Skip to main content

Thiamine Deficiency: A Model of Metabolic Encephalopathy and of Selective Neuronal Vulnerability

  • Chapter
  • First Online:
Metabolic Encephalopathy

Summary

Thiamine (vitamin B1) deficiency (TD) is a unique example of a nutritional deficit that produces a generalized impairment in oxidative metabolism and leads to metabolic encephalopathy or delirium, memory deficits and selective neuronal death in particular brain regions. Experimental TD is a classical model of a nutritional deficit associated with a generalized impairment of oxidative metabolism and selective cell loss in the brain. The response to TD is altered by the genetic background (i.e., strain) and the age of the animal. Changes in thiamine-dependent processes have also been implicated in ischemia (stroke), diabetes and multiple neurodegenerative disorders. An understanding of the mechanism by which TD leads to brain dysfunction and eventually to selective neuronal death is likely to facilitate our understanding of the role of thiamine in all these disorders. In addition, the results are likely to help our understanding of the fundamental mechanisms leading to altered neuronal functions and neuronal death in these other disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaide, M. L., et al., 2003. Wernicke’s encephalopathy in AIDS: a preventable cause of fatal neurological deficit. Int J STD AIDS. 14, 712–713.

    Article  PubMed  CAS  Google Scholar 

  • Alves, L. F., et al., 2006. [Beriberi after bariatric surgery: not an unusual complication. Report of two cases and literature review]. Arq Bras Endocrinol Metabol. 50, 564–568.

    Article  PubMed  Google Scholar 

  • Andreassen, O. A., et al., 2001. Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington’s disease. Ann Neurol. 50, 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Balaghi, M., Pearson, W. N., 1966. Tissue and intracellular distribution of radioactive thiamine in normal and thiamine-deficient rats. J Nutr. 89, 127–132.

    PubMed  CAS  Google Scholar 

  • Barclay, L. L., Gibson, G. E., 1982. Spontaneous open-field behavior in thiamin-deficient rats. J Nutr. 112, 1899–1905.

    PubMed  CAS  Google Scholar 

  • Barclay, L. L., et al., 1981a. Impairment of behavior and acetylcholine metabolism in thiamine deficiency. J Pharmacol Exp Ther. 217, 537–543.

    CAS  Google Scholar 

  • Barclay, L. L., et al., 1981b. The string test: an early behavioral change in thiamine deficiency. Pharmacol Biochem Behav. 14, 153–157.

    Article  CAS  Google Scholar 

  • Barclay, L. L., et al., 1982. Cholinergic therapy of abnormal open-field behavior in thiamin-deficient rats. J Nutr. 112, 1906–1913.

    PubMed  CAS  Google Scholar 

  • Blass, J. P., Gibson, G. E., 1977. Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. N Engl J Med. 297, 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  • Blass, J. P., Gibson, G. E., 1979. Genetic factors in Wernicke-Korsakoff syndrome. Alcohol Clin Exp Res. 3, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Blass, J. P., et al., 1975. Clinical and metabolic abnormalities accompanying deficiencies in pyruvate oxidation. F.A. Hommes (ed.)Academic Press, New York, pp. 193

    Google Scholar 

  • Bubber, P., et al., 2005. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 57, 695–703.

    Article  PubMed  CAS  Google Scholar 

  • Bublitz, C., Steavenson, S., 1988. The pentose phosphate pathway in the endoplasmic reticulum. J Biol Chem. 263, 12849–12853.

    PubMed  CAS  Google Scholar 

  • Butterworth, R. F., et al., 1993. Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol Clin Exp Res. 17, 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  • Calingasan, N. Y., Gibson, G. E., 2000aDietary restriction attenu-ates the neuronal loss,  induction of heme oxygenase-1 and blood-brain barrier breakdown induced by impaired oxidative metabolism. Brain Res. 885, 62–69.

    Article  CAS  Google Scholar 

  • Calingasan, N. Y., Gibson, G. E., 2000b. Vascular endothelium is a site of free radical production and inflammation in areas of neuronal loss in thiamine-deficient brain. Ann N Y Acad Sci. 903,53–356.

    Article  Google Scholar 

  • Calingasan, N. Y., et al., 1994a. Distribution of the alpha-ketoglutarate dehydrogenase complex in rat brain. J Comp Neurol. 346, 461–479.

    Article  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 1994b. Selective enrichment of cholinergic neurons with the alphaketoglutarate dehydrogenase complex in rat brain. Neurosci Lett. 168, 209–212.

    Article  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 1995a. Blood-brain barrier abnormalities in vulnerable brain regions during thiamine deficiency. Exp Neurol. 134, 64–72.

    Article  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 1995b. Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Res. 677, 50–60.

    Article  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 1995c. Heterogeneous expression of transketolase in rat brain. J Neurochem. 64, 1034–1044.

    Article  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 1996. Novel neuritic clusters with accmu-lations of amyloid precursor protein and amyloid accmu-lations of amyloid precursor protein and amyloid precursor-like protein 2 immunoreactivity in brain regions damaged by thiamine deficiency precursor-like protein 2 immunoreactivity in brain regions damaged by thiamine deficiency. Am J Pathol. 149, 1063–1071.

    PubMed  CAS  Google Scholar 

  • Calingasan, N. Y., et al.,1998. Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism.Am J Pathol.153,599–610.

    Article  PubMed  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 1999. Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol. 58, 946–958.

    Article  PubMed  CAS  Google Scholar 

  • Calingasan, N. Y., et al., 2000. Vascular factors are critical in selective neuronal loss in an animal model of impaired oxidative metabolism. J Neuropathol Exp Neurol. 59, 207–217.

    PubMed  CAS  Google Scholar 

  • Coy, J. F., et al., 2005. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 51, 257–273.

    PubMed  CAS  Google Scholar 

  • Desjardins, P., Butterworth, R. F., 2005. Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol Neurobiol. 31,17–25.

    Article  PubMed  CAS  Google Scholar 

  • Falk, R. E., et al., 1976. Ketonic diet in the management of pyruvate dehydrogenase deficiency. Pediatrics. 58, 713–721.

    PubMed  CAS  Google Scholar 

  • Foldi, M., et al., 2007. Transketolase protein TKTL1 overexpression: A potential biomarker and therapeutic target in breast cancer. Oncol Rep. 17, 841–845.

    PubMed  Google Scholar 

  • Freeman, G. B., et al., 1987. Effect of age on behavioral and enzymatic changes during thiamin deficiency. Neurobiol Aging. 8, 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., Blass, J. P., 1976. Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J Neurochem. 27, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., Blass, J. P. , 2007. Thiamine-dependent processe and treatment strategies in neurodegeneration. Antioxid Redox Signal. 9, 1605–1619.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., et al., 1975. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J. 148, 17–23.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., et al., 1983. Cholinergic drugs and 4-aminopyridine alter hypoxic-induced behavioral deficits. Pharmacol Biochem Behav. 18, 909–916.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., et al., 1984. Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochem Res. 9, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., et al., 1988. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol. 45, 836–840.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G., et al., 1989. Regionally selective alterations in enzymatic activities and metabolic fluxes during thiamin deficiency. Neurochem Res. 14, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., et al., 1999. Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann N Y Acad Sci. 893, 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., et al., 2003. Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson’s disease. Neurochem Int. 43, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Hammes, H. P., et al., 2003. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 9, 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Hazell, A. S., Wang, C., 2005. Downregulation of complexin I and complexin II in the medial thalamus is blocked by N-acetylcysteine in experimental Wernicke’s encephalopathy. J Neurosci Res. 79, 200–207.

    Article  PubMed  CAS  Google Scholar 

  • Hazell, A. S., et al., 1993. Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J Neurochem. 61, 1155–1158.

    Article  PubMed  CAS  Google Scholar 

  • Hazell, A. S., et al., 2003. Thiamine deficiency results in downregulation of the GLAST glutamate transporter in cultured astrocytes. Glia. 43, 175–184.

    Article  PubMed  Google Scholar 

  • Heroux, M., et al., 1996. Alterations of thiamine phosphorylation and of thiamine-dependent enzymes in Alzheimer’s disease. Metab Brain Dis. 11, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H. M., et al. , 2003. Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death. J Neurosci Res. 11, 74̉317.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H. M., et al., 2005. Selective antioxidants differentially modify endoplasmic reticulum Ca2+ stores and capacitative calcium entry. Soc Neurosci. 35, 93–100.

    Google Scholar 

  • Jeitner, T. M., et al. , 2005. Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. J Neurochem. 92, 302–310.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Jimenez, F. J., et al., 1999. Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease. Neurosci Lett. 271, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Karachalias, N., et al., 2005. High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci. 1043, 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Kark, R. A., et al., 1975. Experimental thiamine deficiency. Neuropathic and mitochondrial changes induced in rat muscle. Arch Neurol. 32, 818–825.

    Article  PubMed  CAS  Google Scholar 

  • Karuppagounder, S. S., et al., 2006. Mild impairment of oxidative metabolism exacerbates pathology in a transgenic model of plaque formation. Soc Neurosci. 36, 170–715.

    Google Scholar 

  • Karuppagounder, S. S., et al., 2007. Changes in inflammatory processes associated with selective vulnerability following mild impairment of oxidative metabolism. Neurobiol Dis. 26, 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Karuppagounder, S. S., et al. , 2008. Translocation of Amyloid Precursor Protein C-terminal Fragment(s) to the Nucleus Precedes Neuronal Death due to Thiamine Deficiency-induced Mild Impairment of Oxidative Metabolism Mild Impairment of Oxidative Metabolism. Neurochemical research, 33, 1365–1372.

    Article  PubMed  CAS  Google Scholar 

  • Ke, Z. J., Gibson, G. E., 2004. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem Int. 45, 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Ke, Z. J., et al., 2003. Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol. 62, 195–207.

    PubMed  CAS  Google Scholar 

  • Ke, Z. J., et al., 2005a. CD40-CD40L interactions promote neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. Neurochem Int. 47, 204–215.

    Article  CAS  Google Scholar 

  • Ke, Z. J., et al., 2005b. CD40L deletion delays neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. J Neuroimmunol. 164, 85–92.

    Article  CAS  Google Scholar 

  • Ke, Z. J., et al., 2006. Peripheral inflammatory mechanisms modulate microglial activation in response to mild impairment of oxidative metabolism. Neurochem Int. 49, 548–556.

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi, P., et al., 2004. Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. J Neurochem. 88, 1352–1360.

    Article  PubMed  CAS  Google Scholar 

  • Langlais, P. J., Mair, R. G., 1990. Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci. 10, 1664–1674.

    PubMed  CAS  Google Scholar 

  • Langlais, P. J., Savage, L. M., 1995. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav Brain Res. 68, 75–89.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B. Y., et al., 2005. Thiamin deficiency: a possible major cause of some tumors? (review). Oncol Rep. 14, 1589–1592.

    PubMed  CAS  Google Scholar 

  • Martin, E., et al., 2005. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res. 79, 240–247.

    Article  PubMed  CAS  Google Scholar 

  • Mastrogiacomo, F., Kish, S. J., 1994. Cerebellar alpha-ketoglutarate dehydrogenase activity is reduced in spinocerebellar ataxia type 1. Ann Neurol. 35, 624–626.

    Article  PubMed  CAS  Google Scholar 

  • McLure, K. G., et al., 2004. NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol. 24, 9958–9967.

    Article  PubMed  CAS  Google Scholar 

  • McRee, R. C., et al., 2000. Increased histamine release and granulocytes within the thalamus of a rat model of Wernicke’s encephalopathy. Brain Res. 858, 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Meng, J. S., Okeda, R., 2003. Neuropathological study of the role of mast cells and histaminepositive neurons in selective vulnerability of the thalamus and inferior colliculus in thiaminedeficient encephalopathy. Neuropathology. 23, 25–35.

    Article  PubMed  Google Scholar 

  • Nakagawasai, O., et al. , 2000a. Immunohistochemical estimation of brain choline acetyltransferase and somatostatin related to the impairment of avoidance learning induced by thiamine deficiency.Brain Res Bull 52,189–196.

    Article  CAS  Google Scholar 

  • Nakagawasai, O., et al., 2000b. Immunohistochemical estimation of rat brain somatostatin on avoidance learning impairment induced by thiamine deficiency. Brain Res Bull. 51, 47–55.

    Article  CAS  Google Scholar 

  • Neufeld, E. J., et al., 2001. Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. Blood Cells Mol Dis. 27, 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Pannunzio, P., et al., 2000. Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J Neurosci Res. 62, 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Park, L. C., et al., 2000. Metabolic impairment elicits brain cell type-selective changes in oxidative stress and cell death in culture. J Neurochem. 74, 114–124.

    Article  PubMed  CAS  Google Scholar 

  • Park, L. C., et al., 2001a. Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy. J Neurosci Res. 66, 1028–1034.

    Article  CAS  Google Scholar 

  • Park, L. C., et al., 2001b. Co-culture with astrocytes or microglia protects metabolically impaired neurons. Mech Ageing Dev. 123, 21–27.

    Article  CAS  Google Scholar 

  • Pawlik, F., et al., 1977. Peripheral nerve changes in thiamine deficiency and starvation. Acta Neuropathologica. 39, 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Roland, J. J., Savage, L. M., 2007. Blunted hippocampal, but not striatal, acetylcholine efflux parallels learning impairment in diencephalic-lesioned rats. Neurobiol Learn Mem. 87, 123–132.

    Article  Google Scholar 

  • Savage, L. M., et al., 2007. Selective septohippocampal — but not forebrain amygdalar — cholinergic dysfunction in diencephalic amnesia. Brain Res. 1139, 210–219.

    Article  PubMed  CAS  Google Scholar 

  • Sheline, C. T., Wei, L., 2006. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience. 140, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Sheline, C. T., et al., 2002. Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann Neurol. 52, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Sheu, K. F., et al., 1996. Regional reductions of transketolase in thiamine-deficient rat brain. J Neurochem. 67, 684–691.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Q., et al., 2007. Responses of the mitochondrial alpha-ketoglutarate dehydrogenase complex to thiamine deficiency may contribute to regional selective vulnerability. Neurochem Int. 50, 921–931.

    Article  PubMed  CAS  Google Scholar 

  • Shin, B. H., et al., 2004. Thiamine attenuates hypoxia-induced cell death in cultured neonatal rat cardiomyocytes. Mol Cells. 18, 133–140.

    PubMed  CAS  Google Scholar 

  • Shneider, A. B., 1991. [Anti-ischemic heart protection using thiamine and nicotinamide]. Patol Fiziol Eksp Ter. 9–10.

    Google Scholar 

  • Starkov, A. A., et al., 2004. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 24, 7779–2788.

    Article  PubMed  CAS  Google Scholar 

  • Todd, K. G., Butterworth, R. F., 1999. Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia. 25, 190–198.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., et al., 2006. Severe thiamine deficiency resulted in Wernicke’s encephalopathy in a chronic dialysis patient. Clin Exp Nephrol. 10, 290–293.

    Article  PubMed  Google Scholar 

  • Victor, M., et al., 1971. The Wernicke-Korsakoff syndrome. A clinical and pathological study of  245 patients, 82 with post-mortem examinations. Contemp Neurol Ser. 7, 1–206.

    PubMed  CAS  Google Scholar 

  • Wang, C., et al., 2007a. Effect of ascorbic acid and thiamine supplementation at different concentrations on lead toxicity in liver. Ann Occup Hyg. 51, 563–569.

    Article  CAS  Google Scholar 

  • Wang, X., et al., 2007b. Activation of double-stranded RNA-activated protein kinase by mild impairment of oxidative metabolism in neurons. J Neurochem. 103, 2380–2390.

    Article  CAS  Google Scholar 

  • Wang, X., et al., 2007c. Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience. 144, 1045–1056.

    Article  CAS  Google Scholar 

  • Yates, C. M., et al., 1990. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem. 55, 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, N., et al., 2007. Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage. Neurobiol Dis. 29, 176–185.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karuppagounder, S., Gibson, G.E. (2009). Thiamine Deficiency: A Model of Metabolic Encephalopathy and of Selective Neuronal Vulnerability. In: McCandless, D. (eds) Metabolic Encephalopathy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79112-8_12

Download citation

Publish with us

Policies and ethics