Film Deposition by Energetic Condensation

  • André Anders
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)


When the plasma ions arrive at a surface, they do so with considerable kinetic energy, which is typically in the range 20–150 eV without bias. A bias voltage can increase this energy even further. Energetic condensation involves subsurface processes when the arriving ions displace surface and near-surface ions to come to rest below the surface. Shallow ion implantation or “subplantation” occurs, leading to dense and hard coatings that are generally under high compressive stress. Hardness and compressive stress are related. Excessive compressive stress is detrimental because it can lead to catastrophic failure of the coating by delamination. Stress control becomes paramount for high-performing coatings. This can be addressed by utilizing the high degree of ionization: biasing the substrate is very efficient in giving ions controlled, high energy capable of generating small collision cascades in the subsurface layer of the solid. Stress can be relieved through atom rearrangement facilitated by the short period of high mobility. This is best controlled by sophisticated biasing techniques, such as pulsed biasing with optimized pulse duration and duty cycle. One can maximize stress relief while maintaining an overall high level of hardness and elastic modulus.


Stress Relief Cathode Spot Plasma Potential Sticking Probability Thermal Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Colligon, J.S., Energetic condensation: processes, properties, and products, J. Vac. Sci. Technol. A 13, 1649–1657, (1995).ADSGoogle Scholar
  2. 2.
    Brown, I.G., Cathodic arc deposition of films, Ann. Rev. Mat. Sci. 28, 243–269, (1998).ADSGoogle Scholar
  3. 3.
    Monteiro, O.R., Thin film synthesis by energetic condensation, Ann. Rev. Mat. Sci. 31, 111–137, (2001).ADSGoogle Scholar
  4. 4.
    Anders, A., Energetic deposition using filtered cathodic arc plasmas, Vacuum 67, 673–686, (2002).Google Scholar
  5. 5.
    Greene, J.E., “Nucleation, film growth, and microstructural evolution,” in Handbook of Deposition Technologies for Films and Coatings, Bunshah, R.F., (Ed.), 2 nd ed., pp. 681–739, Noyes, Westwood, NJ, (1994).Google Scholar
  6. 6.
    Hubler, G.K. and Sprague, J.A., Energetic particles in PVD technology: particle-surface interaction processes and energy-particle relationships in thin film deposition, Surf. Coat. Technol. 81, 29–35, (1996).Google Scholar
  7. 7.
    Xu, S. and Evans, B.L., Nucleation and growth of ion beam sputtered metal films, J. Mat. Sci. 27, 3108–3117, (1992).ADSGoogle Scholar
  8. 8.
    Gill, S.P.A., Self-organised growth on strained substrates: the influence of anisotropic strain, surface energy and surface diffusivity, Thin Solid Films 423, 136–145, (2003).ADSGoogle Scholar
  9. 9.
    Petrov, I., Barna, P.B., Hultman, L., and Greene, J.E., Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21, S117–S128, (2003).ADSGoogle Scholar
  10. 10.
    Nastasi, M., Mayer, J.W., and Hirvonen, J.K., Ion-Solid Interactions. Cambridge University Press, Cambridge, UK, (1996).Google Scholar
  11. 11.
    Uhlmann, S., Fraunheim, T., and Lifshitz, Y., Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon, Phys. Rev. Lett. 81, 641–644, (1998).ADSGoogle Scholar
  12. 12.
    Lifshitz, Y., Kasai, S.R., Rabalais, J.W., and Eckstein, W., Subplantation model for film growth from hyperthermal species, Phys. Rev. B 41, 10468–10480, (1990).ADSGoogle Scholar
  13. 13.
    Ronning, C., Ion-beam synthesis and growth mechanism of diamond-like materials, Appl. Phys. A 77, 39–50, (2003).ADSGoogle Scholar
  14. 14.
    Carlson, T.A., Nestor, C.W., Wasserman, N., and McDowell, J.D., Calculated ionization potentials for multiply charges ions, Atomic Data 2, 63–99, (1970).ADSGoogle Scholar
  15. 15.
    Lide, D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition, CRC Press, Boca Raton, New York, (2000).Google Scholar
  16. 16.
    Burgdörfer, J. and Meyer, F., Image acceleration of multiply charged ions by metallic surfaces, Phys. Rev. A 47, R20–R22, (1993).ADSGoogle Scholar
  17. 17.
    Hägg, L., Reinhold, C.O., and Burgdörfer, J., Energy gain of highly charged ions in front of LiF, Nucl. Instrum. Meth. Phys. Res. B 125, 133–137, (1997).ADSGoogle Scholar
  18. 18.
    Winter, H. and Aumayr, F., Interaction of slow HCI with solid surfaces, Physica Scripta T92, 15–21, (2001).ADSGoogle Scholar
  19. 19.
    Schenkel, T., Barnes, A.V., Niedermayr, T.R., Hattass, M., Newman, M.W., Machicoane, G.A., McDonald, J.W., Hamza, A.V., and Schneider, D.H., Deposition of potential energy by slow, highly charged ions, Phys. Rev. Lett. 83, 4273–4276, (1999).ADSGoogle Scholar
  20. 20.
    Al-Nimr, M.A. and Arpaci, V.S., Picosecond thermal pulses in thin metal films, J. Appl. Phys. 85, 2517–2521, (1999).ADSGoogle Scholar
  21. 21.
    Musil, J., Hard and superhard nanocomposite coatings, Surf. Coat. Technol. 125, 322–330, (2000).Google Scholar
  22. 22.
    Anders, A., Atomic scale heating in cathodic arc plasma deposition, Appl. Phys. Lett. 80, 1100–1102, (2002).ADSGoogle Scholar
  23. 23.
    Elsholz, F., Meixner, M., and Schöll, E., Kinetic Monte Carlo simulation of self-organized pattern formation in thin film deposition, Nucl. Instrum. Meth. Phys. Res. B 202, 249–254, (2003).ADSGoogle Scholar
  24. 24.
    Anders, A. and Yushkov, G.Y., Measurements of secondary electrons emitted from conductive substrates under high-current metal ion bombardment, Surf. Coat. Technol. 136, 111–116, (2001).Google Scholar
  25. 25.
    Hagstrum, H.D., Auger ejection of electrons from tungsten by noble gas ions, Phys. Rev. 96, 325–335, (1953).ADSGoogle Scholar
  26. 26.
    Eder, H., Messerschmidt, W., Winter, H., and Aumayr, F., Electron emission from clean gold bombardment by slow Auq+ (q=1–3) ions, J. Appl. Phys. 87, 8198–8200, (2000).ADSGoogle Scholar
  27. 27.
    Winter, H., Aumayr, F., and Lakits, G., Recent advances in understanding particle-induced electron emission from metal surfaces, Nucl. Instrum. Meth. Phys. Res. B 58, 301–308, (1991).ADSGoogle Scholar
  28. 28.
    Winter, H., Eder, H., Aumayr, F., Lorincik, J., and Sroubek, Z., Slow-ion induced electron emission from clean metal surfaces: “Subthreshold kinetic emission” and “potential excitation of plasmons”, Nucl. Instrum. Meth. Phys. Res. B 182, 15–22, (2001).ADSGoogle Scholar
  29. 29.
    Anders, A., Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett. 85, 6137–6139, (2004).ADSGoogle Scholar
  30. 30.
    Kress, J.D., Hanson, D.E., Voter, A.F., Liu, C.L., Liu, X.Y., and Coronell, D.G., Molecular dynamics simulation of Cu and Ar ion sputtering of Cu (111) surfaces, J. Vac. Sci. Technol. A 17, 2819–2825, (1999).ADSGoogle Scholar
  31. 31.
    Hanson, D.E., Stephens, B.C., Saravanan, C., and Kress, J.D., Molecular dynamics simulations of ion self-sputtering of Ni and Al surfaces, J. Vac. Sci. Technol. A 19, 820–825, (2001).ADSGoogle Scholar
  32. 32.
    Eckstein, W., Computer Simulation of Ion-Solid Interactions. Springer-Verlag, Berlin, (1991).Google Scholar
  33. 33.
    Hou, M. and Eckstein, W., Statistical properties of sputtering from individual atomic collisions cascades in solids, J. Appl. Phys. 71, 3975–3980, (1992).ADSGoogle Scholar
  34. 34.
    Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids. Pergamon Press, New York, (1985).Google Scholar
  35. 35.
    Nastasi, M., Möller, W., and Ensinger, W., “Ion implantation and thin-film deposition,” in Handbook of Plasma Immersion Ion Implantation and Deposition, Anders, A., (Ed.). pp. 125–241, Wiley, New York, (2000).Google Scholar
  36. 36.
    Abrams, C.F. and Graves, D.B., Cu sputtering and deposition of off-normal, near-threshold Cu+ bombardment: Molecular dynamics simulation, J. Appl. Phys. 86, 2263–2267, (1999).ADSGoogle Scholar
  37. 37.
    Coronell, D.G., Hanson, D.E., Voter, A.F., Liu, C.L., Liu, X.Y., and Kress, J.D., Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations, Appl. Phys. Lett. 73, 3860–3862, (1998).ADSGoogle Scholar
  38. 38.
    Burgmann, F.A., McCulloch, D.G., Ryves, L., Lim, S.H.M., McKenzie, D., and Bilek, M.M.M., Defects at interfaces are the key to enhancing the hardness in Al/W multilayers, J. Appl. Phys., submitted, under review, (2008).Google Scholar
  39. 39.
    Tarrant, R.N., Bilek, M.M.M., Pigott, J., and McKenzie, D.R., Plasma transport and optical flares in high-density plasmas produced from a pulsed cathodic arc, Surf. Coat. Technol. 186, 10–16, (2004).Google Scholar
  40. 40.
    Movchan, B.A. and Demchishin, A.V., Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide, Fizika Metallov i Metallovedenie (Physics of Metals and Metallography) 28, 653–660, (1969).Google Scholar
  41. 41.
    Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol. 11, 666–670, (1974).ADSGoogle Scholar
  42. 42.
    Messier, R., Giri, A.P., and Roy, R.A., Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol. A 2, 500–503, (1984).ADSGoogle Scholar
  43. 43.
    Mausbach, M., Microstructure of copper films condensed from a copper plasma with ion energies between 2 and 150 eV, Surf. Coat. Technol. 74–75, 264–272, (1995).Google Scholar
  44. 44.
    Oettel, H., Wiedemann, R., and Preiler, S., Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74–75, 273–278, (1995).Google Scholar
  45. 45.
    Vlasveld, A.C., Harris, S.G., Doyle, E.D., Lewis, D.B., and Munz, W.D., Characterisation and performance of partially filtered arc TiAlN coatings, Surf. Coat. Technol. 149, 217–223, (2002).Google Scholar
  46. 46.
    Bunshah, R.F., (ed.) Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications, Noyes, Park Ridge, N.J., (1994).Google Scholar
  47. 47.
    Mattox, D.M., Handbook of Physical Vapor Deposition (PVD) Processing. Noyes Publications, Park Ridge, N.J., (1998).Google Scholar
  48. 48.
    Anders, A., (ed.) Handbook of Plasma Immersion Ion Implantation and Deposition. John Wiley & Sons, New York, (2000).Google Scholar
  49. 49.
    Bilek, M.M.M. and McKenzie, D.R., A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions, Surf. Coat. Technol. 200, 4345–4354, (2006).Google Scholar
  50. 50.
    Bilek, M.M.M., Tarrant, R.N., McKenzie, D.R., Lim, S.H.N., and McCulloch, D.G., Control of stress and microstructure in cathodic arc deposited films, IEEE Trans. Plasma Sci. 31, 939–944, (2003).ADSGoogle Scholar
  51. 51.
    Lim, S.H.N., McCulloch, D.G., Bilek, M.M.M., and McKenzie, D.R., Minimisation of intrinsic stress in titanium nitride using a cathodic arc with plasma immersion ion implantation, Surf. Coat. Technol. 174–175, 76–80, (2003).Google Scholar
  52. 52.
    Davis, C.A., A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films 226, 30–34, (1993).ADSGoogle Scholar
  53. 53.
    Windischmann, H., An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering, J. Appl. Phys 62, 1800–1807, (1987).ADSGoogle Scholar
  54. 54.
    Marks, N.A., Evidence for subpicosecond thermal spikes in the formation of tetrahedral amorphous carbon, Phys. Rev. B 56, 2441, (1997).ADSGoogle Scholar
  55. 55.
    Bilek, M.M.M., McKenzie, D.R., and Moeller, W., Use of low energy and high frequency PBII during thin film deposition to achieve relief of intrinsic stress and microstructural changes, Surf. Coat. Technol. 186, 21–28, (2004).Google Scholar
  56. 56.
    Abendroth, B., Gago, R., Kolitsch, A., and Moller, W., Stress measurement and stress relaxation during magnetron sputter deposition of cubic boron nitride thin films, Thin Solid Films 447–448, 131–135, (2004).Google Scholar
  57. 57.
    Yin, Y., McKenzie, D., and Bilek, M., Intrinsic stress induced by substrate bias in amorphous hydrogenated silicon thin films, Surf. Coat. Technol. 198, 156–160, (2005).Google Scholar
  58. 58.
    Houska, J., Capek, J., Vlcek, J., Bilek, M.M.M., and McKenzie, D.R., Bonding statistics and electronic structure of novel Si–B–C–N materials: Ab initio calculations and experimental verification, J. Vac. Sci. Technol. A 25, 1411–1416, (2007).Google Scholar
  59. 59.
    Bilek, M.M.M., Verdon, M., Ryves, L., Oates, T.W.H., Ha, C.T., and McKenzie, D.R., A model for stress generation and stress relief mechanisms applied to as-deposited filtered cathodic vacuum arc amorphous carbon films, Thin Solid Films 482, 69–73, (2005).ADSGoogle Scholar
  60. 60.
    Hofsäss, H., Feldermann, H., Merk, R., Sebastian, M., and Ronning, C., Cylindrical spike model for the formation of diamondlike thin films by ion deposition, Appl. Phys. A: Mater. Sci. Process. 66, 153–181, (1998).ADSGoogle Scholar
  61. 61.
    Krohn, M., Meyer, K.-P., and Bethge, H., Epitaxy by vacuum arc evaporation, J. Crystal Growth 64, 326–332, (1983).ADSGoogle Scholar
  62. 62.
    Byon, E., Oates, T.H., and Anders, A., Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett. 82, 1634–1636, (2003).ADSGoogle Scholar
  63. 63.
    Oates, T., McKenzie, D., and Bilek, M., Percolation threshold in ultrathin titanium films determined by in-situ spectroscopic ellipsometry, Phys. Rev. B 70, 195406, (2004).ADSGoogle Scholar
  64. 64.
    Arwin, H. and Aspnes, D.E., Unambiguous determination of thickness and dielectric function of thin films by spectroscopic ellipsometry, Thin Solid Films 113, 101–113, (1984).ADSGoogle Scholar
  65. 65.
    Veprek, S., The search for novel, superhard materials, J. Vac. Sci. Technol. A 17, 2401–2420, (1999).ADSGoogle Scholar
  66. 66.
    Andersson, J.-O. and Sundman, B., Thermodynamic properties of the Cr–Fe system, Calphad 11, 83–92, (1987).Google Scholar
  67. 67.
    Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Producing coatings with aluminium oxide base from separated flow of vacuum arc plasma, Fizika i Khimiya Obrabotki Materialov, 89–93, (1977).Google Scholar
  68. 68.
    Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, 175–191, (1985).Google Scholar
  69. 69.
    Münz, W.-D., Schulze, D., and Hauzer, F.J.M., A new method for hard coatings – ABS (arc bond sputtering), Surf. Coat. Technol. 50, 169–178, (1992).Google Scholar
  70. 70.
    Schönjahn, C., Ehiasarian, A.P., Lewis, D.B., New, R., Münz, W.-D., Twesten, R.D., and Petrov, I., Optimization of in-situ substrate treatment in a cathodic arc plasma: A study by TEM and plasma diagnostics, J. Vac. Sci. Technol. A 19, 1415–1420, (2001).ADSGoogle Scholar
  71. 71.
    Ehiasarian, A.P., Hovsepian, P.E., Hultman, L., and Helmersson, U., Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique, Thin Solid Films 457, 270–277, (2004).ADSGoogle Scholar
  72. 72.
    Lewis, D.B., Reitz, D., Wüstefeld, C., Ohser-Wiedemann, R., Oettel, H., Ehiasarian, A.P., and Hovsepian, P.E., Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique, Thin Solid Films 503, 133–142, (2006).ADSGoogle Scholar
  73. 73.
    Wang, H.W., Stack, M.M., Lyon, S.B., Hovsepian, P., and Munz, W.D., Preferential erosive wear of droplet particles for cathodic arc/unbalanced magnetron sputtering CrN/NbN superlattice PVD coatings, J. Mat. Sci. Lett. 20, 547–550, (2001).Google Scholar
  74. 74.
    Wang, H.W., Stack, M.M., Lyon, S.B., Hovsepian, P., and Munz, W.D., Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry, Surf. Coat. Technol. 135, 82–90, (2000).Google Scholar
  75. 75.
    Wang, H.W., Stack, M.M., Hovsepian, P., and Munz, W.D., Macroparticle induced corrosion for arc bond sputtering CrN/NbN superlattice coatings, J. Mat. Sci. Lett. 20, 1995–1997, (2001).Google Scholar
  76. 76.
    Lembke, M.I., Lewis, D.B., and Münz, W.D., Localised oxidation defects in TiAlN/CrN superlattice structured hard coatings grown by cathodic arc/ unbalanced magnetron deposition on various substrate materials, Surf. Coat. Technol. 125, 263–268, (2000).Google Scholar
  77. 77.
    Ehiasarian, A.P., Anders, A., and Petrov, I., Combined filtered cathodic arc etching pretreatment–magnetron sputter deposition of highly adherent CrN films, J. Vac. Sci. Technol. A 25, 543–550, (2007).Google Scholar
  78. 78.
    Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J., and Tran, N.C., Plasma source ion-implantation technique for surface modification, J. Appl. Phys. 62, 4591–4596, (1987).ADSGoogle Scholar
  79. 79.
    Brown, I.G., Godechot, X., and Yu, K.M., Novel metal ion surface modification technique, Appl. Phys. Lett. 58, 1392–1394, (1991).ADSGoogle Scholar
  80. 80.
    Anders, A., From plasma immersion ion implantation to deposition: a historical perspective on principles and trends, Surf. Coat. Technol. 156, 3–12, (2002).Google Scholar
  81. 81.
    Mattox, D.M., Film deposition using accelerated ions, Electrochem. Technol. 2, 295–298, (1964).Google Scholar
  82. 82.
    Anders, A., Metal plasma immersion ion implantation and deposition: a review, Surf. Coat. Technol. 93, 157–167, (1997).Google Scholar
  83. 83.
    Anders, A., Anders, S., Brown, I.G., Dickinson, M.R., and MacGill, R.A., Metal plasma immersion ion implantation and deposition using vacuum arc plasma sources, J. Vac. Sci. Technol. B 12, 815–820, (1994).Google Scholar
  84. 84.
    Mukherjee, S., Reuther, H., Prokert, F., Richter, E., and Moeller, W., Substrate bias effects in plasma immersion ion implantation assisted deposition from a TiAl cathodic arc, Surf. Coat. Technol. 160, 93–98, (2002).Google Scholar
  85. 85.
    Mukherjee, S., Prokert, F., Richter, E., and Moeller, W., Compressive stress, preferred orientation and film composition in Ti-based coatings developed by plasma immersion ion implantation-assisted deposition, Surf. Coat. Technol. 186, 99–103, (2004).Google Scholar
  86. 86.
    Ensinger, W., Plasma immersion ion implantation for metallurgical and semiconductor research and development, Nucl. Instrum. Meth. Phys. Res. B 120, 270–281, (1996).ADSGoogle Scholar
  87. 87.
    Ikehata, T., Shioya, K., Araki, T., Sato, N.Y., Mase, H., and Yukimura, K., Sheath formation and ion flux distribution inside the trench in plasma-based ion implantation, Nucl. Instrum. Meth. Phys. Res. B 206, 772–776, (2003).ADSGoogle Scholar
  88. 88.
    Anders, A., Width, structure, and stability of sheaths in metal plasma immersion ion implantation: measurements and analytical considerations, Surf. Coat. Technol. 136, 85–92, (2001).Google Scholar
  89. 89.
    Ma, X., Tang, G., Sun, M., and Yukimura, K., Characteristics of TiN films deposited on a trench-shaped sample prepared by plasma-based ion implantation and deposition, Surf. Coat. Technol. 196, 100–103, (2005).Google Scholar
  90. 90.
    Yukimura, K., Ma, X., and Ikehata, T., Ion sheath evolution and current characteristics for a trench immersed in a titanium cathodic arc discharge, Surf. Coat. Technol. 186, 73–76, (2004).Google Scholar
  91. 91.
    Tian, X.B., Yang, S.Q., Huang, Y.X., Gong, C.Z., Xu, G.C., Fu, R.K.Y., and Chu, P.K., Two-dimensional numerical simulation of non-uniform plasma immersion ion implantation, Surf. Coat. Technol. 186, 47–52, (2004).Google Scholar
  92. 92.
    Qian, X.Y., Cheung, N.W., Lieberman, M.A., Brennan, R., Current, M.I., and Jha, N., Conformal implantation for trench doping with plasma immersion ion implantation, Nucl. Instrum. Methods B 55, 898–901, (1991).ADSGoogle Scholar
  93. 93.
    Chen, U.-S. and Shih, H.C., Characterization of copper metallization for interconnect by 90[deg]-bend electromagnetic filtered vacuum arc, Nucl. Instrum. Meth. Phys. Res. B 237, 477–483, (2005).ADSGoogle Scholar
  94. 94.
    Monteiro, O.R., Novel metallization technique for filling 100-nm-wide trenches and vias with very high aspect ratio, J. Vac. Sci. Technol. B 17, 1094–1097, (1999).Google Scholar
  95.  95.
    Bohm, D., “Minimum ionic kinetic energy for a stable sheath,” in The Characteristics of Electrical Discharges in Magnetic Fields, Guthrie, A. and Wakerling, R.K., (Eds.). pp. 77–86, McGraw-Hill, New York, (1949).Google Scholar
  96.  96.
    Riemann, K.-U., The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys. 24, 493–518, (1991).ADSGoogle Scholar
  97.  97.
    Alterkop, B., On a sheath between a plasma and conducting surface, J. Appl. Phys. 95, 1650–1655, (2004).ADSGoogle Scholar
  98.  98.
    Vetter, J. and Perry, A.J., Advances in cathodic arc technology using electrons extracted from the vacuum arc, Surf. Coat. Technol. 61, 305–309, (1993).Google Scholar
  99.  99.
    Berger, M., Karlsson, L., Larsson, M., and Hogmark, S., Low stress TiB2 coatings with improved tribological properties, Thin Solid Films 401, 179–186, (2001).ADSGoogle Scholar
  100. 100.
    Richter, F., Peter, S., Filippov, V.B., Flemming, G., and Kühn, M., Characteristics of the cathodic arc discharge with a hot boron cathode, IEEE Trans. Plasma Sci. 27, 1079–1083, (1999).ADSGoogle Scholar
  101. 101.
    Anders, A. and Oks, E., Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs: A study involving the plasma potential and biased plasmas, J. Appl. Phys. 101, 043304-1-6, (2007).ADSGoogle Scholar
  102. 102.
    Anders, A., Pasaja, N., Lim, S.H.N., Petersen, T.C., and Keast, V.J., Plasma biasing to control the growth conditions of diamond-like carbon, Surf. Coat. Technol. 201, 4628–4632, (2007).Google Scholar
  103. 103.
    Anders, A., Brown, I.G., MacGill, R.A., and Dickinson, M.R., Vacuum-spark metal ion source based on a modified Marx generator, IEEE Trans. Plasma Sci. 25, 718–721, (1997).ADSGoogle Scholar
  104. 104.
    McKenzie, D.R., Muller, D., Pailthorpe, B.A., et al., Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition, Diamond Rel. Mat. 1, 51–59, (1991).ADSGoogle Scholar
  105. 105.
    Gaskell, P.H., Saeed, A., Chieux, P., and McKenzie, D.R., Neutron-scattering studies of the structure of highly tetrahedral amorphous diamondlike carbon, Phys. Rev. Lett. 67, 1286–1289, (1991).ADSGoogle Scholar
  106. 106.
    Robertson, J., Diamond-like amorphous carbon, Mat. Sci. Eng. R 37, 129–281, (2002).Google Scholar
  107. 107.
    Schmellenmeier, H., Die Beeinflussung von festen Oberflächen durch eine ionisierte Gasatmosphäre, Experimentelle Technik der Physik 1, 49–68, (1953).Google Scholar
  108. 108.
    Bradley, D.E., Evaporated carbon films for use in electron microscopy, Brit. J. Appl. Phys. 5, 65–66, (1954).ADSGoogle Scholar
  109. 109.
    Blue, M.D. and Danielson, G.C., Electrical properties of arc-evaporated carbon films, J. Appl. Phys. 28, 583–586, (1957).ADSGoogle Scholar
  110. 110.
    Aisenberg, S. and Chabot, R., Ion-beam deposition of thin films of diamondlike carbon, J. Appl. Phys. 42, 2953–2958, (1971).ADSGoogle Scholar
  111. 111.
    Strel'nitskii, V.E., Aksenov, I.I., Vakula, S.I., Padalka, V.G., and Belous, V.A., Properties of diamond-like carbon coating produced by plasma condensation, Sov. Techn. Phys. Lett. 4, 546–547, (1978).Google Scholar
  112. 112.
    Vakula, S.I., Padalka, V.G., Strel'nitskii, V.E., and Usoskin, A.I., Optical properties of diamond-like carbon films, Sov. Techn. Phys. Lett. 5, 573–574, (1979).Google Scholar
  113. 113.
    Aksenov, I.I., Vakula, S.I., Padalka, V.G., Strel'nitskii, V.E., and Khoroshikh, V.M., High-efficiency source of pure carbon plasma, Sov. Phys. Techn. Phys. 25, 1164–1166, (1980).Google Scholar
  114. 114.
    Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys. 91, 4824–4832, (2002).ADSGoogle Scholar
  115. 115.
    Pharr, G.M., Callahan, D.L., McAdams, D., et al., Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate bias, Appl. Phys. Lett. 68, 779–781, (1996).ADSGoogle Scholar
  116. 116.
    Friedmann, T.A., Sullivan, J.P., Knapp, J.A., Tallant, D.R., Follstaedt, D.M., Medlin, D.L., and Mirkarimi, P.B., Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822, (1997).ADSGoogle Scholar
  117. 117.
    Monteiro, O.R., Ager III, J.W., Lee, D.H., Lo, R.Y., Walter, K.C., and Nastasi, M., Annealing of nonhydrogenated amorphous carbon films prepared by filtered cathodic arc, J. Appl. Phys. 88, 2395–2399, (2000).ADSGoogle Scholar
  118. 118.
    Tang, Z., Zhang, Z.J., Narumi, K., Xu, Y., Naramoto, H., Nagai, S., and Miyashita, K., Effect of mass-selected ion species on structure and properties of diamond-like carbon films, J. Appl. Phys. 89, 1959–1964, (2001).ADSGoogle Scholar
  119. 119.
    Robertson, J., Mechanical properties and coordinations of amorphous carbons, Phys. Rev. Lett. 68, 220–223, (1992).ADSGoogle Scholar
  120. 120.
    Gago, R., Vinnichenko, M., Jager, H.U., Belov, A.Y., Jimenez, I., Huang, N., Sun, H., and Maitz, M.F., Evolution of sp2 networks with substrate temperature in amorphous carbon films: Experiment and theory, Phys. Rev. B 72, 014120–014129, (2005).ADSGoogle Scholar
  121. 121.
    Robertson, J. and O'Reilly, E.P., Electronic and atomic structure of amorphous carbon, Phys. Rev. B 35, 2946–2957, (1987).ADSGoogle Scholar
  122. 122.
    Strel’nitskii, V.E., Padalka, V.G., and Vakula, S.I., Properties of the diamond-like carbon film produced by the condensation of a plasma stream with an RF potential, Sov. Phys.-Techn. Phys. 23, 222–224, (1978).Google Scholar
  123. 123.
    Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., and Saenger, K.K., Vapor deposition process for amorphous carbon films with sp3 fractions approaching diamond, J. Appl. Phys. 70, 1706–1711, (1991).ADSGoogle Scholar
  124. 124.
    Fallon, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., and Koskinen, J., Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B 48, 4777–4782, (1993).ADSGoogle Scholar
  125. 125.
    Robertson, J., Deposition mechanism for promoting sp3 bonding in diamond-like carbon, Diamond Rel. Mat. 2, 984–989, (1993).ADSGoogle Scholar
  126. 126.
    Anders, S., Anders, A., Brown, I.G., Wei, B., Komvopoulos, K., Ager, J.W., and Yu, K.M., Effect of vacuum arc deposition parameters on the properties of amorphous carbon thin films, Surf. Coat. Technol. 68/69, 388–393, (1994).Google Scholar
  127. 127.
    McKenzie, D.R., Muller, D., and Pailthorpe, B.A., Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon, Phys. Rev. Lett. 67, 773–776, (1991).ADSGoogle Scholar
  128. 128.
    McKenzie, D.R., Yin, Y., Marks, N.A., Davis, C.A., Kravtchinskaia, E., Pailthorpe, B.A., and Amaratunga, G.A.J., Tetrahedral amorphous carbon properties and applications, J. Non-Cryst. Solids 166, 1101–1106, (1993).Google Scholar
  129. 129.
    Lifshitz, Y., Roux, C.D., Boyd, K., Eckstein, W., and Rabalais, J.W., Analysis of carbon film growth from low energy ion beams using dynamic trajectory simulations and auger electron spectroscopy, Nucl. Instr. Meth. B 83, 351–356, (1993).ADSGoogle Scholar
  130. 130.
    Lifshitz, Y., Lempert, G.D., Rotter, S., Avigal, I., Uzan-Saguy, C., Kalish, R., Marton, D., and Rabalais, J.W., The effect of ion energy on the diamond-like graphitic sp3/sp2 nature of carbon films deposited by ion beams, Diamond Rel. Mat. 3, 542–546, (1994).ADSGoogle Scholar
  131. 131.
    Lossy, R., Pappas, D.L., Roy, R.A., Cuomo, J.J., and Sura, V.H., Filtered arc deposition of amorphous diamond, Appl. Phys. Lett. 61, 171–173, (1992).ADSGoogle Scholar
  132. 132.
    Cuomo, J.J., Pappas, D.L., Doyle, J.P., Bruley, J., and Saenger, K.L., “Comparison of techniques for deposition of carbon thin films,” in Plasma and Laser Processing of Materials, Upadhya, K., (Ed.). pp. 165–174, The Minerals, Metals & Materials Society, (1991).Google Scholar
  133. 133.
    Scheibe, H.-J. and Schultrich, B., “Laser-arc process and technology for deposition of hard amorphous carbon (ta-C),” 47th Annual Technical Conference, Society of Vacuum Coaters, Dallas, TX, 501–508, (2004).Google Scholar
  134. 134.
    Jäger, H.U. and Belov, A.Y., ta-C deposition simulations: Film properties and time-resolved dynamics of film formation, Phys. Rev. B 68, 024201–0242013, (2003).ADSGoogle Scholar
  135. 135.
    Belov, A.Y. and Jäger, H.U., Simulation of the non-equilibrium processes for tetrahedral amorphous carbon: Deposition and structural relaxation, Nucl. Instrum. Meth. Phys. Res. B 202, 242–248, (2003).ADSGoogle Scholar
  136. 136.
    Jäger, H.U. and Albe, K., Molecular-dynamics simulation of steady-state growth of ion-deposited tetrahedral amorphous carbon films, J. Appl. Phys. 88, 1129–1135, (2000).ADSGoogle Scholar
  137. 137.
    Marks, N., Modelling diamond-like carbon with the environment-dependent interaction potential, J. Phys.: Condensed Matter 14, 2901–2927, (2002).ADSGoogle Scholar
  138. 138.
    Anders, S., Ager III, J.W., Pharr, G.M., Tsui, T.Y., and Brown, I.G., Heat treatment of cathodic arc deposited amorphous hard carbon films, Thin Solid Films 308309, 186–190, (1997).Google Scholar
  139. 139.
    Tarrant, R.N., Montross, C.S., and McKenzie, D.R., Combined deposition and implantation in the cathodic arc for thick film preparation, Surf. Coat. Technol. 136, 188–191, (2001).Google Scholar
  140. 140.
    Tarrant, R.N., Fujisawa, N., Swain, M.V., James, N.L., McKenzie, D.R., and Woodard, J.C., PBII deposition of thick carbon coatings from a cathodic arc plasma, Surf. Coat. Technol. 156, 143–148, (2002).Google Scholar
  141. 141.
    Bilek, M.M.M., McKenzie, D.R., Tarrant, R.N., et al., Practical plasma immersion ion implantation for stress regulation and treatment of insulators, Contrib. Plasma Phys. 44, 465–471, (2004).ADSGoogle Scholar
  142. 142.
    Lee, D.H., Fayelle, S., Walter, K.C., and Nastasi, M., Internal stress reduction in diamond like carbon thin films by ion irradiation, Nucl. Instrum. Meth. Phys. Res. B 148, 216–220, (1999).ADSGoogle Scholar
  143. 143.
    Stoney, G.G., The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. A 82, 172, (1909).ADSGoogle Scholar
  144. 144.
    Monteiro, O.R. and Delplancke-Ogletree, M.P., Investigation of non-hydrogenated DLC:Si prepared by cathodic arc, Surf. Coat. Technol. 163164, 144–148, (2003).Google Scholar
  145. 145.
    Druz, B., Yevtukhov, Y., Novotny, V., Zaritsky, I., Kanarov, V., Polyakov, V., and Rukavishnikov, A., Nitrogenated carbon films deposited using filtered cathodic arc, Diamond Rel. Mat. 9, 668–674, (2000).ADSGoogle Scholar
  146. 146.
    Anders, S., Callahan, D.L., Pharr, G.M., Tsui, T.Y., and Bhatia, C.S., Multilayers of amorphous carbon prepared by cathodic arc deposition, Surf. Coat. Technol. 94/95, 189–194, (1997).Google Scholar
  147. 147.
    Tay, B.K., Sheeja, D., and Yu, L.J., On stress reduction of tetrahedral amorphous carbon films for moving mechanical assemblies, Diamond Rel. Mat. 12, 185–194, (2003).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations