Reactive Deposition

  • André Anders
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)


In this relatively short chapter, we consider energetic condensation in the presence of a reactive gas such as oxygen or nitrogen. This is very relevant because many of the industrial applications are based on reactive deposition in which compound coatings are synthesized on the substrate. Introduction of a reactive gas has a number of consequences, starting from the “poisoning” of the cathode surface to enhanced plasma–gas interaction, all of which affects arc erosion, particle transport, the chemistry of the plasma, and the ion velocity and charge state distribution functions. In recent years, multi-element compounds have become popular, like TiAlN, or compounds that consist of four or even more elements. The source of the material can be an alloy cathode, or a second cathode, and/or the reactive gas. Some ternary and quarternary compound films show superior performance due to their nanostructure.


Cathode Surface Compound Layer Hydrogen Uptake Cathode Spot Reactive Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kühn, M. and Richter, F., Characteristics in reactive arc evaporation, Surf. Coat. Technol. 89, 16–23, (1997).CrossRefGoogle Scholar
  2. 2.
    Vossen, J.L. and Kern, W., Thin Film Processes II. Academic Press, Boston, (1991).Google Scholar
  3. 3.
    Bunshah, R.F., (ed.) Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications. Noyes, Park Ridge, N.J., (1994).Google Scholar
  4. 4.
    Schneider, J.M., Rohde, S., Sproul, W.D., and Matthews, A., Recent developments in plasma assisted physical vapour deposition, J Phys. D: Appl. Phys. 33, R173–R186, (2000).ADSCrossRefGoogle Scholar
  5. 5.
    Sproul, W.D., Christie, D.J., and Carter, D.C., Control of reactive sputtering processes, Thin Solid Films 491, 1–17, (2005).ADSCrossRefGoogle Scholar
  6. 6.
    Yushkov, G.Y. and Anders, A., Effect of the pulse repetition rate on the composition and ion charge-state distribution of pulsed vacuum arcs, IEEE Trans. Plasma Sci. 26, 220–226, (1998).ADSCrossRefGoogle Scholar
  7. 7.
    Barnat, E.V. and Lu, T.M., Transient charging effects on insulating surfaces exposed to a plasma during pulse biased dc magnetron sputtering, J. Appl. Phys. 90, 5898–5903, (2001).ADSCrossRefGoogle Scholar
  8. 8.
    Anders, A., Physics of arcing, and implications to sputter deposition, Thin Solid Films 502, 22–28, (2006).ADSCrossRefGoogle Scholar
  9. 9.
    Seino, T. and Sato, T., Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering, J. Vac. Sci. Technol. A 20, 634–637, (2002).ADSCrossRefGoogle Scholar
  10. 10.
    Schneider, J.M. and Sproul, W.D., “Reactive Pulsed DC Magnetron Sputtering and Control,” in Handbook of Thin Film Processing Technology, Glocker, D.A. and Shah, S.I., (Eds.). pp. A5.1:1–A5.1:12, IOP Publishing Ltd, Bristol, UK, (1998).Google Scholar
  11. 11.
    Segers, A., Depla, D., Eufinger, K., Haemers, J., and De Gryse, R., “Reactive sputtering,” Nouvelles Tendances en Procédés Magnetron et arc pour le Dépot de Couches Minces, Gent, Belgium, pp. 25–39, (2003).Google Scholar
  12. 12.
    Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, pp. 175–191, (1985).Google Scholar
  13. 13.
    Schemmel, T.D., Cunningham, R.L., and Randhawa, H., Process for high rate deposition of Al2O3, Thin Solid Films 181, 597–601, (1989).ADSCrossRefGoogle Scholar
  14. 14.
    Chhowalla, M. and Unalan, H.E., Thin films of hard cubic Zr3N4 stabilized by stress, Nat. Mater. 4, 317–322, (2005).ADSCrossRefGoogle Scholar
  15. 15.
    Tarrant, R.N., Bilek, M.M.M., Oates, T.W.H., Pigott, J., and McKenzie, D.R., Influence of gas flow and entry point on ion charge, ion counts and ion energy distribution in a filtered cathodic arc, Surf. Coat. Technol. 156, 110–114, (2002).CrossRefGoogle Scholar
  16. 16.
    Rogozin, A.F. and Fontana, R.P., Reactive gas-controlled arc process, IEEE Trans. Plasma Sci. 25, 680–684, (1997).ADSCrossRefGoogle Scholar
  17. 17.
    Monteiro, O.R., Wang, Z., and Brown, I.G., Deposition of mullite and mullite-like coatings on silicon carbide by dual-source metal plasma immersion, J. Mater. Res. 12, 2401–2410, (1997).ADSCrossRefGoogle Scholar
  18. 18.
    Martinon-Torres, M., Rehren, T., and Freestone, I.C., Mullite and the mystery of Hessian wares, Nature 444, 437–438, (2006).ADSCrossRefGoogle Scholar
  19. 19.
    Lim, S.H.N., McCulloch, D.G., Bilek, M.M.M., McKenzie, D.R., Russo, S.P., Barnard, A.S., and Torpy, A., Characterization of cathodic arc deposited titanium aluminium nitride films prepared using plasma immersion ion implantation, J. Phys.: Condensed Matter 17, 2791–2800, (2005).ADSGoogle Scholar
  20. 20.
    Gan, B.K., Bilek, M.M.M., McKenzie, D.R., Taylor, M.B., and McCulloch, D.G., Effect of intrinsic stress on preferred orientation in AlN thin films, J. Appl. Phys. 95, 2130–2134, (2004).ADSCrossRefGoogle Scholar
  21. 21.
    Gan, B.K., Bilek, M.M.M., McKenzie, D.R., Yang, S., Tompsett, D.A., Taylor, M.B., and McCulloch, D.G., Stress relief and texture formation in aluminium nitride by plasma immersion ion implantation, J. Phys. Condensed Matter 16, 1751–1760, (2004).ADSCrossRefGoogle Scholar
  22. 22.
    Davies, K.E., Gan, B.K., McKenzie, D.R., Bilek, M.M.M., Taylor, M.B., McCulloch, D.G., and Latella, B.A., Correlation between stress and hardness in pulsed cathodic arc deposited titanium/vanadium nitride alloys, J. Phys. Condensed Matter 16, 7947–7954, (2004).ADSCrossRefGoogle Scholar
  23. 23.
    Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., and Bendavid, A., Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties, Surf. Coat. Technol. 200, 4213–4219, (2006).CrossRefGoogle Scholar
  24. 24.
    Veprek, S., The search for novel, superhard materials, J. Vac. Sci. Technol. A 17, 2401–2420, (1999).ADSCrossRefGoogle Scholar
  25. 25.
    Veprek, S. and Veprek-Heijman, M.G.J., The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites, Surf. Coat. Technol. 201, 6064–6070, (2007).CrossRefGoogle Scholar
  26. 26.
    Gan, Z.H., Yu, G.Q., Tay, B.K., Tan, C.M., Zhao, Z.W., and Fu, Y.Q., Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc, J. Phys. D: Appl. Phys. 37, 81–85, (2004).ADSCrossRefGoogle Scholar
  27. 27.
    Tay, B.K., Zhao, Z.W., and Chua, D.H.C., Review of metal oxide films deposited by filtered cathodic vacuum arc technique, Mat. Sci. Eng. R: Reports 52, 1–48, (2006).CrossRefGoogle Scholar
  28. 28.
    Lafferty, J.M., (ed.) Foundations of Vacuum Science and Technology. John Wiley & Sons, New York, (1998).Google Scholar
  29. 29.
    Hoffman, D.M., Singh, B., and Thomas III, J.H., (eds.), Handbook of Vacuum Science and Technology. Academic Press, San Diego, CA, (1998).Google Scholar
  30. 30.
    O'Hanlon, J.F., A User's Guide to Vacuum Technology, 2 nd ed. John Wiley & Sons, New York, (1989).Google Scholar
  31. 31.
    Redhead, P.A., Hobson, J.P., and Kornelsen, E.V., The Physical Basis of Ultrahigh Vacuum. Chapman & Hall, London, (1968).Google Scholar
  32. 32.
    Schneider, J.M., Anders, A., Hjörvarsson, B., Petrov, I., Macak, K., Helmerson, U., and Sundgren, J.-E., Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient, Appl. Phys. Lett. 74, 200–202, (1999).ADSCrossRefGoogle Scholar
  33. 33.
    Hjörvarsson, B., Ryden, J., Karlsson, E., Birch, J., and Sundgren, J.E., Interface effects of hydrogen uptake in Mo/V single-crystal superlattices, Phys. Rev. B 43, 6440–6445, (1991).ADSCrossRefGoogle Scholar
  34. 34.
    Lide, D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition. CRC Press, Boca Raton, N.Y., (2000).Google Scholar
  35. 35.
    Schneider, J.M., Larsson, K., Lu, J., Olsson, E., and Hjörvarsson, B., Role of hydrogen for the elastic properties of alumina thin films, Appl. Phys. Lett. 80, 1144–1146, (2002).ADSCrossRefGoogle Scholar
  36. 36.
    Bilek, M.M.M. and Milne, W.I., Electronic properties and impurity levels in filtered cathodic vacuum arc (FCVA) amorphous silicon, Thin Solid Films 308–309, 79–84, (1997).CrossRefGoogle Scholar
  37. 37.
    Schneider, J.M., Anders, A., Hjörvarsson, B., and Hultman, L., Magnetic-field-dependent plasma composition of a pulsed arc in a high-vacuum ambient, Appl. Phys. Lett. 76, 1531–1533, (2000).ADSCrossRefGoogle Scholar
  38. 38.
    Randhawa, H., TiN-coated high-speed steel cutting tools, J. Vac. Sci. Technol. A 4, 2755–2758, (1986).ADSCrossRefGoogle Scholar
  39. 39.
    Randhawa, H., Cathodic arc plasma deposition of TiC and TiCxN1–x films, Thin Solid Films 153, 209–218, (1987).ADSCrossRefGoogle Scholar
  40. 40.
    Kimblin, C.W., A review of arcing phenomena in vacuum and in the transition to atmospheric pressure arcs, IEEE Trans. Plasma Sci. 10, 322–330, (1971).ADSCrossRefGoogle Scholar
  41. 41.
    Anders, S. and Jüttner, B., Arc cathode processes in the transition region between vacuum arcs and gaseous arcs, Beitr. Plasmaphys. 27, 223–236, (1987).ADSCrossRefGoogle Scholar
  42. 42.
    Takikawa, H., Yatsuki, M., Sakakibara, T., and Itoh, S., Carbon nanotubes in cathodic vacuum arc discharge, J. Phys. D: Appl. Phys. 33, 826–830, (2000).ADSCrossRefGoogle Scholar
  43. 43.
    Takikawa, H., Minamisawa, S., Xu, G.C., Miyakawa, N., Sakakibara, T., and Shiina, Y., “Cathode erosion and carbon-nanotubed droplet in T-shape filtered arc deposition with various carbon cathodes,” XXIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, pp. 484–487, (2004).Google Scholar
  44. 44.
    Anders, A. and Jüttner, B., Cathode Mode Transition in High-Pressure Discharge Lamps at Start-Up, Lighting Res. Technol. (GB) 22, 111–115, (1990).CrossRefGoogle Scholar
  45. 45.
    Sano, N., Wang, H., Alexandrou, I., Chhowalla, M., Teo, K.B.K., Amaratunga, G.A.J., and Iimura, K., Properties of carbon onions produced by an arc discharge in water, J. Appl. Phys. 92, 2783–2788, (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations