134. Levy HL, Waisbren SE. PKU in adolescents: rationale and psychosocial factors in diet continuation. Acta Paediatr. 1994; 407(Suppl.):92–97.CrossRefGoogle Scholar
  135. Levy HL, Brown AE, Williams SE, de Juan E Jr. Vitreous hemorrhage as an ophthalmic complication of galactosemia. J Pediatr 1996; 129:922–925.PubMedCrossRefGoogle Scholar
  136. Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA. 1997; 94:5923–5928.PubMedCrossRefGoogle Scholar
  137. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O’Leary D, Fried L. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke. 1996; 27:1274–1282.PubMedCrossRefGoogle Scholar
  138. Luchsinger JA, Tang MX, Shea S, Miller J, Green R, Mayeux R. Plasma homocysteine levels and risk of Alzheimer disease. Neurology 2004; 62:1972–1976.PubMedCrossRefGoogle Scholar
  139. Lykkelund C, Nielsen JB, Lou HC, Rasmussen V, Gerdes AM, Christensen E and Guttler F. Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 1988; 148:238–245.PubMedCrossRefGoogle Scholar
  140. Mabry C, Denniston J, Coldwell JG. Mental retardation in children of phenylketonuric mothers. N Engl J Med 1966; 275:1331–1336.PubMedCrossRefGoogle Scholar
  141. Madison DL, Kruger WS, Kim T, Pfeiffer SE. Differential expression of rab 3 isoforms in oligodendrocytes and astrocytes, J Neurosci Res 1996; 45:258–268.PubMedCrossRefGoogle Scholar
  142. Malamud N. Neuropathology of phenylketonuria. J Neuropathol Exp Neurol 1966; 25:254–268.PubMedCrossRefGoogle Scholar
  143. Marinou K, Tsakiris S, Tsopanakis C, Schulpis KH, Behrakis P. Mg2 + -ATPase activity in suckling rat brain regions in galactosaemia in vitro. L-Cysteine and glutathione effects. Toxicol Vitro. 2005; 19:167–172.CrossRefGoogle Scholar
  144. Matsuoka Y, Saito M, LaFrancois J, Saito M, Graynor K, Olm V, Wang L, Casey E, Lu Y, Shiratori C, Lemere C, Duff K. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci 2003; 23:29–33.PubMedGoogle Scholar
  145. Mattson MP. Apoptotic and anti-apoptotic synaptic signaling mechanisms. Brain Pathol 2000; 10:300–312.PubMedCrossRefGoogle Scholar
  146. Mayeux R, Honig LS, Tang MX, Manly J, Stern Y, Schupf N, Mehta D. Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 2003; 61:1185–1190.PubMedCrossRefGoogle Scholar
  147. Mazur A, Harrow B. Textbook of Biochemistry. WB Saunder, Philadelphia, 1971.Google Scholar
  148. Mazzocco MM, Nord AM, van Doorninck W, Greene CL, Kovar CG, Pennington BF. Cognitive development among children with early-treated phenylketonuria. Dev Neuropsychol 1994; 10:133–151.CrossRefGoogle Scholar
  149. McCaddon A, Hudson P, Davies G, Hughes A, Williams JH, Wilkinson C. Homocysteine and cognitive decline in healthy elderly. Dement Geriatr Cogn Disord 2001; 12:309–313.PubMedCrossRefGoogle Scholar
  150. McCaddon A, Hudson P, Hill D, Barber J, Lloyd A, Davies G, Regland B. Alzheimer’s disease and total plasma aminothiols. Biol Psychiatr 2003; 53:254–260.CrossRefGoogle Scholar
  151. McCormick DB, Gregory ME, Snell EE. Pyridoxal phosphokinases. Assay, distribution, purification and properties. J Biol Chem 1961; 236:2076–2084.PubMedGoogle Scholar
  152. McCully KS. Homocysteine and vascular disease. Nat Med 1996; 2:386–389.PubMedCrossRefGoogle Scholar
  153. MacDonald A, Rylance GW, Asplin DA, Hall K, Harris G, Booth IW. Feeding problems in young PKU children. Acta Paediatr 1994; 407(Suppl.):73–74.CrossRefGoogle Scholar
  154. McDonald JD. Postnatal growth rates in a mouse genetic model of classical phenylketonuria. Contemp Top Lab Amin Sci 2000; 39:54–56.Google Scholar
  155. McDonald JD, Charlton CK. Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics 1997; 39:402–405.PubMedCrossRefGoogle Scholar
  156. McDonald JD, Bode VC, Dove WF, Shedlovsky A. Pahhph-5: a mouse mutant deficiency in phenylalanine hydroxylase. Proc Natl Acad Sci USA 1990; 87:1965–1967.PubMedCrossRefGoogle Scholar
  157. Miller AL. The methionine-homocysteine cycle and its effects on cognitive diseases. Altern Med Rev 2003c; 8:7–19.Google Scholar
  158. Miller JW, Green R, Mungas DM, Reed BR, Jagust WJ. Homocysteine, vitamin B6, and vascular disease in AD patients. Neurology 2002; 58:1471–1475.PubMedCrossRefGoogle Scholar
  159. Miller JW, Green R, Ramos MI, Allen LH, Mungas DM, Jagust WJ, Haan MN. Homocysteine and cognitive function in the Sacramento Area Latino Study on Aging. Am J Clin Nutr 2003a; 78:441–447.Google Scholar
  160. Miller JW, Selhub J, Nadeau MR, Thomas CA, Feldman RG, Wolf PA. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology 2003b; 60:1125–11292.CrossRefGoogle Scholar
  161. Moller HE, Ullrich K, Vermathen P, Schuierer G, Koch H. In vivo study of brain metabolism in galactosemia by 1 H and 31 P magnetic resonance spectroscopy. Eur J Pediatr 1995; 154: S8–S131.PubMedCrossRefGoogle Scholar
  162. Morris MS, Jacques PF, Rosenberg IH, Selhub J. National Health and Nutrition Examination Survey. Hyperhomocysteinemia associated with poor recall in the third National Health and Nutrition Examination Survey. Am J Clin Nutr 2001; 73:927–933.PubMedGoogle Scholar
  163. Mudd SH, Levy HL, Skovby F. Disorder of transsulfuration. In Scriver CR. Beaudet al., Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease, vol 1(ed 6). McGraw-Hill, New York, 1989, pp. 693–734.Google Scholar
  164. Muntau AC, Roschinger E, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP, Roscher AA. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 2002; 347:2122–2132.PubMedCrossRefGoogle Scholar
  165. Murphy M, McHugh B, Tighe O, Mayne P, O’Neill C, Naughten E, Croke DT. Genetic basis of transferase-deficient galactosemia in Ireland and the population history of the Irish Travellers. Eur J Hum Genet 1999; 7:549–554.PubMedCrossRefGoogle Scholar
  166. Myers RR, Powell HC. Galactose neuropathy: Impact of chronic endoneurial edema on nerve blood flow. Ann Neurol 1984; 16:587–594.PubMedCrossRefGoogle Scholar
  167. Nelson CD, Waggoner DD, Donnell GN, Tuerck JH, Buist NR. Verbal dyspraxia in treated galactosemia. Pediatrics 1991; 88:346–350.PubMedGoogle Scholar
  168. Nilsson K, Gustafson L, Hultberg B. The plasma homocysteine concentration is better than that of serum methylmalonic acid as a marker for sociopsychological performance in a psychogeriatric population. Clin Chem 2000; 46:691–696.PubMedGoogle Scholar
  169. Ning C, Reynolds R, Chen J, Yager C, Berry GT, McNamara PD, Leslie N, Segal S. Galactose metabolism by the mouse with galactose-1-phosphate uridyltransferase deficiency. Pediatr Res 2000; 48:211–217.PubMedCrossRefGoogle Scholar
  170. O’suilleabhain PE, Sung V, Hernandez C, Lacritz L, Dewey RB Jr, Bottiglieri T, Diaz-Arrastia R. Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch Neurol 2004; 61:865–868.PubMedCrossRefGoogle Scholar
  171. Osuna C, Reiter RJ, Garcia JJ, Karbownik M, Tan DX, Calvo JR, Manchester LC. Inhibitory effect of melatonin on homocysteine-induced lipid peroxidation in rat brain homogenates. Pharmacol Toxicol 2002; 90:32–37.PubMedCrossRefGoogle Scholar
  172. Panis B, Forget PP, van Kroonenburgh MJ, Vermeer C, Menheere PP, Nieman FH, Rubio-Gozalbo ME. Bone metabolism in galactosemia. Bone 2004; 35:982–987.PubMedCrossRefGoogle Scholar
  173. Pardridge WM. Advances in cell biology of the blood-brain barrier transport. Semin Cell Biol 1991; 2:419–426.PubMedGoogle Scholar
  174. Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 1998; 23:635–644.PubMedCrossRefGoogle Scholar
  175. Parle M, Dhingra D. Ascorbic Acid: a promising memory-enhancer in mice. J Pharmacol Sci 2003; 93:129–135.PubMedCrossRefGoogle Scholar
  176. Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S. Deficits in brain serotonin synthesis in a genetic mouse model for phenylketonuria. Neuroreport 2002; 13:2561–2564.PubMedCrossRefGoogle Scholar
  177. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56:1133–1142.PubMedCrossRefGoogle Scholar
  178. Petry K, Greinix HT, Nudelman E, Eisen H, Hakomori S, Levy HL, Reichardt JK. Characterization of a novel biochemical abnormality in galactosemia: deficiency of glycolipids containing galactose or N-acetylgalactosamine and accumulation of precursors in brain and lymphocytes. Biochem Med Metab Biol 1991; 46:93–104.PubMedCrossRefGoogle Scholar
  179. Pietz J, Landwehr R, Kutscha A, Schmidt H, de Sonneville L, Trefz FK. Effect of high-dose supplementation on brain function in adults with phenylketonuria. J Pediatr 1995; 127:936–943.PubMedCrossRefGoogle Scholar
  180. Porrino LJ, Goldman-Rakic PS. Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 1982; 205:63–76.PubMedCrossRefGoogle Scholar
  181. Postuma RB, Lang AE. Homocysteine and levodopa: should Parkinson disease patients receive preventative therapy? Neurology 2004; 63:886–891.PubMedCrossRefGoogle Scholar
  182. Powers JM, Rosenblatt DS, Schmidt RE, Cross AH, Black JT, Moser AB, Moser HW, Morgan DJ. Neurological and neuropathologic heterogeneity in two brothers with cobalamin C deficiency. Ann Neurol 2001; 49:396–400.PubMedCrossRefGoogle Scholar
  183. Prins ND, Den Heijer T, Hofman A, Koudstaal PJ, Jolles J, Clarke R, Breteler M; Rotterdam Scan Study. Homocysteine and cognitive function in the elderly: the Rotterdam Scan Study. Neurology 2002; 59:1375–1380.PubMedCrossRefGoogle Scholar
  184. Puglisi-Allegra S, Cabib S, Pascucci T, Ventrura R, Cali F, Romano V. Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 2000; 11:1361–1364.PubMedCrossRefGoogle Scholar
  185. Quan-Ma R, Wells HJ, Wells WW, Sherman FE, Egan TJ. Galactitol in the tissues of a galactosemic child. Am J Dis Child 1966; 112:477–478.PubMedGoogle Scholar
  186. Rabins PV, Pearlson GD, Aylward E, Kumar AJ, Dowell K. Cortical magnetic resonance imaging changes in elderly in patients with major depression. Am J Psychiatr 1991; 148:617–620.PubMedGoogle Scholar
  187. Rasmussen K, Moller J, Lyngbak M, Pedersen M, Dybkjaer L. Age- and gender-specific intervals for total homocyteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin Chem 1996; 42:630–636.PubMedGoogle Scholar
  188. Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K, Pappolla MA. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000; 7:321–331.PubMedCrossRefGoogle Scholar
  189. Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 1998; 56:359–384.PubMedCrossRefGoogle Scholar
  190. Religa D, Styczynsk M, Peplonska E, Gabryelewicz T, Pfeffer A, Chodakowska M, Luczywek E, Wasiak B, Stepien K, Golebiowski M, Winblad B, Barcikowska M. Homocysteine, apolipoprotein E, and methylenetetrahydrofolate reductase in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 2003; 16:64–70.PubMedCrossRefGoogle Scholar
  191. Rogers S, Heidenreich R, Mallee J, Segal S. Regional activity of galactose-1-phosphate uridyltransferase in rat brain. Pediatr Res 1992; 31:512–515.PubMedCrossRefGoogle Scholar
  192. Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R. Elevated plasma homocysteine levels in patients treated with levodopa: association with vascular disease. Arch Neurol 2003; 60:59–64.PubMedCrossRefGoogle Scholar
  193. Ronn LC, Bock E, Linnemann D, Jahnsen H. NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res 1995; 677:145–151.PubMedCrossRefGoogle Scholar
  194. Rosenblatt J, Chinkes D, Wolfe M, Wolfer RR. Stable isotope tracer analysis by GC-MS, including quantification of isotopomer effects, Am J Physiol 1992; 263:E584–E596.PubMedGoogle Scholar
  195. Ross KL, Davis CN, Fridovich-Keil JL. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Mol Genet Metab 2004; 83:103–116.PubMedCrossRefGoogle Scholar
  196. Roze E, Gervais D, Demeret S. Ogier de Baulny H, Zittoun J, Benoist JF, Said G, Pierrot-Deseilligny C, Bolgert F,. Neuropsychiatric disturbances in presumed late-onset cobalamin C disease. Arch Neurol 2003; 60:1457–1462.PubMedCrossRefGoogle Scholar
  197. Sai X, Kawamura Y, Kokame K, Yamaguchi H, Shiraishi H, Suzuki R, Suzuki T, Kawaichi M, Miyata T, Kitamura T, De Strooper B, Yanagisawa K, Komano H. Endoplasmic reticulum stress-inducible protein, Herp, enhances presenilin-mediated generation of amyloid beta-protein. J Biol Chem 2002; 277:12915–12920.PubMedCrossRefGoogle Scholar
  198. Sanchez I, Hassinger L, Paskevich PA, Shine HD and Nixon RA. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci 1996; 16:5095–5105.PubMedGoogle Scholar
  199. Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett. 2003; 541:145–148.PubMedCrossRefGoogle Scholar
  200. Schachner M. Neural recognition molecules and synaptic plasticity. Curr Opin Cell Biol 1997; 9:627–634.PubMedCrossRefGoogle Scholar
  201. Schadewaldt P, Lilburn M, Wendel U, Lee PJ. Unexpected outcome in untreated galactosemia, Reply. Molec Genet Metab 2004; 81:255–257.CrossRefGoogle Scholar
  202. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D, Brown MJ. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. N Engl J Med 1983; 309:445–448.PubMedCrossRefGoogle Scholar
  203. Schmidt E, Rupp A, Burgard P and Pietz. Information processing in early treated phenylketonuria. J Clin Exp Neuropsychol 1992; 14:388.Google Scholar
  204. Schmidt E, Rupp A, Burgard P, Pietz J, Weglage J, de Sonneville L. Sustained attention in adult phenylketonuria: the influence of the concurrent phenylalanine-blood-level. J Clin Exp Neuropsychol 1994; 16:681–688.PubMedCrossRefGoogle Scholar
  205. Schmidt R, Launer LJ, Nilsson LG, Pajak A, Sans S, Berger K, Breteler MM, de Ridder M, Dufouil C, Fuhrer R, Giampaoli S, Hofman A; CASCADE Consortium Study. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) study. Diabetes. 2004; 53:687–692.PubMedCrossRefGoogle Scholar
  206. Schuett VE, Brown ES. Diet policies of PKU clinics in the United States. Am J Publ Health 1984; 74:501–593.CrossRefGoogle Scholar
  207. Schulman JD, Mudd SH, Shulman NR, Landvater L. Pregnancy and thrombophlebitis in homocystinuria. Blood 1980; 56:326.PubMedGoogle Scholar
  208. Schulpis KH, Michelakakis H, Charokopos E, Papakonstantinou E, Messaritakis J, Shin Y. UDPgalactose-4-epimerase in a boy with a trisomy 21. J Inherit Metab Dis. 1993; 16:1059–1060PubMedCrossRefGoogle Scholar
  209. Schulpis KH, Platokouki H, Papakonstantinou ED, Adamtziki E, Bargeliotis A, Aronis S. Haemostatic variables in phenylketonuric patients under dietary treatment. J Inherit Metab Dis 1996; 19:603–609.PubMedCrossRefGoogle Scholar
  210. Schulpis KH, Tjamouranis J, Karikas GA, Michelakakis H, Tsakiris S. In vivo effects of high phenylalanine blood levels on Na + , K + -ATPase, Mg + -ATPase activities and biogenic amine concentrations in phenylketonuria. Clin Biochem 2002; 35:281–285.PubMedCrossRefGoogle Scholar
  211. Schulpis KH, Tsakiris S, Karikas GA, Moukas M, Behrakis P. Effect of diet on plasma total antioxidant status in phenylketonuric patients. Eur J Clin Nutr 2003; 57:383–387.PubMedCrossRefGoogle Scholar
  212. Schulpis KH, Kariyannis C, Papassotiriou I. Serum levels of neural protein S100B in phenylketonuria. Clin Biochem 2004; 37:76–79.PubMedCrossRefGoogle Scholar
  213. Schulpis KH, Tsakiris S, Traeger-Synodinos J, Papassotiriou I. Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin Biochem 2005; 38:239–242.PubMedCrossRefGoogle Scholar
  214. Schulpis KH, Kalimeris K, Bakogiannis C, Tsakiris T, Tsakiris S. The effect of in vitro homocystinuria on the suckkling rat hippocampal acetycholinesterase. Schweitzer-Krantz S, Burgard P. Survey of national guidelines for the treatment of phenylketonuria. Eur J Pediatr 2000; 159(Suppl 2):S70–S73.Google Scholar
  215. Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 1999; 15:267–272.PubMedCrossRefGoogle Scholar
  216. Scriver CR, Kaufman S, Eisensmith RC, Woo SLC. The hyperphenylalaninemias. In Scriver CR, Beauder AL, Sly WS, Valle E (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, 1995, pp. 1025–1075.Google Scholar
  217. Segal S. The enigma of galactosemia. Int Pediatr 1992; 7:75–82.Google Scholar
  218. Segal S. Defective galactosylation in galactosemia: is low cell UDPgalactose an explanation? Eur J Pediatr 1995; 154:S65–S71.PubMedCrossRefGoogle Scholar
  219. Segal S. Another aspect of the galactosemia enigma. Mol Genet Metab 2004; 81:253–254.PubMedCrossRefGoogle Scholar
  220. Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation of S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 1992; 55:131–138.PubMedGoogle Scholar
  221. Selhub J, Jacques PE, Bostom AG, D’Agostino RB, Wilson PW, Belanger AJ, O’Leary DH, Wolf PA, Schaefer EJ, Rosenberg IH. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995; 332:286–291.PubMedCrossRefGoogle Scholar
  222. Sershen H, Debler EA, Lajtha. Alterations of cerebral amino acid transport processes. In Kaufman S (ed) Amino Acids in Health and Disease: New Prospectives. Alan R. Liss, New York, 1987, pp. 87–105.Google Scholar
  223. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002; 346:476–483.PubMedCrossRefGoogle Scholar
  224. Shedlovsky A, McDonald JD, Symula D, Dove WF. Mouse models for human phenylketonuria. Genetics 1993; 134:1205–1210.PubMedGoogle Scholar
  225. Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LB, Yudkoff M, Dyer CA. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res 2000; 61:549–563.PubMedCrossRefGoogle Scholar
  226. Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, Dong C. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. alactose. J Pineal Res. 2002; 32:173–178.PubMedCrossRefGoogle Scholar
  227. Shield J, Wadsworth E, MacDonald A, Stephenson A, Tyfield L, Holton JB, Marlow N. The relationship of genotype to cognitive in galactosemia. Arch Dis Child 2000; 83:248–250.PubMedCrossRefGoogle Scholar
  228. Smith CB, Kang J. Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci USA 2000; 97:11014–1109.PubMedCrossRefGoogle Scholar
  229. Smith I, Erdohazi M, Macarthney FJ, Pincott JR, Wolff OH, Brenton DP, Biddle SA, Fairweather DV, Dobbing J. Fetal damage despite low-phenylalanine diet after conception in a phenylketonuric woman. Lancet 1979; 1:17–19.PubMedCrossRefGoogle Scholar
  230. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys and humans. Psychol Rev 1992; 99:195–231.PubMedCrossRefGoogle Scholar
  231. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage G, Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 1988; 81:466–474.PubMedCrossRefGoogle Scholar
  232. Stamler US, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993; 91:308–318.PubMedCrossRefGoogle Scholar
  233. Steffens DC, Krishnan KR. Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry 1998; 43:705–712.PubMedCrossRefGoogle Scholar
  234. Steinfeld R, Kohlschutter A, Zschocke J, Lindner M, Ullrich K, Lukacs Z. Tetrahydrobiopterin monotherapy for phenylketonuria patients with common mild mutations. Eur J Pediatr 2002; 161:403–405.PubMedCrossRefGoogle Scholar
  235. Stemerdink N (1996). Early and continuously treated phenylketonuria: An experimental neuropsychological approach. Amsterdam: Academisch Proefschrift. Streck EL, Bavaresco CS, Netto CA, Wyse AT. Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav. Brain Res 2004; 153:377–381.Google Scholar
  236. Sugimoto K, Kasahara T, Yonezawa H, Yagihashi S. Peripheral nerve structure and function in long-term galactosemic dogs: morphometric and electron microscopic analyses. Acta Neuropathol (Berl) 1999; 97:369–376.CrossRefGoogle Scholar
  237. Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe KH, Hasegawa M, Mann DM, Hyman BT, Iwatsubo T. Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 2000; 1:331–339.CrossRefGoogle Scholar
  238. Tam SY, Roth RH. Mesoprefrontal dopaminergic neurons: can tyrosine availability influence their functions? Biochem Pharmacol 1997; 53:441–453.PubMedCrossRefGoogle Scholar
  239. Tam SY, Elsworth JD, Bradberry CW, Roth RH. Mesocortical dopamine neurons: high basal firing frequency predicts tyrosine dependence of dopamine synthesis. J Neural Transm Gen Sect 1990; 81:97–110.PubMedCrossRefGoogle Scholar
  240. Thompson AJ, Smith I, Brenton D, Youl BD, Rylance G, Davidson DC, Kendall B, Lees AJ. Neurological deterioration in young adults with phenylketonuria. Lancet 1990; 336:602–605.PubMedCrossRefGoogle Scholar
  241. Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP. Brain MRI changes in phenylketonuria. Associations with dietary status. Brain 1993; 116:811–821.PubMedCrossRefGoogle Scholar
  242. Tsakiris S, Kouniniotou-Krontiri P, Schulpis KH, Stavridis JC. L-phenylalanine effect on rat brain acetylcholinesterase and Na+, K+-ATPase. Z Naturforch [C] 1998a; 53:163–167.Google Scholar
  243. Tsakiris S, Kouniniotou-Krontiri P, Schulpis KH. L-phenylalanine effect on rat diaphragm acetylcholinesterase and Na + , K + -ATPase. Z Naturforch [C] 1998b; 53:1055–1060.Google Scholar
  244. Tsakiris S, Schulpis KH, Tzamouranis J, Michelakakis H, Karikas GA. Reduced acetylcholinesterase activity in erythrocyte membranes from patients with phenylketonuria. Clin Biochem 2002; 35:615–619.PubMedCrossRefGoogle Scholar
  245. Tsakiris S, Schulpis KH. Alanine reverses the inhibitory effect of phenylalanine on acetylcholinesterase activity. Z Naturforsch [C] 2002; 57:506–511.Google Scholar
  246. Tsakiris S, Carageorgiou H, Schulpis KH. The protective effect of L-cysteine and glutathione on the adult and aged rat brain (Na + ,K+)-ATPase and Mg2+-ATPase activities in galactosemia in vitro.Metab Brain Dis. 2005a; 20:87–95.CrossRefGoogle Scholar
  247. Tsakiris S, Michelakakis H, Schulpis KH. Erythrocyte membrane acetylcholinesterase, Na+, K+-ATPase and Mg2 + -ATPase activities in patients with classical galactosaemia. Acta Paediatr 2005b; 94:1223–1226CrossRefGoogle Scholar
  248. Tullberg M, Fletcher E, DeCarli C, Mungas D, Reed BR, Harvey DJ, Weiner MW, Chui HC, Jagust WJ. White matter lesions impair frontal lobe function regardless of their location. Neurology 2004; 63:246–253.PubMedCrossRefGoogle Scholar
  249. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ. Vitamin B-12, vitamin B-6 and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 1993; 57:47–53.PubMedGoogle Scholar
  250. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ, Delport R, Potgieter HC Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr 1994; 124:1927–1933.PubMedGoogle Scholar
  251. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ, Potgieter H. Effective homocysteine metabolism may protect South African Blacks against coronary heart disease. Am J Clin Nutr 1995; 62:802–808.PubMedGoogle Scholar
  252. Ubbink JB, Van der Merwe A, Delport R, Allen RH, Stabler SP, Riezler R, Vermaak WJ. The effect of a subnormal vitamin B 6 status on homocysteine metabolism J Clin Invest 1996; 98:177–184.PubMedCrossRefGoogle Scholar
  253. Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997; 207:17012–17017.CrossRefGoogle Scholar
  254. Valle D, Pai GG, Thomas GH, Pyeritz RE. Homocystinuria due to a cystathionine beta-synthase deficiency: clinical manifestations and therapy. Johns Hopkins Med J 1980 146:110–117PubMedGoogle Scholar
  255. Van Dijk EJ, Prins ND, Vermeer SE, Hofman A, van Duijn CM, Koudstaal PJ, Breteler MM. Plasma amyloid beta, apolipoprotein E, lacunar infarcts, and white matter lesions. Ann Neurol 2004; 55:570–575.PubMedCrossRefGoogle Scholar
  256. Van Heyningen R. Formation of polyols by the lens of the rat with “ sugar ” cataracts. Nature 1959; 184:194–195.CrossRefGoogle Scholar
  257. Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N, Minthon L, Wallin A, Blennow K, Vanmechelen E. Standardization of measurements of beta-amyloid (1 –42) in cerebrospinal fluid and plasma. Amyloid 2000; 7:245–258.PubMedCrossRefGoogle Scholar
  258. Vermaak WJ, Barnard HC, Potgieter GM, Theron H. Vitamin B 6 and coronary artery disease. Epidemiological observations and case studies. Atherosclerosis 1987; 63:235–238.PubMedCrossRefGoogle Scholar
  259. Vermeer SE, van Dijk EJ, Koudstaal PJ, Oudkerk M, Hofman A, Clarke R, Breteler MM. Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study. Ann Neurol 2002; 51:285–289.PubMedCrossRefGoogle Scholar
  260. Waggoner DD, Buist NR, Donnell GN. Long-term prognosis in galactosemia: Results of a survey of 350 cases. J Inherit Metab Dis 1990; 13:802–818.PubMedCrossRefGoogle Scholar
  261. Walsh FS, Doherty P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol. 1997; 13:425–456.PubMedCrossRefGoogle Scholar
  262. Walter JH, Collins JE, Leonard JV. Recommendations for the management of galactosemia. UK Galactosemia Steering Group. Arch Dis Child 1999; 80:93–96.PubMedCrossRefGoogle Scholar
  263. Walter JH, White FJ, Hall SK, MacDonald A, Rylance G, Boneh A, Francis DE, Shortland GJ, Schmidt M, Vail A. How practical are recommendations for dietary control in phenylketonuria? Lancet 2002; 360:55–57.PubMedCrossRefGoogle Scholar
  264. Wang ZI, Berry GT, Dreha SF, Zhao H, Segal S, Zimmerman RA. Proton magnetic resonance spectroscopy of brain metabolites in galactosemia. Ann Neurol 2001; 50:266–269.PubMedCrossRefGoogle Scholar
  265. Warfield A, Segal S. Myoinositol and phosphatidylinositol in synaptosomes from galactose-fed rats. Proc Natl Acad Sci USA 1978; 75:4568–4572.PubMedCrossRefGoogle Scholar
  266. Webb AL, Singh RH, Kennedy MJ. Elsas LJ. Verbal dyspraxia and galactosemia. Pediatr Res 2003; 53:396–402.PubMedCrossRefGoogle Scholar
  267. Weglage J, Pietsch M, Funders B, Koch HG, Ullrich K. Deficits in selective and sustained attention processes in early treated children with phenylketonuria: result of impaired frontal lobe functions? Eur J Pediatr 1996; 155:200–204.PubMedCrossRefGoogle Scholar
  268. Welsh MC, Pennington BF, Ozonoff S, Rouse B, McCabe ERB. Neuropsychology of early-treated phenylketonuria: Specific executive function deficits. Child Dev 1990; 61:1697–1713.PubMedCrossRefGoogle Scholar
  269. White AR, Juang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R. Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s type neurodegenerative pathways. J Neurochem 2001; 76:1509–1520.PubMedCrossRefGoogle Scholar
  270. Woo CW, Siow YL, Pierce GN, Choy PC, Minuk GY, Mymin D, O K. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 2000; 288:1002–1010.CrossRefGoogle Scholar
  271. Wright CB, Lee HS, Paik MC, Stabler SP, Allen RH, Sacco RL. Total homocysteine and cognition in a tri-ethnic cohort: The Northern Manhattan Study. Neurology 2004; 63:254–260.PubMedCrossRefGoogle Scholar
  272. Wright CB, Paik MC, Brown TR, Stabler SP, Allen RH, Sacco RL, DeCarli C. Total homocysteine is associated with white matter hyperintensity volume: the Northern Manhattan Study. Stroke 2005 Jun; 36:1207–1211.PubMedCrossRefGoogle Scholar
  273. Yager C, Gibson J, States B, Elsas LJ, Segal S. Oxidation of galactose by galactose-1-phosphate uridyltransferase-deficient lymphoblasts. J Inherit Metab Dis 2001; 24:465–476.PubMedCrossRefGoogle Scholar
  274. Yasui K, Kowa H, Nakaso K, Takeshima T, Nakashima K. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 2000; 55:437–440.PubMedCrossRefGoogle Scholar
  275. Zhou JL, Zhu XG, Ling YL, Li Q. Melatonin reduces peroxynitrite-induced injury in aortic smooth muscle cells. Acta Pharmacol Sin 2004; 25:186–190.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kleopatra H. Schulpis
    • 1
  • Stylianos Tsakiris
    • 2
  1. 1.Inborn Errors of Metabolism Department, Institute of Child Health, Research Centre“Aghia Sophia” Childrens HospitalAthensGreece
  2. 2.Department of Physiology, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations