Bilirubin Encephalopathy



Light Emit Diode Unconjugated Bilirubin Plasma Bilirubin Glucuronyl Transferase Bilirubin Encephalopathy 


  1. Blaschke, T.F., Berk, P.D., and Scharschmidt, B.F. (1974). Crigler-Najjar Syndrome: an unusual course with development of neurological damage at age of eighteen. Pediatr. Res. 8: 573–590PubMedCrossRefGoogle Scholar
  2. Borun, E.R., Figueroa, W.G., and Perry, S.M. (1957). The distribution of Fe-59 tagged human erythrocytes in centrifuged specimens as a function of cell age. J. Clin. Invest. 36: 676—684PubMedCrossRefGoogle Scholar
  3. Broderson, R. (1978). Intensive Care in the Newborn , Vol. 2. Ed., by Stern, L., Ol, W., and Friis-Hansen, B., Masson, NY, pp. 331–345Google Scholar
  4. Broderson, R. (1980). Bilirubin transport in the newborn infant reviewed with relation to kernicterus. J. Pediatr. 96: 349–356CrossRefGoogle Scholar
  5. Brown, A. (1957). Studies on the neonatal development of the glucuronide conjugating system. Am. J. Dis. Child. 94: 510–520Google Scholar
  6. Brown, W.R. and Waters, W.J. (1958). The possible mechanism and site of bilirubin inhibition of election transport. Am. J. Dis. Child. 96: 507–514Google Scholar
  7. Carbone, J.V. and Grodsky, G.M. (1957). Constitutional non-hemolytic hyperbilirubinemia in the rat: Defect of bilirubin conjugation. Proc. Soc. Exp. Biol. Med. 94: 461–463PubMedGoogle Scholar
  8. Claireaux, A.E. (1961). Pathology of Human Kernicterus. Ed., by Kernicterus, S.K., University of Toronto, TorontoGoogle Scholar
  9. Cowger, M. (1971). Mechanism of bilirubin toxicity on tissue culture cells: factors that affect toxicity, reversibility by albumin, and comparison with other respiratory poisons and surfactants. Biochem. Med. 5: 1–12PubMedCrossRefGoogle Scholar
  10. Cremer, R.J., Perryman, P.W., and Richards, D.W. (1958). Influence of light on the hyperbilirubinemia of infants. Lancet 1: 1093–1097Google Scholar
  11. Day, R.L. (1954). Inhibition of brain respiration in-vitro by bilirubin. Am. J. Dis. Child. 88:504–511Google Scholar
  12. Diamond, I. and Schmid, R. (1966). Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Invest. 45: 678–689PubMedCrossRefGoogle Scholar
  13. Diamond, I. and Schmid, R. (1967). Oxidative phosphorylation in experimental bilirubin encephalopathy. Science. 155: 1288–1289PubMedCrossRefGoogle Scholar
  14. Donzelli, G.P., Pratesi, S., Rapisardi, G., Agati, G., Fusi, F., and Pretesi, R. (1995). 1-day phototherapy of neonatal jaundice with blue-green lamp. Lancet. 346: 184–185PubMedGoogle Scholar
  15. Dore, S., and Snyder, S. (1999). Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann. N.Y. Acad. Sci. 890: 167–172PubMedCrossRefGoogle Scholar
  16. Dore, S., et al. (1999). Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress. Proc. Natl. Acad. Sci. USA. 96: 2445–2450PubMedCrossRefGoogle Scholar
  17. Dunn, T.B. (1951). Hematoidin crystals in reticulum cell sarcoma of the mouse and newborn human tissues. Milit. Surg. 109: 352–356Google Scholar
  18. Ebbesen, F., Agati, G., and Pratesi, R. (2003). Phototherapy with turquoise versus blue light. Arch. Dis. Child. Fetal Neonatal Ed. 88: F430–F431PubMedCrossRefGoogle Scholar
  19. Ennever, J.F. (1990). Blue light, green light, white light, more light: treatment of neonatal jaundice. In Maisels MJ (Ed) Neonatal jaundice. Clin. Perinatol. 17: 467–481PubMedGoogle Scholar
  20. Grojean, S., Koziel, V., Vert, P., and Daval, J. (2000). Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 166: 334–341PubMedCrossRefGoogle Scholar
  21. Grojean, S., et al. (2001). Bilirubin exerts additional toxic effects in hypoxic cultured neurons from the developing rat brain by the recruitment of glutamate neurotoxicity. Pediatr. Res. 49: 507–513PubMedCrossRefGoogle Scholar
  22. Gunn, C.K. (1938). Hereditary acholuric jaundice. J. Hered. 20: 137–145Google Scholar
  23. Hamer, R.D., Dobson, V., and Mayer, M.J. (1984). Absolute thresholds in human infants exposed to continuous illumination. Invest. Ophthalmol. Vis. Sci. 25: 381–388PubMedGoogle Scholar
  24. Hanefeld, F. and Natzschka, J. (1971). Histochemical studies in infant Gunn rats with kernicterus. Neuropediatrie. 2: 428–438CrossRefGoogle Scholar
  25. Ho, K.C., Hodach, R., Varma, R., Thorsteinson, V., Hess, T., and Dale, D. (1980). Kernicterus and central pontine myelinolysis in a 14-year-old boy with fulminating hepatitis. Ann. Neurol. 8: 633–641PubMedCrossRefGoogle Scholar
  26. Jervis, G.A. (1959). Constitutional non-hemolytic hyperbilirubinemia with findings resembling kernicterus. Arch. Neural. Psychiat. 81: 55–67CrossRefGoogle Scholar
  27. Karp, W. (1979). Biochemical alterations in neonatal hyperbilirubinemia and bilirubin encephalopathy: a review. Pediatrics. 64: 361–368PubMedGoogle Scholar
  28. Katoh, R., Kashiwamata, S., and Niwa, F. (1975). Studies on cellular toxicity of bilirubin. Brain Res. 83: 81–92CrossRefGoogle Scholar
  29. Lucey, J.F. (1970). Phototherapy of jaundice 1969 (1970). Birth Defects Orig. Artic. Ser. 6(2): 63–70PubMedGoogle Scholar
  30. Lucey, J. (1972). Neonatal phototherapy: uses, problems and questions. Semin. Hematol. 9 (2): 127–135PubMedGoogle Scholar
  31. Lucey, J., Ferriero, M., and Hewett, J. (1968). Prevention of hyperbilirubinemia of prematurity by phototherapy. Pediatrics. 41: 1046–1054Google Scholar
  32. Madan, A. (2005). Phototherapy: old question, new answers. Acta Paediatr. 94 (10): 1360–1362PubMedCrossRefGoogle Scholar
  33. Maisels, J.M. (1982). Jaundice in the newborn. Pediatr. Rev. 3 (10): 305–319CrossRefGoogle Scholar
  34. Maisels, J.M. (1996). Why use homeopathic doses of phototherapy. Pediatrics. 98 (2): 283–287PubMedGoogle Scholar
  35. McCandless, D.W. and Abel, M. (1980). The effect unconjugated bilirubin on regional cerebellar energy metabolism. Neurobehav. Toxicol. 2: 81–84PubMedGoogle Scholar
  36. Menken, M., and Weidenback, E.C. (1967). Oxidative phosphorylation and respiratory control of brain mitochondria isolated from kernicteric rats. J. Neurochem. 14: 189–193PubMedCrossRefGoogle Scholar
  37. Menken, M., Waggoner, J.G., and Berlin, N. (1966). The influence of bilirubin on oxidative phosphorylation and related reactions in brain and liver mitochondria. J. Neurochem. 13: 1241–1248PubMedCrossRefGoogle Scholar
  38. Morphis, L., Constantopoulos, A., Matsaniotis, N., and Papaphilis, A. (1982). Bilirubin induced modulation of cerebral protein phosphorylation of cerebral protein phophorylation in neonatal rabbits in-vivo. Science. 218: 156–159PubMedCrossRefGoogle Scholar
  39. Mustafa, M.G., Cowger, M.L., and King, T.E. (1969). Effects of bilirubin on mitochondrial reactions. J. Biol. Chem. 244: 6403–6412PubMedGoogle Scholar
  40. Odell, G.B.K. and Schutta, H.S. (1985). Bilirubin encephalopathy. In Cerebral Energy Metabolism and Metabolic Encephalopathy. Ed., by McCandless, D.W., Plenum, NY, USAGoogle Scholar
  41. Onishi, S., Itoh, S., and Isobe, K. (1986). Wavelength dependence of the relative rate constants for the main geometric and structural photoisomerization of bilirubin IXa bound to human serum albumin. Biochem. J. 236: 23–29PubMedGoogle Scholar
  42. Ostrow, J.D., Schmid, R., and Samuelson, D. (1963). The protein binding of 14C-bilirubin in human and murine serum. J. Clin. Invest. 42: 1286–1299PubMedCrossRefGoogle Scholar
  43. Passonneau, J., and Lowry, O. (1993). Enzymatic analysis: a practical guide. Humana Press, Totowa, NJCrossRefGoogle Scholar
  44. Roll, E.B. (2005). Bilirubin-induced cell death during continuous and intermittent phototherapy and in the dark. Acta Paediatr. 94: 1437–1442PubMedCrossRefGoogle Scholar
  45. Roll, E.B. and Christensen, T. (2005). Formation of photoproducts and cytotoxicity of bilirubin irradiated with turquoise and blue phototherapy light. Acta Paediatr. 94: 1448–1454PubMedCrossRefGoogle Scholar
  46. Rosen, H., Rosen, A., Rosen, D., Onaral, B., and Hiatt, M. (2005). Use of a light emitting diode (LED) array for bilirubin transformation. Proc 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1–4, pp. 7266–7268Google Scholar
  47. Rozdilsky, B. (1961). Experimental Studies on the Toxicity of Bilirubin. Ed., by Kernicterus, S.K., University of Toronto, TorontoGoogle Scholar
  48. Rozdilsky, B. (1966). Kittens as experimental model for study of kernicterus. Am. J. Dis. Child. 11: 161–176Google Scholar
  49. Rozdilsky, B. and Olszewski, J. (1961). Experimental study of the toxicity of bilirubin in newborn animals. J. Neuropathol. Exp. Neurol. 20: 193–208PubMedCrossRefGoogle Scholar
  50. Salih, F.M. (2001). Can sunlight replace phototherapy units in the treatment of neonatal jaundice? An in vitro study. Photodermatol. Photoimmunol. Photomed. 17 (6): 272–277PubMedCrossRefGoogle Scholar
  51. Santella, R.M., Rosenkranz, H.S., and Speck, W.T. (1978). Intracellular deoxyribonucleic acid—modifying activity of intermittent phototherapy, J. Pediatr. 93: 106–109PubMedCrossRefGoogle Scholar
  52. Schenker, S., McCandless, D.W., and Zollman, P. (1966). Studies of cellular toxicity of unconjugated bilirubin in kernicteric brain. J. Clin. Invest. 45: 1213–1220PubMedCrossRefGoogle Scholar
  53. Schenker, S., Hoyumpa, A.M., and McCandless, D.W. (1986). Bilirubin toxicity to the brain (kernicterus) and other tissues. In Bile Pigments and Jaundice. Ed., by Ostrow, J.D., Marcel Dekkker, NYGoogle Scholar
  54. Schmid, R., Hammaker, K.L., and Axelrod, J. (1957). The enzymatic formation of bilirubin glycuronide. Arch. Biochem. 70: 285–291PubMedCrossRefGoogle Scholar
  55. Schmid, R., Bukingham, S., Mendilla, G.A., and Hammaker. (1959). Bilirubin metabolism in the fetus. Nature 183: 1823–1827Google Scholar
  56. Schmorl, C.G. (1910) Liquor cerebrospinalis und bentrikelflussigkeit. Centrabl. F. Allg. Path. Anat. 21: 459–470Google Scholar
  57. Schutta, H.S. and Johnson, L. (1971). Fine structure observations on acute bilirubin encephalopathy in Gunn rats induced by sulfadimethoxine. Lab. Invest. 24: 82–96PubMedGoogle Scholar
  58. Siegfied, E.C., Stone, M.S., Madison, K.C. (1992). Ultraviolet light burn: a cutaneous complication of visible light phototherapy of neonatal jaundice. Pediatr. Dermatol. 9 (3): 278–282CrossRefGoogle Scholar
  59. Tenhunen, R., Marver, H.S., and Schmid, R. (1968). The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA. 61: 748–755PubMedCrossRefGoogle Scholar
  60. Vecchi, C, Donzelli, G.P, Migliorini, M.G, Sbrana, G., and Pratesi, R. (1982). New light in phototherapy. Lancet. 14: 390CrossRefGoogle Scholar
  61. Vogl, T.P, Cheskin, H., Blumenfeld, T.A., Speck, W.T., and Koenigsberger, M.R. (1977). Effect of intermittent phototherapy on bilirubin dynamics in Gunn rats. Pediatr Res. 11: 1021–1026CrossRefGoogle Scholar
  62. Zetterstrom, R. and Ernster, L. (1956). Bilirubin, an uncoupler of oxidative phosphorylation in isolated mitochondria. Nature. 178: 1335–1338PubMedCrossRefGoogle Scholar
  63. Zhang, L., Liu, W., Tanswell, A.K., and Luo, X. (2003). The effects of bilirubin on evoked potentials and long-term potentiation in rat hippocampus in-vivo. Pediatr. Res. 53: 939–944PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of Cell Biology & AnatomyThe Chicago Medical School, Rosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations